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Abstract: In this article, we consider different batch assignment schemes for non-separable, non-preemptive production
scheduling on m parallel work stations. Batch assignment is a very important part of production models as
batches with identical parameters usually occur in a large number in real-world applications, which causes
a large number of symmetric solutions. The common scheme Exactly-n for assignment of n batches to m
machines originating from general assignment problems is very inefficient when it comes to scheduling, even
with additional ordering for symmetry breaking (Exactly-n Ordered). We define three restricted assignment
schemes for the same-parameter batches by forming blocks of size 0 ≤ zi ≤ n on machine i and ordering them
between the different machines. We compute bounds for the number of feasible assignments as a measure for
the feasible space and give solving times from our experiments with a boolean inference-based solver like the
Google CP-SAT solver. We show that with the proposed restricted assignment schemes, production scheduling
models result that solve significantly faster than the models with the common scheme Exactly-n.

1 INTRODUCTION

In resource constraint production scheduling prob-
lems of chemical and pharmaceutical manufacturing
processes, raw materials go through processing stages
as batches to satisfy a given demand of product types
u. The number and type of batches and work stations
(machines in scheduling terminology) can be depicted
as a bipartite graph (V,E), see Figure 1. In particular,
the nodes V represent batches (first column) or work
stations (second column) while the edges in E rep-
resent the possible material transfer routes and result
in different assignment possibilities. Work stations in
the first production stage process batches of the sev-
eral product types and have different parameters like
volume, processing rate per product type and possibly
waiting and changeover times. Among the batches of
same product type, most have a given same volume
suitable for work stations. Some have a remainder
volume to achieve a given demand.

The problem of batch process scheduling consists
of two parts, assignment of each of n batches of same
product type to one of m machines with possibly dif-
ferent parameters and disjunctive scheduling of as-
signed batches on each machine i (i = 1, . . . ,m) based
on batch and machine parameters, resulting in the
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Figure 1: Bipartite graph of 10 batches bu, j ( j = 1, . . . ,10)
to be processed on 4 work stations sti, i = 1,2,3,4. The
processing times per product type u = 1,2,3 are 6, 8, 12
time units on the work stations i = 1,2 and double on the
work stations i = 3,4. Note that the batches with types u =
2,3 are omitted from the figure for compactness!

batch processing time on this machine. The solving
time of the production scheduling model depends in
a complex way on both model parts. In the follow-
ing, we consider different schemes for assignment of
n batches bu, j ( j = 1, . . . ,n) of same product type u
to the m machines by constraint programming. Be-
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sides the machine parameters, there can be additional
changeover constraints on the same and between dif-
ferent machines so that the problem is not separable,
see Figure 1 marked by a line between machines with
8 time units changeover time for a different type on
the other machine and 0 time units for the same type.
Especially, the problem can in general not be solved
one single machine after another. In practice, fur-
ther processing stages can follow after the first par-
allel stage like a filling stage for example.

This article analyzes different direct models for
the assignment and scheduling of parallel machines
with one solve, using the CP-SAT constraint solver
in Google OR-Tools (Perron and Didier, 2023),
where we aim for extensible models and minimum-
makespan solutions. It does not consider any problem
decomposition with several solves as in (Tran et al.,
2016)(Hooker and Ottosson, 2003).

There is a large body of previous work on paral-
lel machine scheduling ranging from heuristics over
MILP approaches, which is beyond the scope of this
paper as we aim for explaining model and solver per-
formance of constraint models. (Da Col and Teppan,
2019) compares published benchmarks with different
numbers and lengths of jobs for the job shop schedul-
ing problem and different models without or with in-
terval variables on two constraint solvers: IBM CP-
Optimizer and CP-SAT. Conditional interval variables
for scheduling have been introduced in (Laborie and
Rogerie, 2008) together with their handling by the
IBM CP-Optimizer.

Cardinality constraints for assignment have been
considered in exactly-n and atmost-n (Sinz, 2005)
(Heule, 2020) in boolean formulation. In integer
constraint programming, these can be formulated as
sum constraints of integers (Trick, 2003). Some con-
straint programming systems offer set variables with
cardinality constraints (Gervet, 2006) (Benoist et al.,
2011), which is translated internally into low-level
constraints. Similarly, (Baxter et al., 2016) proposes
special symmetry declarations inside the modeling
language to override the variable indexing (Marriott
et al., 2008), which are then exploited by the solver.

(Perron and Furnon, 2023) describe the general
assignment problem with linear costs for CP-SAT and
MILP and demonstrate grouping of assignment enti-
ties. The combination of assignment and scheduling
like in our article is still unclear. To the best of our
knowledge, the efficient restricted schemes in our arti-
cle and a comparison for the assignment and schedul-
ing problem have not been described elsewhere.

Section 2 states the problem and the notation
used throughout the article. We present the efficient
restricted assignment schemes for same-parameter

batches and its formulation via constraints in Section
3, analyze their number of different feasible assign-
ments and give results from our experimens with the
SAT-based constraint solver CP-SAT (Section 4). Fi-
nally, we give conclusions in Section 5.

2 PROBLEM STATEMENT AND
PREVIOUS WORK

First we give the notation used throughout the article.
For each machine with index i (i = 1, . . . ,m) there is
a boolean Si, j for the batch with index j ( j = 1, . . . ,n)
of same parameters (determined by volume and prod-
uct type u). Note that we omit the parameters from
the notation of batches in the following for shortness
as the schemes apply to each of the same parameter
sets similarly. If Si, j = 1, then batch index j is as-
signed to the machine with index i. The indexing of
all booleans Si, j is depicted in Figure 2, which is used
for the description of all assignment schemes.

Figure 2: Variables for n = 4 batches (columns) to m = 4
machines (rows).

Additionally, Ii, j is the time interval [s(Ii, j),e(Ii, j)[
for processing on machine i with s(Ii, j), e(Ii, j) inte-
gers. Note that time intervals with s(Ii, j) ≥ e(Ii, j)
are empty. Each machine i can process only one
job at a time (disjunctive processing), i.e., all as-
signed time intervals {Ii, j : j = 1, . . . ,n ∧ Si, j = 1}
must be non-overlapping. Disjunctive processing can
be achieved by a global constraint (Carlier, 1982, dis-
junctive)(Baptiste et al., 2012, NoOverlap) for each
machine index i

NoOverlap(Ii, j : j = 1, . . . ,n∧Si, j = 1)

The assignment boolean and the time interval are
represented as a pair (Si, j; Ii, j), which is called an op-
tional interval in CP-SAT and other constraint solvers.
Intervals Ii, j with Si, j = 0 are non-active (aka. non-
assigned), and such intervals are simply ignored by
the solver. Intervals Ii, j with Si, j = 1 are active.

Like in the general assignment problem, we have
to assign each of the n batches to exactly one of the m
machines.

m

∑
i=1

Si, j = 1 for all j ( j = 1, . . . ,n) (C.1)
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We denote by function ρ the machine index
ρ( j) := i (row) with Sρ( j), j = 1 for the batch b j (col-
umn). Additionally, let zi := ∑ j Si, j be the number of
batches assigned to machine index i. For an example
with n = 4 batches on m = 4 machines see Figure 3.

Figure 3: General assignments (Exactly-n and Exactly-n
Ordered) for an example with n = 4 batches (columns) on
m = 4 machines (rows) with z1 = z2 = 2, z3 = z4 = 0.

The general assignment scheme in Figure 3 allows
mn feasible assignments ρ, which is an exponential
number in n. In our application, the assignment deter-
mines the active intervals on each machine with index
i, but only their number zi and not their indices mat-
ter. We show in our solving experiments in Section 4
that this general assignment scheme Exactly-n is not
efficient.

3 ASSIGNMENT SCHEMES

Batches of same parameters are indistinguishable in
scheduling, and they create solutions with just per-
muted indices. To avoid such index permutation
(Gent et al., 2006) of time intervals, we order the non-
overlapping intervals on machine i:

e(Ii, j−1)≤ s(Ii, j) for all j ≥ 2

In this way, we add precedence constraints on ma-
chine i based on index order.

We can also constrain the time intervals in
Exactly-n further by ordering the end times of the
overlapping time intervals on possibly different ma-
chines ρ( j):

e(Iρ( j−1), j−1)≤ e(Iρ( j), j) for all j ≥ 2

We call this strengthened scheme Exactly-n Or-
dered.

As it appears in the results, it is more efficient and
direct to restrict the assignments themselves to blocks
per machine, as shown in Figure 4.

Left-Most Blocks
We additionally restrict the assignments on each
machine i to have smallest indices, beginning with
machine i = 1, where assigned batches form left-
most blocks on each machine (Figure 4).
For a formulation with only linear constraints, let
boolean variable seqi, j, seqi, j = 1 iff Si, j−1 ̸= Si, j,
i.e., the assignment changes from column j−1 to
column j ( j = 2, . . . ,n). Then the sum ∑

n
j=2 seqi, j

Figure 4: Restricted assignments (Left-most Blocks and
Left-most Blocks Table) for an example with n= 4 batches
(columns) on m = 4 machines (rows) with z1 = z2 = 2, z3 =
z4 = 0. The row sums are the same as in Figure 3 but form
left-most blocks on each machine.

gives the total number of boolean changes on ma-
chine i (row). The variables Si,k and seqi, j are con-
nected by the following constraints:

∀k ≥ 2 S1,k−1 ≥ S1,k (C.2)
row i = 1 starts with block (column k = 1)

∀k ≥ 2∀i ≥ 2 Si,k = 1
if Si−1,k−1 = 1∧Si−1,k = 0 (C.3)

block in row i is adjacent to block in the previous
row i−1

∀i Si,1 +∑
n
j=2 seqi, j +Si,n ∈ {0,2} (C.4)

see cases for ∑
n
j=2 seqi, j below

We check the three cases below to convince us that
(C.4) is satisfied.

(Si,k)k = 1..10..0 or 0..01..1
iff ∑

n
j=2 seqi, j = 1

(Si,k)k = 0..01..10..0 iff ∑
n
j=2 seqi, j = 2

(Si,k)k = 0..0 or 1..1 iff ∑
n
j=2 seqi, j = 0

In all other cases ∑
n
j=2 seqi, j is larger than 2 and

thus excluded by the constraints.
Left-Most Blocks Table

For a formulation with the global constraint
AllowedAssignments, we list all possible blocks of
ones as allowed variable assignments for (Si, j) j,
resulting in scheme (Blocks Table).
Constraints (C.2) and (C.3) restrict assignments
to smallest indices as above in Left-most Blocks,
resulting in the scheme Left-most Blocks Table.
Note that Left-most Blocks Table is a differ-
ent implementation of Left-most Blocks without
the additional boolean variables seqi, j for form-
ing blocks. The allowed assignments are listed in
the table, and the dependencies between rows are
achieved by constraints (C.2) and (C.3).

4 RESULTS

In this section, we compare the schemes by the num-
ber of feasible assignments and based on solver ex-
periments with OR-Tools CP-SAT.

ICAART 2024 - 16th International Conference on Agents and Artificial Intelligence

270



0

10

20

30

40

50

60

70

80

90

100

110

120

0 10 20 30 40

ti
m

e
 [

s]

#batches of type 1,2,3

blocks-table 1
leftmost-blocks-table 1

leftmost-blocks 1
blocks-table 16

leftmost-blocks-table 16
leftmost-blocks 16

exactly-n 1
exactly-n ordered 1

exactly-n 16
exactly-n ordered 16

Figure 5: Solving times for finding an optimal solution without proving optimality. (AMD Ryzen 9–5950, Windows 10
Professional, OR-Tools CP-SAT version 9.7.2996 with given number of workers 1 or 16).

Feasible Assignments. The schemes Exactly-n,
Exactly-n Ordered have the most assignments with
same numbers zi. Exactly-n Ordered additionally
reduces the number of solutions by ordering interval
end times over all m = 4 machines.
Blocks Table: still keeps several assignments with
same numbers zi as it assigns blocks to the machines
2,3, . . . without prescribing their orders. If k ≤ n is
the number of actually used machines then there are
k! ·#Left-most Blocks.

In this example with one state, Left-most Blocks
has only 8 feasible assignments, and their exact
number is given by the number of ordered sums
K(n,m) := ∑

m
i=1 zi of m numbers 0 ≤ zi ≤ n. Bounds

for this number K(n,m) can be calculated from the
ordered partition number G(n,k) of k ≤ m numbers
1 ≤ zi ≤ n, which is G(n,k) =

(n−1
k−1

)
(Matousek and

Nesetril, 2009). Placing the non-zero numbers on the
m machines gives K(n,m) = ∑

m
k=1

(m
k

)
G(n,k). Then

for a lower bound(
m

⌊m/2⌋

)(
n−1

⌊m/2⌋−1

)
≤

m

∑
k=1

(
m
k

)(
n−1
k−1

)
,

which results from any large summand in the sum.
For an upper bound, we assume n > 2m as in applica-
tions

∑
m
k=1

(m
k

)(n−1
k−1

)
≤ m

( m
⌊m/2⌋

)
maxm

k=1

(n−1
k−1

)
≤ m⌊m/2⌋+1(n−1)m−1

which is polynomial in n with a fixed number m of
machines.
Solver Experiments. We compare the schemes for
computing a minimum-makespan production sched-
ule for 3 product types with different processing times
on the machines. We consider solutions for the exam-
ple problem in Figure 1, where there are additional
waiting times between processing different types on
machines 1, 2 and machines 3, 4 as they arise from a
shared material feeder.

The experiments were performed on AMD Ryzen
9–5950 (16 cores, 96GB RAM), with OR-Tools ver-
sion 9.7.2996 using the Python API on Windows 10
Professional. Solver settings are default with pre-
solving and 1 (sequential) or 16 (parallel portfolio)
workers. Figure 5 shows the solving times with-
out proving it optimal for a solution with minimum
makespan 88, 174, 262 and 348 respectively.

Exactly-n and Exactly-n Ordered, only per-
formed for 10 batches per type, are orders of magni-
tude slower than the block schemes. With both, there
are up to

(n
zi

)
feasible assignments for given zi, so that

the active intervals (Ii, j : ∑ j Si, j = zi) can have arbi-
trarily dispersed indices on each machine i. It seems
not easily possible for the solver to extend partial so-
lutions with these schemes. Additional ordering of
intervals by end time does not help and makes it even
slower.
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Figure 6: Optimality gaps for n = 10,20 (top), n = 30,40 (bottom) till timeout 1000 seconds or proving optimality. Points on
the curves indicate when the optimal solution is found. (AMD Ryzen 9–5950, Windows 10 Professional, OR-Tools CP-SAT
version 9.7.2996 with given number of workers 1 or 16).

With 1 worker the schemes Left-most Blocks
and Left-most Blocks Table are the fastest, whereas
Blocks Table gets slow for 30 or more batches. For
smaller numbers of batches, the search with objec-
tive optimization seems to select within the larger
number of feasible solutions. With 16 workers all
schemes are much closer together with Left-most
Blocks being the fastest, especially for large numbers
of batches. Again, Blocks Table is fast for all num-
bers of batches.

We also looked into how lower bounds and ob-
jective values evolve during the optimization process,
Figures 6 and 6 show the optimality gaps beginning
with the example n = 10 up to n = 40.

As can be seen, with 1 worker the lower bounds
are only slowly improving, Blocks Table being worst.
With 16 workers and larger number of batches, all
schemes are much closer together, with Left-most
Blocks being the best. The additional booleans in the
formulation seem to be beneficial during the portfo-
lio search. If the number of machines (m = 6 instead

of m = 4 in our example) gets larger, then Left-most
Blocks Table is better than Blocks Table, as permuta-
tions of machines with Blocks Table allow more fea-
sible assignments.

5 CONCLUSION

In this article, we compared three different batch as-
signment schemes for parallel-machine scheduling.
As batches with identical parameters occur in a large
number, this is a very important part of the produc-
tion constraint model. As an application example, we
show a filling stage connected to the processing stage
in the constraint model or added as a filling heuristic
(Jaehn and Pesch, 2019)(Pinedo, 2016, dispatching
rules). Figure 7 shows the Gantt charts for 1 filling
station in our example with 3 product types of n = 10
batches each and m = 4 machines.

In our experiments with the solver CP-SAT, the
general schemes Exactly-n and the further con-
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Figure 7: Gantt charts for the problem in Figure 1. Solved to minimum makespan with filling by CP-SAT (top) and by a
filling heuristic earliest-release-date-first (bottom) after the processing stage by CP-SAT. Note that the production schedules
are different, and the overall minimum makespan is 3 time units smaller due to waiting times for filling. Furthermore, there
are normally several schedules of minimum makespan.

strained Exactly-n Ordered are very slow in terms
of solving time. For practical, non-separable prob-
lems, we presented other schemes with significantly
smaller, polynomial number of feasible assignments
and much better solving times for a minimum-
makespan schedule.

The scheme Left-most Blocks performs best es-
pecially for larger number of batches and for lower
bounds determination during solving. Blocks Table
performs well for optimization with a small number
of machines. With Blocks Table all pre-generated al-
lowed blocks are provided in the AllowedAssignments

global constraints as arguments. If the number of ma-
chines gets larger, then Left-most Blocks Table per-
forms better.

In summary, keep the activation pattern in disjunc-
tive constraints similar during solving like in all re-
stricted assignment schemes and prefer boolean con-
straint formulations for determining the activation
pattern (Left-most Blocks and Left-most Blocks Ta-
ble).

The Exactly-n Ordered scheme has non-
decreasing interval end times over all machines by
constraint. Such an explicit sorting is not neces-
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sary for correctness of parallel-machine scheduling
but it is an interesting property for decomposition ap-
proaches. As future work, we are interested in de-
composition approaches for different path possibili-
ties (direct or via additional storage tanks to several
filling stations).
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