Comparison Between Graph Databases and RDF Engines for Modelling Epidemiological Investigation of Nosocomial Infections

Lorena Pujante-Otalora¹, Manuel Campos¹,², Jose M. Juarez¹ and Maria-Esther Vidal³
¹MedAILab, Department of IT and Systems, University of Murcia, Campus Espinardo, Murcia, 30100, Spain
²Murcian Bio-Health Institute, IMIB-Arrixaca, El Palmar, Murcia, 30120, Spain
³Leibniz University of Hannover and L3S Research Center and TIB Leibniz Information Centre for Science and Technology, Hannover, Germany

Keywords: Graph Database, Knowledge Graphs, Epidemiology, Benchmark, Neo4j, GraphDB.

Abstract: We have evaluated the performance of property and knowledge graph databases in the context of spatiotemporal epidemiological investigation of an infection outbreak in a hospital. Specifically, we have chosen Neo4j as graph database, and GraphDB for knowledge graphs defined following RDF and its extension RDF*. We have defined a domain model describing a hospital layout and patient movements. For performance comparison, we have created ten graphs with different sizes based on MIMIC-III, implemented three epidemiological queries in Cypher, SPARQL and SPARQL* and defined three benchmarks that measure the execution time and main memory consumption of the three queries in each graph and database engine. Our research suggests that query complexity is a more determinant factor than graph size in the performance of the query executions. Neo4j presents better times and memory consumption than GraphDB for simple queries, but GraphDB is more efficient when traversing big subgraphs. Between RDF and RDF*, RDF* offers a more compact and human-friendly modelling and a better performance of the query execution.

1 INTRODUCTION

In recent years, we have witnessed an exponential growth in data to be stored and processed at any area, what is called “big data”. This vast amount of data with no rigid schemes and generally stored across multiple machines promoted some new type of databases, encompassed in the term NoSQL databases (Leavitt, 2010). Graph databases are NoSQL databases that represent data as property graphs, providing an efficient storage and management of highly interconnected data. The interest in modelling data as property graphs has increased in recent years due to their advantages in network analysis and the semantic web. Related to this context, we also find knowledge graphs, a semantic web technology that links massive and cross-domain data used on tasks like information retrieval, hidden linkage identification, and knowledge-driven decision support (Li et al., 2022). Unlike graph databases, which present different strategies to model the internal representation of the graphs, knowledge graph databases usually represent data as a set of triples in the form of <subject, predicate, object> following RDF (Resource Description Framework).

In the field of medicine and healthcare, both property and knowledge graphs are increasingly used in tasks such as validation of diagnoses (Gu et al., 2022; Yin et al., 2021), prediction of patient clinical pathways (Trevena et al., 2022), suggestions of treatment plans (LIU et al., 2022) and drugs (Rivas & Vidal, 2021) and integration of heterogeneous healthcare data and electronic health records for a common storage (Freedman et al., 2020) and its interoperability (Kiourtis et al., 2019). We think a graph can be a valuable tool for modelling a hospital and the patients’ movements during their stays. Thus, we could examine the connections between patients and medical staff through the hospital layout over time. In (Pujante-Otalora et al., 2023), we studied how graphs are used in spatiotemporal epidemiological research.

In this paper, we empirically evaluate the performance of property and knowledge graphs to solve spatio-temporal queries that correspond to tasks of the epidemiological research of hospital infectious outbreaks. In particular, the knowledge graphs are
based on triples and delimited by RDF 1.1 (RDF 1.1 Concepts and Abstract Syntax, n.d.) and its extension RDF* (RDF-Star and SPARQL-Star, n.d.). To this aim, we have designed a domain model for hospitals focused on spatially and temporally describing the patients’ movements during their stay. We have also generated graphs of different sizes, taking as a source the freely-available database MIMIC-III (Johnson et al., 2016), which comprises information about patients admitted to critical care units at a large tertiary care hospital. We have chosen Neo4j as the graph database engine for the property graphs and GraphDB for the knowledge graphs. For the evaluation, three queries that represent three tasks from the epidemiological research process have been defined and implemented in Cypher -Neo4j query language-, SPARQL 1.1 (SPARQL Protocol and RDF Query Language)SPARQL 1.1 Query Language, n.d.) and its extension SPARQL*. These queries can be defined as reachability and pattern-matching graph-based tasks and have different levels of complexity (number of required and optional paths, length of the paths, number and type of the variables to retrieve). Finally, we discuss the results of our evaluation and outline the different conditions that benefit the studied engines.

To summarize, our contributions are as follows:

i) Design of a domain model that describes a hospital layout and the movements of the inpatients as a log of all their events.

ii) Description of three epidemiological research queries in terms of graph tasks and their paths.

iii) An empirical study of the performance of property graphs and knowledge graphs based on the queries.

This paper is organised as follows: Section 2 summarizes related works. Section 3 describes the graph database engines (Section 3.1), the domain model (Section 3.2), the queries (Section 3.3), the datasets (Section 3.4), the storage use (Section 3.5) and the benchmarks (Section 3.6). Experimental results and their discussion are in Section 4. Conclusions are in Section 5.

2 RELATED WORK

In the past few years, several works that aim to compare graph databases and knowledge graph databases have been published. These comparisons focus on the performance of the database, mainly measured as the execution time of a set of queries that address different graph tasks (adjacency, reachability, pattern matching, shortest path, etc.) over real-world or synthetic datasets of various sizes. The graph tasks, the query strategy and the datasets affect the results of the studies. (Hohenstein & Jergler, 2019) studied fairness in the most applied methods in graph database comparisons.

These comparative works often focus solely on property or knowledge graph databases. In the case of knowledge graph databases, GraphDB and Stardog are among the RDF engines that appear the most and with the best results. (Atemezing & Amardeilh, 2018) studied the bulk loading, scalability and query execution time of four RDF engines (GraphDB, Oracle 12c, Stardog, Virtuoso) over two real-world datasets from the EU Publications Office. (Bellini & Nesi, 2018) compared the execution time of a set of ten RDF engines against a Smart City RDF Benchmark dataset.

In the case of graph databases, Neo4j is commonly compared, presenting promising results. (Wang et al., 2020) compared three graph databases (Neo4j, TigerGraph, TuGraph) against some synthetic social networks. (Ferro & Sinico, 2018) compared three graph databases (ArangoDB, Neo4j, OrientDB) and a relational database (PostgreSQL) against data from the LDBC Social Network Benchmark. Works that compare graph databases with RDF engines are less common. (Kovács et al., 2019) compared the execution times of two graph databases (Neo4j, JanusGraph) with an RDF engine (Blazegraph) using a dataset loaded with information from Wikidata. (Li et al., 2022) compared the execution time of four triple stores (GraphDB, Virtuoso, RDF4j, Fuseki) with a graph database (Neo4j) and an Ontology-Based Data Access database (Ontop) against a dataset of topological data. Our work differs from this last one in that their queries represent geometrical operations for spatial analysis of polygons based on points, while our spatial representation of a hospital is based on relative relations (next to, opposite, inside) of its architectural elements (room, corridor, floor). Besides, we consider the temporal dimension.
3 DATA AND METHODS

3.1 Graph Database and RDF Engine

Neo4j is a database engine that relies on labelled property directed multigraphs, which are implemented in native structures. That is, the underlying structure of the database has been designed to store data in the form of nodes and edges. Neo4j presents a schema-less model and implements its own query language, Cypher. It provides an API REST and official drivers for several programming languages.

GraphDB is a graph database used to store and manage knowledge graphs that can perform semantic inferencing. It is fully compliant with RDF 1.1 and SPARQL 1.1, and it is one of the few commercial graph databases that entirely supports their extensions RDF* and SPARQL*. GraphDB implements the RDF4J framework interfaces in pursuit of compatibility with RDF serialization formats and easy application integration. GraphDB offers an official API REST for administration tasks but not querying the database.

It is noteworthy that both databases are implemented in Java. Some newer graph databases implemented in C++ (e.g., TigerGraph) may offer faster results.

3.2 Domain Model

Our model aims to represent patients’ movements during their hospital stay. This model focuses on both the temporal and the spatial dimensions. The spatial dimension consists of a hierarchy of locations that goes from bed to building, passing through rooms, corridors, areas and floors. There are also spatial relations between some locations of the same level in the hierarchy, such as being next to or opposite some other location. For example, a room can be next to another, but not opposite a corridor. The spatial dimension also covers the hospitalization units and services that care for the patients during their stay. The locations form the physical spatial dimension, and the units and services are the logical spatial dimension. For the temporal dimension, there is a log with the hospital episodes of each patient, where each episode represents an hospital stay and consists of a set of all its events. An event represents any movement of the patient in the hospital (a stay in a room, a surgical operation, taking radiography, etc.) or other actions, such as getting the results of a microbiological test. Each episode and event has a start and end date and time. Events may occur in a time moment (both dates and times will be the same) or interval. Some of them are connected to a location, so they are the union point between temporal and spatial dimensions. Events can also be connected to the hospitalization units that cared for the patient.

In the model, some relations have properties. That is the case of all the relations from the spatial dimension, which have a weight to represent how close the two locations are. The relation that connects a microbiological test with the microorganism found also has a property to mark if the microorganism is multidrug-resistant. The right side of Figure 1 shows the entire domain model. Given the lack of detailed information on the dataset about the hospital layout and what happened during the hospitalizations, we have used a reduced version of the domain, shown on the left side of Figure 1. The explanation of the complete model is out of the scope of this work.

The implementation of our domain model differs from property graph to knowledge graph. Neo4j presents a schema-less model where nodes and edges can belong to one or several classes that act like labels since they do not restrict the number and datatype of the properties of its nodes and edges. Moreover, nodes and edges hold their own information in the form of properties. When translating the domain model to an RDF ontology, we find that it is an abstract representation that does not differentiate data from metadata since it is based on the concept of statement: a triple made of a subject, a predicate and an object. The subject denotes a resource defined by a URI (Uniform Resource Identifier), and the predicate denotes a property or relation of the subject. The object is the value of the data property or the URI of another resource (the subject of one statement can be the object of another). The class (or classes) of a resource is also the object of a statement. In a graph representation, subjects and objects would be the nodes, and predicates would be the edges between them.

A significant difference between a Neo4j graph and an RDF knowledge graph is how implement edges with properties. In RDF it is not possible to make a statement where an edge is a subject. There are four approaches to solve this problem: standard reification, n-ary relations, singleton properties and named graphs. We have chosen standard reification, which consists in creating a new class to represent the edges as resources (nodes), making possible statements that have them as subjects and their data properties as objects. On the other hand, RDF* allows making statements about other statements. So it is possible to define a statement that represents that two resources are linked, which is the subject of another statement that adds a property to the relation.
Figure 1: Domain model.

Figure 2 shows a graphical representation in each data model of the edge placedIn between a Bed and a Room, which has the property weight. From here on, we will refer to Neo4j nodes and RDF and RDF* resources as “nodes of individuals” and to the nodes with the name of the classes and the value of the data properties as “nodes of literals”.

3.3 Query Definition

We defined three queries representing relevant clinical tasks for detecting and studying an infection outbreak. All these queries could be described as reachability and pattern-matching graph-based tasks, where the paths are temporarily and semantically conditioned. Tables 1, 2 and 3 show the description and characteristics of every query. Figure 3 shows a schematic representation of each query. Each query is defined by the following characteristics:

- A general description of the query as a graph-based task.
- Number of required and optional paths, where “required” means that the path must match with the data and “optional” means that it is not mandatory that all of these paths match, but at least one must do it.
- Tentative number of steps (number of traversed edges) that each path should have in a pseudocode version of the query defined directly over the domain model diagram. When translated to Cypher, SPARQL and SPARQL*, these paths and their length may change.

3.4 Dataset Characteristics

We have generated ten graphs of different sizes from MIMIC-III. We have used admissions and transfers tables to get the stays and ward movements of the patients, services table to get the services responsible for the patients and microbiologyevents table to get their positive microbiological tests.

Since the information provided by MIMIC-III only partially covers the classes and relations of our domain model, we have extended it by creating a fictitious hospital with a simple layout.

In the physical spatial dimension, MIMIC-III works with wards. For each ward, we have created a
set of rooms with a maximum of ten beds. There must be sufficient beds in each ward to encompass the maximum number of simultaneous hospitalised patients if we compacted all its hospitalisations in just one year. Then, these beds are homogeneously distributed between the rooms.

We organised the rooms into four groups (surgical, medical, mixed and neonatal) according to the type of service that attends the most hospitalisations in their wards. All the rooms are located on a single floor and distributed in two parallel main corridors. These corridors are divided into several shorter corridors, each with a maximum of twenty rooms. Our fictitious hospital has 156 Surgical rooms with 1,413 beds, 23 Medical rooms with 179 beds, 56 Mixed rooms with 510 beds and 4 Neonatal rooms with 13 beds. Figure 4 is a schematic representation of the hospital layout where we can see the four groups of rooms and their distribution. For the logical spatial dimension, we have added to each service several hospitalization units, such that no hospitalization unit attends more than 1,500 hospitalisations.

Note that the specific design for this example did not impact the resolution of the queries, and other distributions would be possible since the data model allows for more complex designs while the classes used are the same.

To evaluate the scalability of the queries at the maximum extent with the data available, it is necessary to generate graphs of different sizes. We generated every graph to comprise the whole MIMIC-III dataset in one year and then picked sets of events (with their linked episodes, patients and microorganisms) such that it goes from around
Table 3: Description of Query 3.

<table>
<thead>
<tr>
<th>Clinical task</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Given a set of Patients and a period of time, find the shared Locations, Hospitalization Units, Services and Microorganism between them. That is, we want to find what connects patient_1 with patient_2, patient_1 with patient_3, patient_2 with patient_3, etcetera.</td>
</tr>
</tbody>
</table>

| Graph-based task | Find the nodes that are the union points between a given set of nodes through some specific paths. |

Required paths: 1

<table>
<thead>
<tr>
<th>Description</th>
<th>Number of steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>From the given Patients to all their Events</td>
<td>2</td>
</tr>
</tbody>
</table>

Optional paths: 6

<table>
<thead>
<tr>
<th>Description</th>
<th>Number of steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>- From each Event to every other Event passing through their:</td>
<td></td>
</tr>
<tr>
<td>• shared Hospitalization unit.</td>
<td>2</td>
</tr>
<tr>
<td>• shared Service.</td>
<td>4</td>
</tr>
<tr>
<td>• shared Locations. That is, first from the Event to its connected Seat and from this to its higher-level Locations, and then the inverse path.</td>
<td>2-8</td>
</tr>
<tr>
<td>• shared Locations, through Logic zone.</td>
<td>10</td>
</tr>
<tr>
<td>• adjacent Rooms.</td>
<td>5</td>
</tr>
<tr>
<td>- From each TestMicro to every TestMicro passing through their shared Microorganisms.</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 4 shows for each graph the number of nodes of the classes that most significantly impact the execution of the queries. These are the most numerous classes, and their nodes are often the start or end of the queries or a connection between paths. Table 5 shows the main “general graph features” of each graph, differentiating between each graph representation.

25,000 events up to 475,000 events in MIMIC-III with successive increments of 50,000 events.

In total, we have ten graphs called G1 to G10, being G1 the smaller and G10 the bigger. The hospital layout and number of hospitalization units and services are the same in all the graphs. Hence, there is a different density of events per location.
3.5 Storage Use

Concerning the disk space required to store the graphs, we have observed a noteworthy difference between Neo4j and GraphDB, which could be critical for the scalability of large graphs. To optimise the data storage, Neo4j uses linked lists of fixed-size records to store each data type (nodes, edges, properties). GraphDB combines an entity pool (files where all the entities -URIs, literals, RDF* triples- are stored as 32-bit or 40-bit internal IDs) with two main indexes, subject-predicate index and predicate-object index.

Figure 5 shows how much disk space each graph needs to be stored in each database engine. As expected, the implementations in RDF* of the graphs are a bit lighter than in RDF. The difference between these two technologies goes between 6.2% and 14.4% and increases with the size of the graph. It is worth mentioning that each database usually represents an increase of about 55 MB in RDF and RDF*. In Neo4j, this increase goes from 5 MB in the last graphs to 12 MB in the first ones.

An interesting side finding was that although the number of nodes and edges has been multiplied by 17, the size to store the graphs has only been increased around 7 times in RDF and 6.5 times in RDF*. In contrast, G10 is 20 times bigger than G1 in Neo4j. These findings could suggest that future studies would need to analyse at which point graphs stored in Neo4j are bigger than in GraphDB.

3.6 Benchmark Characteristics

In this work, we analysed the performance of the database engines when executing the queries defined. We set two representative measures:

- **Execution Time**: it represents the time between sending the query request to the API and receiving its answer.
- **Maximum Main Memory**: it is the amount of main memory required to execute the task.

We got the maximum main memory by
Table 5: General graph features. RDF and RDF* are deployed in GraphDB. The numbers are represented in thousands.

<table>
<thead>
<tr>
<th>Graph</th>
<th>Database Engine</th>
<th># Nodes of individuals</th>
<th># Nodes of literals</th>
<th># Edges</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>Neo4j</td>
<td>31</td>
<td>0</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>RDF</td>
<td>54</td>
<td>49</td>
<td>230</td>
</tr>
<tr>
<td></td>
<td>RDF*</td>
<td>31</td>
<td>49</td>
<td>208</td>
</tr>
<tr>
<td>G2</td>
<td>Neo4j</td>
<td>90</td>
<td>0</td>
<td>186</td>
</tr>
<tr>
<td></td>
<td>RDF</td>
<td>145</td>
<td>134</td>
<td>648</td>
</tr>
<tr>
<td></td>
<td>RDF*</td>
<td>90</td>
<td>134</td>
<td>593</td>
</tr>
<tr>
<td>G3</td>
<td>Neo4j</td>
<td>148</td>
<td>0</td>
<td>305</td>
</tr>
<tr>
<td></td>
<td>RDF</td>
<td>238</td>
<td>215</td>
<td>1,064</td>
</tr>
<tr>
<td></td>
<td>RDF*</td>
<td>148</td>
<td>215</td>
<td>974</td>
</tr>
<tr>
<td>G4</td>
<td>Neo4j</td>
<td>208</td>
<td>0</td>
<td>430</td>
</tr>
<tr>
<td></td>
<td>RDF</td>
<td>323</td>
<td>303</td>
<td>1,473</td>
</tr>
<tr>
<td></td>
<td>RDF*</td>
<td>208</td>
<td>303</td>
<td>1,358</td>
</tr>
<tr>
<td>G5</td>
<td>Neo4j</td>
<td>260</td>
<td>0</td>
<td>534</td>
</tr>
<tr>
<td></td>
<td>RDF</td>
<td>425</td>
<td>362</td>
<td>1,885</td>
</tr>
<tr>
<td></td>
<td>RDF*</td>
<td>260</td>
<td>362</td>
<td>1,720</td>
</tr>
<tr>
<td>G6</td>
<td>Neo4j</td>
<td>312</td>
<td>0</td>
<td>643</td>
</tr>
<tr>
<td></td>
<td>RDF</td>
<td>519</td>
<td>431</td>
<td>2,286</td>
</tr>
<tr>
<td></td>
<td>RDF*</td>
<td>312</td>
<td>431</td>
<td>2,079</td>
</tr>
<tr>
<td>G7</td>
<td>Neo4j</td>
<td>365</td>
<td>0</td>
<td>750</td>
</tr>
<tr>
<td></td>
<td>RDF</td>
<td>614</td>
<td>495</td>
<td>2,689</td>
</tr>
<tr>
<td></td>
<td>RDF*</td>
<td>365</td>
<td>495</td>
<td>2,440</td>
</tr>
<tr>
<td>G8</td>
<td>Neo4j</td>
<td>422</td>
<td>0</td>
<td>866</td>
</tr>
<tr>
<td></td>
<td>RDF</td>
<td>710</td>
<td>566</td>
<td>3,107</td>
</tr>
<tr>
<td></td>
<td>RDF*</td>
<td>422</td>
<td>566</td>
<td>2,819</td>
</tr>
<tr>
<td>G9</td>
<td>Neo4j</td>
<td>490</td>
<td>0</td>
<td>1,008</td>
</tr>
<tr>
<td></td>
<td>RDF</td>
<td>793</td>
<td>663</td>
<td>3,544</td>
</tr>
<tr>
<td></td>
<td>RDF*</td>
<td>490</td>
<td>663</td>
<td>3,240</td>
</tr>
<tr>
<td>G10</td>
<td>Neo4j</td>
<td>565</td>
<td>0</td>
<td>1,168</td>
</tr>
<tr>
<td></td>
<td>RDF</td>
<td>870</td>
<td>774</td>
<td>3,997</td>
</tr>
<tr>
<td></td>
<td>RDF*</td>
<td>565</td>
<td>774</td>
<td>3,692</td>
</tr>
</tbody>
</table>

From here on, we will refer to the execution time as “time” and to the maximum main memory consumption as “memory”. We have configured three benchmarks to study the performance of Neo4j and GraphDB. Each benchmark evaluates one of the proposed queries in the ten graphs (G1, G2...). For each graph, we have defined 12 sets of values representing each month of the year. These 12 sets are requested three times. Then, we calculated the mean of the time and memory values.

For each query, we have selected the patient, microorganism or service that is in the third quartile of the nodes of its class with more connections. In queries requiring a set of patients, we always used 15. These patients have been chosen randomly between those with more connected patients than the third quartile. We consider that 15 is a high enough number to represent a significant outbreak.

To ensure that cache memory is not preserved between different processes, each query request is executed in cold cache.

Regarding the execution features, we have worked with Neo4j CE 4.4.18 and GraphDB Free 10.2.0. We have implemented all the queries in Cypher, SPARQL and SPARQL*. The requests have been made locally. For the communication with the databases we have used Neo4j Python Driver(Neo4j Python Driver, 2023) for Neo4j and SPARQLWrapper(SPARQLWrapper, 2022) Python library for GraphDB. The experiments were run on a PC with an Intel i9-12900K, 16GB RAM and 1TB M2 drive, running a 64-bit Linux Ubuntu 22.04.

4 EXPERIMENTAL RESULTS AND DISCUSSION

4.1 Query 1

Q1 consists of the intersection of two short required paths with a fixed length. It can be observed in Figures 6a and 6b that Neo4j performs better in time.
and memory in all the graphs. Another finding is that SPARQL* requires a less time and memory than SPARQL for almost all the graphs.

We can also observe that both the time and the memory remain stable for all the graphs even though the proportions of TestMicro per Microorganism and Events per Service increased significantly. The only exception is found in G3 and G4, where the memory in SPARQL doubles that of the rest of the graphs. This exception will be present in the rest of the queries and might be related to a change in the query schedule, which can be corroborated by the curves depicted by the time series in SPARQL and SPARQL*. They grow slightly and stay higher until G5, then descend, and finally remain stable until the last graph.

The time behaviour of the three engines can be explained if we assume that the number of results (Patient nodes) of a query is related to the number of edges and nodes traversed. For each Patient node, it is necessary to traverse a path to its connected Microorganism nodes and other path to its connected Services. For example, if none of the Microorganism nodes is the requested one, then the paths to the Service nodes will not be traversed.

In Table 6, we have calculated for every graph the average number of results (number of distinct Patient nodes returned) for each month’s set. Then, we have divided it between the average time of Q1 in that graph to measure how much time is needed to get a result. This table shows that the number of results does not increase with the graph’s size (total number of nodes and edges) and that the time per result depicts similar curves to the execution time.

4.2 Query 2

Q2 is a query that traverses a complete tree from a Patient node to all the Patient nodes connected with it through some optional paths over the entire domain model. Note that the proportions of Events per Bed and Events per HospitalizationUnit are high and increase in each graph, implying an “explosion” of paths to traverse. Thus, Q2 is a suitable query to understand better how the engines behave when traversing large subgraphs.

The period used as a parameter in the query is 30 days, which is a period even larger than the usually considered in the initial investigation of an outbreak.

Figures 7a and 7b show the time and memory of executing Q2. Regarding time, SPARQL and SPARQL* are faster than Neo4j (except for the three most minor graphs), and the difference grows with the size of the graphs. If we observe Neo4j time, we can differentiate two rises. The first one goes from G1 to G5. The second one starts on G7 and does not seem to have a maximum nearby.

We have calculated the average time per result as in Q1, where results are the Patient nodes connected to the starting one. The results are in Table 7, where we can see that the time curves also happen in the time per result series. But note that in the first hill, the time per result grows with the number of results, while in the last rise, the number of results remains around 40, and the time per result only increases. We suspect that from G5 to G7, there must be a change in the strategy selected by the query scheduler.

In SPARQL and SPARQL*, time and memory present curves with similar shapes and values to those we got in Q1. Table 7 shows two similar behaviours in the average time per result whose start and end graphs coincide. This fact supports the supposition that the query scheduler of GraphDB starts to change the strategy with graphs with a size similar to G4 (around 500,000 nodes and 1,300,000 edges), and this change is effective when the graph has a size similar to G6 (around 1,000,000 nodes and 2,000,000 edges).
Table 6: Comparison of Neo4j, SPARQL and SPARQL * for Q1 executions in the graphs G1 to G10 of the average time to get a result. We also show the average time of the query in each graph (Figure 6-a). We have marked the groups of neighbouring graphs with similar behaviour in yellow and green. We have also marked the time relative maximum in orange.

<table>
<thead>
<tr>
<th>Graph</th>
<th>Neo4j Avg time (secs)</th>
<th>SPARQL Avg time (secs)</th>
<th>SPARQL * Avg time (secs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Avg Time/Avg Res</td>
<td>Avg Time/Avg Res</td>
<td>Avg Time/Avg Res</td>
</tr>
<tr>
<td>G1</td>
<td>1.69</td>
<td>4.73</td>
<td>4.59</td>
</tr>
<tr>
<td>G2</td>
<td>1.85</td>
<td>5.19</td>
<td>5.19</td>
</tr>
<tr>
<td>G3</td>
<td>2.07</td>
<td>7.16</td>
<td>5.88</td>
</tr>
<tr>
<td>G4</td>
<td>2.29</td>
<td>6.68</td>
<td>5.80</td>
</tr>
<tr>
<td>G5</td>
<td>2.09</td>
<td>5.77</td>
<td>6.55</td>
</tr>
<tr>
<td>G6</td>
<td>2.40</td>
<td>5.21</td>
<td>4.78</td>
</tr>
<tr>
<td>G7</td>
<td>2.47</td>
<td>4.62</td>
<td>5.15</td>
</tr>
<tr>
<td>G8</td>
<td>2.30</td>
<td>4.82</td>
<td>4.91</td>
</tr>
<tr>
<td>G9</td>
<td>2.33</td>
<td>4.83</td>
<td>5.08</td>
</tr>
<tr>
<td>G10</td>
<td>2.50</td>
<td>5.04</td>
<td>5.31</td>
</tr>
</tbody>
</table>

4.2.1 Query 2: Version that Returns the Solution Paths

Given the aim of Q2, it could be interesting that in addition to the Patient nodes, it also returned the traversed paths from the starting Patient to the Patient nodes in the tree’s leaves. We have defined a modified version to return the effective paths so we can study if “saving” the paths along the query execution implies a significant increase in time and memory.

Figures 7c and 7d show the time and memory of executing the modified version of Q2. Neo4j time and memory series show the same curves but with increases of around 130% in time and 120% in memory. SPARQL and SPARQL* present very different behaviours between time and memory. Like Neo4j, memory keeps the same curve with a slight increase of around 105%. On the contrary, in time, we can find that from G1 to G5, the query is about 125% slower, and for the rest, the increase in time is around 155%.

Neo4j has a more significant memory consumption than SPARQL and SPARQL*, possibly due to how the queries are built. In Neo4j, it has been necessary to add explicit instructions to save the traversed paths as lists in new variables that must be kept in memory. These instructions must also be responsible for the overtime in this version of Q2. In the case of SPARQL and SPARQL*, we did not need to use explicit instructions for saving paths. However, we had to add a new query connected to the original one with a UNION sentence to keep the paths between the Location nodes. This new query should not imply a relevant cost in memory since the nodes and edges it traverses should be already cached. However, traversing them again and joining the results of both queries should mean overtime.

4.3 Query 3

Q3 traverses the trees from 15 given Patients (15 is a fixed value parameter, as commented on above) to their Events. Then, some optional paths are defined to search for the union nodes between the Events from different Patients. Thus, it is a query where the exploration of the graph is not as crucial as the repetitive passage over a set of nodes and edges. Therefore, the relation between time and memory should differ from the other queries.

As we can see in Figures 8a and 8b, that is the case of Neo4j. We find that the maximum memory is around 120MB (with some exceptions in G3 and G4 that might be related to the strategy of the query scheduler), a low number compared with those in Q2. However, time in all the graphs is similar to that of the biggest graphs in Q2.
This difference between time and memory could be explained because the nodes and edges between the Events are charged in memory the first time they are accessed and remain cached for the rest of the accesses.

In the case of queries in SPARQL and SPARQL*, they present memory consumptions with values similar to those in Q1 and Q2, while the time is much longer than in any other query.

Before analysing time, it is necessary to comment that for the experiments, 15 Patients were chosen between those in the quarter of Patients with more connected Patients. However, it does not mean that there must exist connections between all 15 Patients. What is more, in this work, a bigger graph does not have to mean more connection between a set of patients. In Table 8, we can observe that the average number of results (the number of different paths that connect a Patient with another) does not increase with the size of the graphs. In fact, the maximum number of results is in G7, and the minimum is in G4. The time series of Neo4j follows the direction of the number of results: when the number of results
increases, time increases too, and the same when the number of results decreases.

Curiously, SPARQL* presents a curve more similar to Neo4j than SPARQL. In fact, the time differences between SPARQL and SPARQL* stand out in this query compared to the rest: here, SPARQL presents times between 115% and 153% bigger than SPARQL*. This significant difference may be because the majority of the computation in this query is in traversing edges with properties, which in SparQL* are represented with a single edge (actually a statement of a statement), while SparQL requires one “node of individuals” and two edges (see Figure 2). Thus, we can judge that the “edges with properties” from SPARQL* speed up traversing the graph. Under this assumption, we can observe that in Q1, where the edges with properties are barely traversed, the time difference is not so pronounced, and even in some graphs, SPARQL* is slower than SPARQL.

4.4 General Aspects

Our experiments suggest that there are common characteristics between queries related to time and memory.

First, in Neo4j, there is a strong relation between time and memory that is perceptible in Q1 and Q2, but not in Q3. Q1 and Q2 consist of exploring a tree in which traversing new edges and nodes is the main computing effort. Contrarily, Q3 works with a limited set of nodes traversing different combinations of edges between them. These opposite behaviours give us a clue about how Neo4j manages memory: as new edges and nodes are traversed, they are saved in memory and not deleted until the end of the query (as long as there is enough memory) to avoid the costly work of fetching data from disk.

Concerning Neo4j, it is shown that memory usage does not depend so much on the total size of the graph but rather on the subgraph to be traversed. In the case of GraphDB, SPARQL and SPARQL* present a memory usage similar, but clearly different from Neo4j. We can observe that in all the benchmarks, the memory is between 325MB and 400MB (with the exceptions in G3 and G4) and increases or decreases slightly depending on the query complexity and the data to save during the execution (for example, the number of classes of nodes and edges to return). The size of the graph also affects the memory usage in GraphDB. We can find clues about this in Q2 and Q3, where memory gradually decreases from G1 to G10 although the traversed subgraphs are not necessarily bigger because they are in a bigger graph.

Table 8: Average number of results of Q3 executions in the graphs G1 to G10.

<table>
<thead>
<tr>
<th>Graph</th>
<th>Avg #Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>1683</td>
</tr>
<tr>
<td>G2</td>
<td>1340</td>
</tr>
<tr>
<td>G3</td>
<td>1598</td>
</tr>
<tr>
<td>G4</td>
<td>1060</td>
</tr>
<tr>
<td>G5</td>
<td>2453</td>
</tr>
<tr>
<td>G6</td>
<td>3030</td>
</tr>
<tr>
<td>G7</td>
<td>4138</td>
</tr>
<tr>
<td>G8</td>
<td>3715</td>
</tr>
<tr>
<td>G9</td>
<td>2595</td>
</tr>
<tr>
<td>G10</td>
<td>1517</td>
</tr>
</tbody>
</table>

The results strongly suggest Neo4j and GraphDB work with different memory usage schemes. But to better understand GraphDB memory usage, it would be necessary to measure its memory consumption during query execution and analyse how it changes from the start to the end. This way, we could confirm our supposition that memory consumption is stable throughout the execution and that the maximum memory is not a peak like in Neo4j.

Regarding time, the results yielded some interesting findings regarding Neo4j and GraphDB. While in Neo4j, time changes depending on the type of query and the size of the subgraph to traverse, in
SPARQL and SPARQL*, time oscillations are lighter. In Q1 and Q2, they start from a high minimum base time (around 5 seconds, as opposed to Neo4j’s 2 seconds), but the maximum does not exceed more than three times the minimum, in contrast to the maximum times of Neo4j, which can multiply the minimum by eight.

5 CONCLUSIONS AND FUTURE WORK

In this research work, we evaluated the performance of property and knowledge graphs based on triple stores in the context of spatiotemporal epidemiological investigation of an infection outbreak in a hospital. Specifically, we chose Neo4j as the graph database engine, which has its own data model and query language, Cypher; and for knowledge graphs, we used RDF and RDF* as standard technologies to define the graphs, SPARQL and SPARQL* languages to query data and GraphDB database to store the graphs. We defined a domain model that describes a hospital layout, the organisation of its healthcare workers and the path of its patients as a log of all their events. We stated three queries that are steps of the epidemiological investigation process and designed a benchmark to evaluate the queries' time execution and memory in ten graphs of different sizes whose data come from the open-data clinical dataset MIMIC-III.

Our experiments provide convincing evidence that neither in Neo4j nor GraphDB time and memory are influenced by the total size of the graph, but for other factors like the complexity of the query (number of required and optional paths and their length), the size of the traversed subgraph and if the goal of the query is retrieving the leaves of a tree or do additional paths between a set of nodes. Neo4j's performance highly depends on these factors. For simple queries and small traversed subgraphs, time and memory can be half of those of GraphDB. On the other hand, time and memory on GraphDB present minimum values much higher than Neo4j but with less aggressive growth. Thus, SPARQL and SPARQL* will scale much higher than Neo4j but with less aggressive growth. It is worth mentioning that RDF and RDF* are W3C standards and not proprietary formats, as it is Neo4j. This offers the advantage of greater flexibility and solidity when choosing between possible additional tools to work with.

To further compare property graph and knowledge graph technologies in our context, we plan to define queries for the rest of the epidemiological investigation process tasks and, especially, queries to execute general graph tasks (shortest path, community detection) over our domain. It would also be necessary to generate synthetic data that covers the whole domain model.

ACKNOWLEDGEMENTS

This work was partially funded by the CONFAINE project (Ref: PID2021-122194OB-I00), supported by the Spanish Ministry of Science and Innovation, the Spanish Agency for Research (MCIN/AEI/10.13039/501100011033) and, as appropriate, EFRD A way of making Europe; and by the GRALENIA project (Ref: 2021/CO05/0015055) supported by the Spanish Ministry of Economic Affairs and Digital Transformation, the Spanish Secretariat of State for Digitization and Artificial Intelligence, Red.es and by the NextGenerationEU funding. This research was also partially funded by Fundación Séneca, Región de Murcia (Spain) (Ref: 21460/FPI/20).

REFERENCES

SPARQL 1.1 Query Language. (n.d.). Retrieved September 26, 2023, from https://www.w3.org/TR/sparql11-query/

