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We present a hybrid visual-inertial odometry system that relies on a state-of-the-art deep feature matching

front-end and a traditional visual-inertial optimization back-end. More precisely, we develop a fully-fledged
feature tracker based on the recent SuperPoint and LightGlue neural networks, that can be plugged directly to
the estimation back-end of VINS-Mono. By default, this feature tracker returns extremely abundant matches.
To bound the computational complexity of the back-end optimization, limiting the number of used matches is
desirable. Therefore, we explore various methods to filter the matches while maintaining a high visual-inertial
odometry performance. We run extensive tests on the EuRoC machine hall and Vicon room datasets, showing
that our system achieves state-of-the-art odometry performance according relative pose errors.

1 INTRODUCTION

Visual-inertial odometry (VIO) is a technique for es-
timating the 6-degree-of-freedom (6DoF) pose of a
camera from a sequence of images and inertial mea-
surements. It is widely used in robotics, augmented
reality (AR), and virtual reality (VR) applications. If
we add a loop detection and closure method to VIO,
we have a complete Visual-Inertial Simultaneous Lo-
calization and Mapping (VISLAM) system. The in-
creased accuracy makes that such SLAM systems are
used in a wide range of large-scale industries such as
autonomous vehicles, civil engineering or agriculture.

Traditional VIO and VISLAM methods rely on
hand-crafted feature extraction and matching algo-
rithms for their front-ends, i.e. the image process-
ing pipeline between the sensor input and the op-
timization back-end. Prominent methods include
VINS-Mono (Qin et al., 2018), ORB-SLAM3 (Cam-
pos et al., 2021) or OpenVINS (Geneva et al,
2020). These methods typically use descriptor or
KLT-based feature tracking, both having their respec-
tive strengths and weaknesses. KLT tracking is usu-
ally faster but less robust to large viewpoint changes
(which could be due to fast camera motion), poor im-
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Figure 1: Features tracked with our system in the EuRoC
sequence MH_01. The red-green-blue color code indicates
features that have been observed in respectively 2 to 8, 8 to
16 and more than 16 frames.

age contrast (e.g. difficult visibility conditions) and
occlusions. Descriptor-based tracking allows to track
features in the longer term, but is more expensive
computationally. One of the most studied VIO al-
gorithms is VINS-Mono, which has achieved state-
of-the-art performance for several years and whose
open-source code is at the core of an important quan-
tity of research works. To name a few, VINS-Fusion
(Qin et al., 2019) extends VINS-Mono to multi-
ple sensors, PLI-VINS (Zhao et al., 2022) extends
VINS-Mono with line features, R2Live (Lin et al.,
2021) uses VINS-Mono’s feature tracker in a LiDAR-
visual-inertial odometry pipeline.
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Figure 2: Matches obtained with SuperPoint and LightGlue
on a sample frame pair of EuRoC’s MHO1 sequence, with-
out filtering.

In recent years, there has been a significant
progress in image feature extraction and matching
techniques. More precisely, deep learning-based fea-
ture algorithms based on variants of convolutional
neural networks (CNNs) have been shown to achieve
state-of-the-art results. The applications of these
methods are numerous (e.g., automated object track-
ing, motion-based segmentation), but they are par-
ticularly well suited for visual odometry tasks. The
recently introduced LightGlue (Lindenberger et al.,
2023) algorithm presents a significant increase of per-
formance of the state-of-the-art of deep feature ex-
traction and matching. One key property is that Light-
Glue is adaptive to the difficulty of the problem: the
inference is much faster on image pairs that are intu-
itively easy to match, for example because of a larger
visual overlap or limited appearance change. This is
precisely the case for visual odometry tasks, where it
is expected that adjacent frames have a large overlap.

By default, the combination of SuperPoint and
LightGlue returns extremely abundant matches. Fig-
ure 2 shows the density of matches on a sample frame
of the EuRoC’s dataset MHO1 sequence. For practi-
cal purposes, it is important to limit this number of
matches that are actually used in VIO estimator back-
end, in order to bound the computational complex-
ity. Therefore, it becomes relevant to develop ways of
limiting the number of matches.

In this paper, we propose a new VIO front-end
that uses a deep learning-based feature extraction and
matching algorithm. Our method is built upon VINS-
Mono and LightGlue and can serve as a direct re-
placement for VINS-Mono’s default feature tracker,
making it easy to integrate in existing, practical sys-
tems. Through experiments on the EuRoC micro-
aerial vehicle dataset (Burri et al., 2016), we show
that our feature tracker consistently improves the per-
formance compared to the default VINS-Mono. Our
contributions are the following:

1. We develop a fast and accurate deep feature
tracker for visual odometry, which we integrate
in the VINS-Mono VIO system. With default set-
tings, this feature tracker already achieves better
odometry performance than the ordinary VINS-
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Mono. In some variants, our feature tracker with
VINS-Mono’s backend achieves an accuracy su-
perior to the current state-of-the-art deep feature-
based HFNet-SLAM system (Liu and Aitken,
2023).

2. To bound the computational complexity of the
visual-inertial estimator and thus guarantee a cer-
tain operational frame rate, we study different
ways of filtering feature matches and limiting the
number of feature observations returned by our
feature tracker. This allows to pick a variant of
our system according to the performance / speed
trade-off for each application.

Following open science principles and to stimu-
late further work on our system, we make all of our

contributions available open source!.

2 RELATED WORK

Although odometry and SLAM systems exist with
a plethora of sensor setups involving one or multi-
ple cameras, LiDARs, IMUs, etc, the classic visual-
inertial setup remains of great interest thanks to
its simplicity, small physical dimension and perfor-
mance. However, since our contribution does not af-
fect the processing of IMU measurements in the VIO
system, we start with an overview of the techniques
to process visual information for odometry. We cover
the main trends that have emerged in the field, start-
ing from the inception of such methods in the 2000s
with classical, hand-made features until today’s neu-
ral network-based learned features.

2.1 Traditional Feature-Based Visual
Odometry

Visual SLAM, or Simultaneous Localization and
Mapping through visual data, has been a subject of
extensive research and development over the years.
The inception of monocular SLAM can be traced
back to 2007 when Davison introduced MonoSLAM
(Davison et al., 2007). This algorithm utilized an ex-
tended Kalman filter (EKF) to achieve real-time lo-
calization by leveraging large image patch features
and sparse prior scene knowledge. However, it had
limitations in handling occlusions, motion blur, and
scenarios with sparse texture details. Some of these
challenges were overcome with the introduction of
the multi-state constraint Kalman filter (MSCKF)

https://github.com/charleshamesse/LightGlue- VIN
S-Mono
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in (Mourikis and Roumeliotis, 2007), which pro-
poses a tightly coupled visual-inertial approach that
jointly optimizes camera poses and IMU measure-
ments. Although Kalman filter-based odometry sys-
tems are relatively simple and elegant, optimization-
based methods have been introduced to increase accu-
racy. Odometry systems based on bundle adjustment
optimization have been adopted with a great success,
albeit at the cost of increased computational complex-
ity. However, this increase can be controlled with a
clever control of the number of variables considered
in the optimization problem. This can be achieved
by limiting the number of active feature tracks and
using keyframe-based or sliding window optimiza-
tion. VINS-Mono (Qin et al., 2018) is a robust visual-
inertial odometry estimation system that maintains re-
cent states of map points and cameras in a sliding
window, optimized with local bundle adjustment. Vi-
sual features are tracked using KLT and optical flow.
ORB-SLAM (Campos et al., 2021) uses ORB features
and a descriptor-based approach for matching, which
is more expensive computationally but can offer bet-
ter long-term data association performance. (Note
that both VINS-Mono and ORB-SLAM also have full
SLAM capabilities, with loop closure detection and
optimization methods.)

2.2 Deep Feature-Based Visual
Odometry

Nowadays, deep learning techniques for feature ex-
traction and matching significantly outperform their
traditional counterparts. In (DeTone et al., 2018),
the authors have introduced a self-supervised fully
convolutional model called SuperPoint, capable of
computing pixel-wise features with excellent match-
ing capabilities. This has shown to be very suc-
cessful in numerous subsequent works. For exam-
ple, SuperPointVO (Han et al., 2020) proposes a
stereo odometry system based on feature extraction
by SuperPoint. The features are fed to a traditional
stereo VO backend without loop closing. Exper-
iments on the KITTI dataset show a performance
close to other state-of-the-art stereo SLAM system.
(Tang et al., 2019) moved from SuperPoint and in-
troduced the GCNv2 network to replace the ORB al-
gorithm for extracting local features in the RGB-D
variant of the ORB-SLAM system. DF-SLAM (Kang
et al., 2019) integrated learned features with a tradi-
tional stereo SLAM system, achieving both high ac-
curacy and real-time performance. In a similar man-
ner, LIFT-SLAM (Bruno and Colombini, 2020) uses
the Learned Invariant Feature Transform (LIFT) pro-
posed by (Yi et al., 2016) for feature detection, ori-
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entation estimation and description, then uses a tra-
ditional stereo ORB-SLAM backend. HFNet-SLAM
(Liu and Aitken, 2023) integrates HFNet features
(Sarlin et al., 2019) for feature tracking and loop de-
tection on the ORB-SLAM3 framework, achieving
state-of-the-art performance for full SLAM in various
configurations (monocular and monocular-inertial).
Furthermore, with the optimisation of TensorRT tech-
nology, the authors show that the entire system can
run in real-time at 50 FPS on a standard Nvidia
RTX2070 GPU. Unfortunately, HFNet-SLAM only
reports full SLAM results with loop closing, making
the comparison difficult. DXSLAM (Li et al., 2020)
similarly integrates HFNet features, but this time in
a traditional RGB-D SLAM backend (also based on
ORB-SLAM).

Evaluation of visual odometry methods is com-
monly done on the EuRoC micro aerial vehicle
dataset (Burri et al., 2016), the TUM dataset (Sturm
et al., 2012) or KITTI (Geiger et al., 2013). Among
all the deep feature-based methods mentioned in the
previous paragraph, only HF-Net has an open source
monocular-inertial variant against which we can com-
pare our results.

3 METHOD

We start with an overview of the proposed VIO
pipeline, then focus on each specific component and
variant that we have implemented.

3.1 Overview

We propose a monocular visual-inertial odometry sys-
tem called LightGlue-VINS-Mono. As the name
indicates, this system is built upon the existing
SuperPoint-LightGlue deep feature matcher (DeTone
et al., 2018) (Lindenberger et al., 2023) and the tra-
ditional VINS-Mono visual-odometry system (Qin
et al., 2018). To do so, we develop a fully-fledged
visual feature tracker based on LightGlue, which we
connect to the VINS-Mono VIO back-end. From an
input-output perspective, our feature tracker functions
exactly the same as the original feature tracker from
VINS-Mono: it takes image frames as input, and re-
turns feature observation tuples containing the feature
identifier, its coordinates in the current image frame,
etc. We implement a strategy to run the feature ex-
traction only once on each image, saving the results to
avoid unnecessary re-execution of SuperPoint. Then,
for every pair of adjacent frames, we run LightGlue
and then filter out potentially bad matches: the match
filter component of our pipeline implements various
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Figure 3: Overview of our visual-inertial odometry pipeline. Each incoming image frame I; is fed to SuperPoint, which
outputs features F;. Together with the previous features F;_j, they are fed to LightGlue, which returns the matches M;. Then,
the MatchFilter component selects a relevant subset of all matches M, which is finally fed to the state estimator back-end.
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Figure 4: Histogram of the score values of the 443 matches
returned by applying SuperPoint+LightGlue on one pair of
frames, taken exactly in the middle of EuRoC’s MH_01 se-
quence. Note that the vertical scale of the plot is logarith-
mic.

strategies to reject matches based on their score out-
put by LightGlue, as explained in the next sections.

A key difference between our LightGlue and
VINS-Mono’s traditional feature tracker is the abun-
dance of matches that are returned. As shown in the
introduction on Figure 2, SuperPoint and LightGlue
return significantly more matches than the traditional
tracker, even in the presence of large parallax or mo-
tion blur. However, the optimization-based VIO back-
end has a computational complexity that grows dras-
tically with this number of matches. Therefore, match
filtering should be applied to bound the complexity of
the optimization problem. To do so, we use an in-
teresting property of LightGlue: its ability to return
a confidence score with each match. Based on this
score, we implement various match filtering strate-
gies, as we will explain in the next sections.

Further operations in our VIO system follow the
default VINS-Mono implementation. For simplicity
and to better study the performance contribution of
our feature tracker, we do not develop an associated
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Figure 5: Histogram of the score values of the 1.5M
matches returned by applying SuperPoint+LightGlue on
all adjacent pairs of frames of EuRoC’s MH_01 sequence.
Note that the vertical scale of the plot is logarithmic.

loop closure method. If need be, one could append a
loop closure method to our pipeline or use that from
VINS-Mono. Figure 3 shows the main components
of the LightGlue-VINS-Mono system. The following
sections describe each component.

3.1.1 Feature Extraction

The SuperPoint neural network takes the i-th image I;
as input and returns the set of features:

Fi={fio.fi1, ..

where fij = <)C,'j,yij,d,'j>

ey
@)
Here x;;,y;; and d;; are respectively the coordinates
of the j-th feature in the i-th image and the associ-
ated feature descriptor. Nreaures 1S the target number
of features to find in each image, which is a user-input
parameter of SuperPoint.

i fivaeatures -1 }

3.1.2 Feature Matching

Once the features are extracted for I;, the LightGlue
feature matcher takes the current features F; and pre-
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Figure 6: Matches returned for a frame pair in EuRoC’s
MHO1 sequence. Top: all points found by SuperPoint, cen-
ter: points used in matches found by LightGlue, bottom:
points matched with connecting line.

vious features F;_; and returns the following set of
matches:

M;={mjo, mj;, ..., miy_1} (3

where my = (f;,_, -, f; +, si) S

where M is the number of matches returned in the cur-
rent frame pair which are indexed by k, j~ is the index
of the matched feature in the set F;_;, and similarly
for j© and F;. Then, s € [0,1] is the match confi-
dence score. The match scores returned by LightGlue
are often very close to the unit. We study their distri-
bution and show the results in Figures 4 and 5. More-
over, LightGlue returns extremely abundant matches,
successfully matching a large portion of feature points
extracted by SuperPoint (see Figure 6).

Each feature needs a unique identifier number so
that the VIO back-end may optimize its location in
a window of frames. Therefore, we augment each
match such that:

iy = (§_y -, £+, sk, ni) (5

where ny, is the unique feature identifier which can be
either propagated from the previously matched frame
pair if the feature was already observed, or created by
incrementing the current total feature count if it is a
newly observed feature.

3.1.3 Match Filtering

Our feature extraction and matching pipeline outputs
extremely abundant matches, and we want to limit the
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number of matches actually used in the optimization
back-end. This is important to limit the computa-
tional complexity of the visual-inertial optimization
and guarantee a certain speed. We use the confidence
score to implement two different strategies to discard
these potentially wrong matches:

* The first strategy is to discard all matches my with
a score s; below some threshold. As shown on
Figures 4 and 5, the scores returned by the feature
matcher are mostly concentrated in values close
to 1. Therefore, we implement two variants of the
filter with the threshold sy max set at 0.9 and 0.95.

* The second strategy is to take the Mpqax-best
matches at each frame pair. We evaluate this
method with the maximum number of matches
M ax set to 300, 400 and 500.

The set of filtered matches for the i-th frame is noted
M} and is the complete output of the feature tracker
which is fed to the VIO back-end. For its state-of-the-
art performance and to make our solution practical,
we use VINS-Mono’s VIO back-end estimator, with-
out any modification.

4 EVALUATION

We evaluate our system against the baseline VINS-
Mono, the state-of-the-art traditional VIO, and
HFNet-SLAM, a state-of-the-art deep feature-based
VI-SLAM system. In both cases, we deactivate the
loop closure methods to perform a fair evaluation,
testing the pure visual-inertial odometry capabilities
of the algorithms. We test several variants of our pro-
posed system, using the score threshold-based match
rejection strategy and the Mp,x-best match retention
strategy, and one without any filtering. All of our
tests are executed on a laptop computer with an Intel
19-11900H CPU and an Nvidia RTX3080 GPU. All
methods are executed on the same device and evalu-
ated with the same method.

4.1 Accuracy

The metrics considered are the Absolute Trajectory
Error (ATE) and the Relative Pose Error (RPE, com-
puted for each adjacent frame pair), which we split
into the Translation part (RPE-T) and Rotation part
(RPE-R). It is common knowledge that the RPEs are
more relevant than the ATE for the evaluation of vi-
sual odometry, as they target the local quality of the
trajectory estimation. Also, the ATE is sensitive to
when the errors happen along the trajectory (Zhang
and Scaramuzza, 2018). Therefore, the ATE is more
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Table 1: Evaluation of our proposed method LightGlue-VINS-Mono with the minimum s; (set to 0.9 and 0.95), and the
Mmax-best (from 200 to 1000) against state-of-the-art traditional and deep feature-based methods. The RMS Relative Pose
Error in Translation (RPE-T) is reported in millimeters. VINS and HFNet represent VINS-Mono and HFENet-SLAM, both
executed with the loop closure component deactivated and otherwise default settings. Bold indicates the best performance.

VINS | HFNet LightGlue-VINS-Mono (ours)
Seq. || Def. | Def. |m-0.9]m-0.95] b-200 | b-300 |b-400|b-500 | b-600 [ b-700|b-800 |b-900 | b-1000
MH.01| 4.07 | 3.92 | 3.23 [455.21[120.65] 2.95 [ 239 [ 232 [ 232 | 2.12 | 2.01 | 1.89 | 1.86
MH.02 | 3.19 | 3.40 | 241 | 633 | 2.67 | 2.09 | 1.85 | 1.72 | 2.08 | 1.90 | 1.76 | 1.66 | 1.49
MH_03 | 6.95 | 580 |[10.73| 6545 | 4.61 |131.92| 4.06 | 3.91 | 417 | 402 | 3.83 | 3.88 | 3.77
MH.04 | 7.46 | 655 |58.28| 79.54 | 537 | 4.62 | 4.51 | 447 | 447 | 439 | 435 | 437 | 4.41
MH.05 | 6.69 | 4.43 |40.41| 39.33 | 6433 | 4.15 | 3.88 | 3.78 | 4.05 | 3.89 | 3.70 | 3.70 | 3.86
V101 || 527 | 3.39 | 324 | 343 | 321 | 292 | 2.80 | 2.75 | 2.88 | 2.82 | 2.74 | 2.80 | 2.78
V102 || 576 | 2.86 | 3.07 | 7470 | 87.36 | 2.88 | 2.78 | 2.78 | 2.83 | 2.77 | 2.78 | 2.77 | 2.75
V103 || 642 | 3.44 3443|4416 | 3.66 | 2.98 | 2.79 | 327 | 2.78 | 2.75 | 2.76 | 2.77 | 2.73
V201 || 3.10 | 3.32 | 277 | 331 | 281 | 1.91 | 1.62 | 147 | 1.74 | 1.61 | 1.47 | 1.39 | 146
V2.02 || 452 | 3.19 | 286 | 350 | 61.61 | 2.33 | 2.01 | 1.97 | 212 | 1.97 | 1.91 | 1.89 | 1.89
V2.03 || 7.39 | 3.32 |75.78| 5458 | 5.24 | 3.75 | 3.62 | 3.62 | 349 | 3.57 | 3.54 | 345 | 345

Table 2: Evaluation of our proposed method LightGlue with the minimum s; (set to 0.9 and 0.95), and the Mpyax-best (from
200 to 1000) against state-of-the-art traditional and deep feature-based methods. For readability, the RMS Relative Pose Error
in Rotation (RPE-R) is reported in hundredths of degrees. VINS and HFNet represent VINS-Mono and HFNet-SLAM, both
executed with the loop closure component deactivated and otherwise default settings. Bold indicates the best performance.

VINS | HFNet LightGlue-VINS-Mono (ours)
Seq. || Def. | Def. | m-0.9|m-0.95|b-200]b-300]b-400]b-500 b-600 | b-700 | b-800 | b-900 | b-1000
MH.01[[ 041 | 039 | 0.32 | 45.52 [12.06| 029 [ 0.24 [ 0.23 [ 0.23 [ 0.21 | 0.20 | 0.19 | 0.19
MH.02|| 0.32 | 034 | 024 | 0.63 | 0.27 | 021 | 0.18 | 0.17 | 0.21 | 0.19 | 0.18 | 0.17 | 0.15
MH_03|| 0.69 | 0.58 | 1.07 | 6.55 | 0.46 |13.19| 0.41 | 0.39 | 0.42 | 0.40 | 0.38 | 0.39 | 0.38
MH_04|| 0.75 | 0.66 | 5.83 | 7.95 | 0.54 | 0.46 | 0.45 | 0.45 | 0.45 | 0.44 | 0.43 | 0.44 | 0.44
MH.05|| 0.67 | 0.44 | 404 | 3.93 | 643 | 0.41 | 039 | 0.38 | 0.41 | 0.39 | 0.37 | 0.37 | 0.39
V101 || 0.53 | 0.34 | 032 | 034 | 032|029 028 | 0.27 | 029 | 0.28 | 0.27 | 0.28 | 0.28
V1.02 || 058 | 029 | 031 | 7.47 | 874 | 0.29 [ 0.28 | 0.28 | 0.28 | 0.28 | 0.28 | 0.28 | 0.27
V103 || 0.64 | 0.34 | 344 | 442 | 037 | 030 [ 0.28 | 0.33 | 0.28 | 0.28 | 0.28 | 0.28 | 0.27
V2.01 || 031 | 0.33 | 028 | 033 | 028 | 0.19 [ 0.16 | 0.15 | 0.17 | 0.16 | 0.15 | 0.14 | 0.15
V2.02 || 045 | 0.32 | 029 | 035 | 6.16 | 0.23 [ 0.20 | 0.20 | 0.21 | 0.20 | 0.19 | 0.19 | 0.19
V2.03 |/ 0.74 | 0.33 | 758 | 546 | 052 | 0.38 | 0.36 | 0.36 | 0.35 | 0.36 | 0.35 | 0.35 | 0.35

relevant for full SLAM systems, where the aim is
to produce globally consistent trajectories. However,
since it remains very often reported, we chose to com-
pute both type of metrics in this paper.

Tables 1 and 2 report the results of the RMS RPE-
T and RPE-R, respectively. On both of these ta-
bles, we see that LightGlue-VINS-Mono in the higher
Mnax variants achieves state-of-the-art performance,
with an RMS RPE-T significantly lower than VINS-
Mono and HFNet-SLAM in most cases. Also, we
see that the threshold-based match rejection results
in relatively poor performance. This might be due
to the fact that in some sequences, the camera mo-
tion is such that very few matches can be found in

frame pairs, resulting in too few matches being used
with such a strong rejection policy. With the M-
best retention strategy, we ensure that some matches
are always used, even if they are relatively scarce. An
interesting remark is that the accuracy continues to
increase as we add more matches (and thus allow-
ing lower quality matches compared to lower Mpax
variants), which testifies for the general quality of
matches returned by SuperPoint and LightGlue.
Table 3 reports the results of the RMS ATE. Here,
unlike with the relative errors, HFNet-SLAM shows
a consistent superior performance. This could be ex-
plained by the fact that it matches features in the cur-
rent frame against all known features in the local map,
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Table 3: Evaluation of our proposed method LightGlue with the minimum s; (set to 0.9 and 0.95), and the Mpax-best (from
200 to 1000) against state-of-the-art traditional and deep feature-based methods. The RMS Absolute Translation Error (ATE)
is reported in meters. VINS and HFNet represent VINS-Mono and HENet-SLAM, both executed with the loop closure
component deactivated and otherwise default settings. Bold indicates the best performance.

VINS | HFNet LightGlue-VINS-Mono (ours)
Seq. || Def. | Def. |m-0.9]m-0.95] b-200 | b-300 |b-400|b-500 | b-600 [ b-700|b-800 |b-900 | b-1000
MH.O1| 149 | 124 [ 243 [26.10 [ 72.04 | 1.67 | 1.53 [ 1.59 | 2.18 | 2.15 [ 2.04 | 1.86 | 1.88
MH.02 | 247 | 103 | 2.65 | 642 | 3.63 | 2.67 | 2.21 | 2.12 | 3.09 | 2.67 | 232 | 2.50 | 2.18
MH.03| 1.79 | 115 | 2.94 | 4.07 | 2.80 |161.76| 1.66 | 1.61 | 1.73 | 1.49 | 1.38 | 1.40 | 1.28
MH.04| 1.03 | 1.00 | 1.06 | 1.60 | 1.65 | 128 | 1.19 | 1.31 | 140 | 143 | 1.35 | 1.36 | 1.57
MH_05| 0.84 | 0.60 | 0.87 | 0.95 | 6.00 | 1.11 | 1.00 [ 0.92 | 1.10 | 1.06 | 1.12 | 0.98 | 1.28
V101 || 6.19 | 551 | 629 | 6.65 | 620 | 5.87 | 550 | 542 | 525 | 5.26 | 5.31 | 5.56 | 534
V102 || 2.62 | 1.99 | 246 | 3443 |173.23| 2.55 | 2.12 | 223 | 2.30 | 2.28 | 2.27 | 2.27 | 2.30
V103 | 529 | 2.36 {26.82|171.53| 547 | 3.91 | 338|398 | 3.18 [ 3.18 | 3.31 | 334 | 327
V201 || 1.87 | 078 | 3.03 | 621 | 3.00 | 1.73 | 1.03 | 1.00 | 1.51 | 1.33 | 1.21 | 1.06 | 1.21
V2.02 || 2.68 | 0.97 | 249 | 333 [175.51| 1.90 | 1.86 | 1.88 | 1.66 | 1.65 | 1.68 | 1.67 | 1.67
V2.03 || 3.28 | 0.90 | 821 | 1239 | 9.24 | 2.88 | 2.56 | 2.61 | 1.95 | 2.66 | 2.59 | 2.12 | 2.15

allowing to potentially re-use features that are not de-
tected in a given past frame, leading to better global
trajectory consistency. This is not the case with our
tracker: if a feature was detected in frame i — 1 and i
but not in frame i + 1, detecting it again in frame i + 2
will have our matcher treat it as a new feature and
the previous feature track is lost. In other words, our
matcher only operates on adjacent frame pairs, which
could also explain its better performance in relative
errors. The combination of both approaches would be
an interesting direction for further research.

4.2 Computational Complexity

In terms of computational complexity, the evaluation
is harder to perform as the time needed by the opti-
mizer of VINS-Mono to converge depends on numer-
ous factors: the number of matches, which directly
impacts the number of feature observations for which
we need to compute a residual, and the current state of
the system with respect to the optimization landscape,
including the minimum to reach.

To give an order of magnitude of the influence of
the number of matches used in the optimization, we
measure the average iteration time in M,.x-best vari-
ants of our system, as well as the default VINS-Mono
system. Table 4 reports these measurements. In prac-
tice, we can limit the number of iterations or the to-
tal time used by the solver, potentially stopping be-
fore reaching the local minimum?. Our variants can

2For example, on the EuRoC dataset, the default max
iteration number for VINS-Mono is 8, and the total solver
time is 40ms, so that it can achieve real-time at roughly 20
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Table 4: Evaluation of the average iteration time required by
VINS-Mono’s estimator back-end, computed on the MHO1
sequence. Default means VINS Mono’s default feature
tracker.

Variant | Iteration time [ms] ‘

Default 1.67
b-300 2.11
b-400 3.23
b-500 3.94
b-600 4.11
b-700 4.78
b-800 5.38
b-900 6.70

b-1000 7.41

be slightly or severely slower than the default VINS-
Mono, and thus depending on the target application
and resources, we may choose a certain match filter-
ing strategy.

S CONCLUSIONS

In this paper, we have presented a practical visual-
inertial odometry system that relies on state-of-the-art
deep feature matching and traditional visual-inertial
optimization-based state estimation. More precisely,
we develop a fully-fledged feature tracker that can be
plugged directly to the estimation back-end of VINS-
Mono. Our deep feature tracker uses SuperPoint,
LightGlue, and custom methods to limit the num-

frames per second.



ber of matches to bound the complexity of the VIO
optimization while maintaining maximum accuracy.
Our extensive tests on the EuRoC datasets show that
our system achieves state-of-the-art odometry perfor-
mance according to relative translation and rotation
errors, at the cost of a slight increase of computational
complexity. Now, our tests highlight different ways in
which this work could be improved:

1. A dedicated, deep feature-based loop closure sys-
tem could be appended for full SLAM capability.

2. As shown in the tests, the local map-based match-
ing of HFNet-SLAM and ORB-SLAM could po-
tentially improve the global consistency of the tra-
jectories returned by our system.

3. The current implementation of the feature tracker
is in Python and PyTorch; important speed im-
provements could be obtained by switching to a
C++ / TensorRT implementation.

Following open science principles and to stimulate
work in the directions mentioned hereabove, we open
source the code of our system (upon acceptance).
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