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Abstract: We have evaluated the performance of property and knowledge graph databases in the context of 
spatiotemporal epidemiological investigation of an infection outbreak in a hospital. Specifically, we have 
chosen Neo4j as graph database, and GraphDB for knowledge graphs defined following RDF and its extension 
RDF*. We have defined a domain model describing a hospital layout and patient movements. For 
performance comparison, we have created ten graphs with different sizes based on MIMIC-III, implemented 
three epidemiological queries in Cypher, SPARQL and SPARQL* and defined three benchmarks that measure 
the execution time and main memory consumption of the three queries in each graph and database engine. 
Our research suggests that query complexity is a more determinant factor than graph size in the performance 
of the query executions. Neo4j presents better times and memory consumption than GraphDB for simple 
queries, but GraphDB is more efficient when traversing big subgraphs. Between RDF and RDF*, RDF* offers 
a more compact and human-friendly modelling and a better performance of the query execution. 

1 INTRODUCTION 

In recent years, we have witnessed an exponential 
growth in data to be stored and processed at any area, 
what is called “big data”. This vast amount of data 
with no rigid schemes and generally stored across 
multiple machines promoted some new type of 
databases, encompassed in the term NoSQL 
databases (Leavitt, 2010). Graph databases are 
NoSQL databases that represent data as property 
graphs, providing an efficient storage and 
management of highly interconnected data. The 
interest in modelling data as property graphs has 
increased in recent years due to their advantages in 
network analysis and the semantic web. Related to 
this context, we also find knowledge graphs, a 
semantic web technology that links massive and 
cross-domain data used on tasks like information 
retrieval, hidden linkage identification, and 
knowledge-driven decision support (Li et al., 2022). 
Unlike graph databases, which present different 
strategies to model the internal representation of the 
graphs, knowledge graph databases usually represent 
data as a set of triples in the form of <subject, 

predicate, object> following RDF (Resource 
Description Framework). 

In the field of medicine and healthcare, both 
property and knowledge graphs are increasingly used 
in tasks such as validation of diagnoses (Gu et al., 
2022; Yin et al., 2021), prediction of patient clinical 
pathways (Trevena et al., 2022), suggestions of 
treatment plans(LIU et al., 2022) and drugs (Rivas & 
Vidal, 2021) and integration of heterogeneous 
healthcare data and electronic health records for a 
common storage (Freedman et al., 2020) and its 
interoperability (Kiourtis et al., 2019). We think a 
graph can be a valuable tool for modelling a hospital 
and the patients’ movements during their stays. Thus, 
we could examine the connections between patients 
and medical staff through the hospital layout over 
time. In (Pujante-Otalora et al., 2023), we studied 
how graphs are used in spatiotemporal 
epidemiological research.   

In this paper, we empirically evaluate the 
performance of property and knowledge graphs to 
solve spatio-temporal queries that correspond to tasks 
of the epidemiological research of hospital infectious 
outbreaks. In particular, the knowledge graphs are 
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based on triples and delimited by RDF 1.1 (RDF 1.1 
Concepts and Abstract Syntax, n.d.) and its extension 
RDF* (RDF-Star and SPARQL-Star, n.d.). To this 
aim, we have designed a domain model for hospitals 
focused on spatially and temporally describing the 
patients' movements during their stay. We have also 
generated graphs of different sizes, taking as a source 
the freely-available database MIMIC-III (Johnson et 
al., 2016), which comprises information about 
patients admitted to critical care units at a large 
tertiary care hospital. We have chosen Neo4j as the 
graph database engine for the property graphs and 
GraphDB for the knowledge graphs. For the 
evaluation, three queries that represent three tasks 
from the epidemiological research process have been 
defined and implemented in Cypher -Neo4j query 
language-, SPARQL 1.1 (SPARQL Protocol and RDF 
Query Language)(SPARQL 1.1 Query Language, 
n.d.) and its extension SPARQL*. These queries can 
be defined as reachability and pattern-matching 
graph-based tasks and have different levels of 
complexity (number of required and optional paths, 
length of the paths, number and type of the variables 
to retrieve). Finally, we discuss the results of our 
evaluation and outline the different conditions that 
benefit the studied engines. 

To summarize, our contributions are as follows: 

i) Design of a domain model that describes a 
hospital layout and the movements of the 
inpatients as a log of all their events. 

ii) Description of three epidemiological 
research queries in terms of graph tasks and 
their paths. 

iii) An empirical study of the performance of 
property graphs and knowledge graphs 
based on the queries. 

This paper is organised as follows: Section 2 
summarizes related works. Section 3 describes the 
graph database engines (Section 3.1), the domain 
model (Section 3.2), the queries (Section 3.3), the 
datasets (Section 3.4), the storage use (Section 3.5) 
and the benchmarks (Section 3.6). Experimental 
results and their discussion are in Section 4. 
Conclusions are in Section 5. 

2 RELATED WORK 

In the past few years, several works that aim to 
compare graph databases and knowledge graph 
databases have been published. These comparisons 
focus on the performance of the database, mainly 
measured as the execution time of a set of queries that 

address different graph tasks (adjacency, reachability, 
pattern matching, shortest path, etc.) over real-world 
or synthetic datasets of various sizes. The graph tasks, 
the query strategy and the datasets affect the results 
of the studies. (Hohenstein & Jergler, 2019) studied 
fairness in the most applied methods in graph 
database comparisons.  

These comparative works often focus solely on 
property or knowledge graph databases. In the case of 
knowledge graph databases, GraphDB and Stardog 
are among the RDF engines that appear the most and 
with the best results. (Atemezing & Amardeilh, 2018) 
studied the bulk loading, scalability and query 
execution time of four RDF engines (GraphDB, 
Oracle 12c, Stardog, Virtuoso) over two real-world 
datasets from the EU Publications Office. (Bellini & 
Nesi, 2018) compared the execution time of a set of 
ten RDF engines against a Smart City RDF 
Benchmark dataset. 

In the case of graph databases, Neo4j is 
commonly compared, presenting promising results. 
(Wang et al., 2020) compared three graph databases 
(Neo4j, TigerGraph, TuGraph) against some 
synthetic social networks. (Ferro & Sinico, 2018) 
compared three graph databases (ArangoDB, Neo4j, 
OrientDB) and a relational database (PostgreSQL) 
against a dataset based on an Italian Business 
Register. (Monteiro et al., 2023) compared the 
execution time and RAM and CPU usage of four 
graph databases (JanusGraph, Nebula Graph, Neo4j, 
TigerGraph) against data from the LDBC Social 
Network Benchmark0F0F.    

Works that compare graph databases with RDF 
engines are less common. (Kovács et al., 2019) 
compared the execution times of two graph databases 
(Neo4j, JanusGraph) with an RDF engine 
(Blazegraph) using a dataset loaded with information 
from Wikidata. (Li et al., 2022) compared the 
execution time of four triple stores (GraphDB, 
Virtuoso, RDF4j, Fuseki) with a graph database 
(Neo4j) and an Ontology-Based Data Access 
database (Ontop) against a dataset of topological data. 
Our work differs from this last one in that their 
queries represent geometrical operations for spatial 
analysis of polygons based on points, while our 
spatial representation of a hospital is based on relative 
relations (next to, opposite, inside) of its architectural 
elements (room, corridor, floor). Besides, we consider 
the temporal dimension. 
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3 DATA AND METHODS 

3.1 Graph Database and RDF Engine 

Neo4j is a database engine that relies on labelled 
property directed multigraphs, which are 
implemented in native structures. That is, the 
underlying structure of the database has been 
designed to store data in the form of nodes and edges. 
Neo4j presents a schema-less and implements its own 
query language, Cypher. It provides an API REST 
and official drivers for several programming 
languages.  

GraphDB is a graph database used to store and 
manage knowledge graphs that can perform semantic 
inferencing. It is fully compliant with RDF 1.1 and 
SPARQL 1.1, and it is one of the few commercial 
graph databases that entirely supports their extensions 
RDF* and SPARQL*. GraphDB implements the 
RDF4J framework interfaces in pursuit of 
compatibility with RDF serialization formats and 
easy application integration. GraphDB offers an 
official API REST for administration tasks but not 
querying the database. 

It is noteworthy that both databases are 
implemented in Java. Some newer graph databases 
implemented in C++ (e.g., TigerGraph) may offer 
faster results.  

3.2 Domain Model 

Our model aims to represent patients’ movements 
during their hospital stay. This model focuses on both 
the temporal and the spatial dimensions. The spatial 
dimension consists of a hierarchy of locations that 
goes from bed to building, passing through rooms, 
corridors, areas and floors. There are also spatial 
relations between some locations of the same level in 
the hierarchy, such as being next to or opposite some 
other location. For example, a room can be next to 
another, but not opposite a corridor. The spatial 
dimension also covers the hospitalization units and 
services that care for the patients during their stay.  
The locations form the physical spatial dimension, 
and the units and services are the logical spatial 
dimension. For the temporal dimension, there is a log 
with the hospital episodes of each patient, where each 
episode represents an hospital stay and consists of a 
set of all its events. An event represents any 
movement of the patient in the hospital (a stay in a 
room, a surgical operation, taking radiography, etc.) 
or other actions, such as getting the results of a 
microbiological test. Each episode and event has a 
start and end date and time. Events may occur in a 

time moment (both dates and times will be the same) 
or interval. Some of them are connected to a location, 
so they are the union point between temporal and 
spatial dimensions. Events can also be connected to 
the hospitalization units that cared for the patient. 

In the model, some relations have properties. That 
is the case of all the relations from the spatial 
dimension, which have a weight to represent how 
close the two locations are. The relation that connects 
a microbiological test with the microorganism found 
also has a property to mark if the microorganism is 
multidrug-resistant. The right side of Figure 1 shows 
the entire domain model. Given the lack of detailed 
information on the dataset about the hospital layout 
and what happened during the hospitalizations, we 
have used a reduced version of the domain, shown on 
the left side of Figure 1. The explanation of the 
complete model is out of the scope of this work. 

The implementation of our domain model differs 
from property graph to knowledge graph. Neo4j 
presents a schema-less model where nodes and edges 
can belong to one or several classes that act like labels 
since they do not restrict the number and datatype of 
the properties of its nodes and edges. Moreover, nodes 
and edges hold their own information in the form of 
properties. When translating the domain model to an 
RDF ontology, we find that it is an abstract 
representation that does not differentiate data from 
metadata since it is based on the concept of statement: 
a triple made of a subject, a predicate and an object. 
The subject denotes a resource defined by a URI 
(Uniform Resource Identifier), and the predicate 
denotes a property or relation of the subject. The object 
is the value of the data property or the URI of another 
resource (the subject of one statement can be the object 
of another). The class (or classes) of a resource is also 
the object of a statement. In a graph representation, 
subjects and objects would be the nodes, and predicates 
would be the edges between them.    

A significant difference between a Neo4j graph 
and an RDF knowledge graph is how implement 
edges with properties. In RDF it is not possible to 
make a statement where an edge is a subject. There 
are four approaches to solve this problem: standard 
reification, n-ary relations, singleton properties and 
named graphs. We have chosen standard reification, 
which consists in creating a new class to represent the 
edges as resources (nodes), making possible 
statements that have them as subjects and their data 
properties as objects. On the other hand, RDF* allows 
making statements about other statements. So it is 
possible to define a statement that represents that two 
resources are linked, which is the subject of another 
statement that adds a property to the relation. 
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Figure 1: Domain model. 

Figure 2 shows a graphical representation in each 
data model of the edge placedIn between a Bed and a 
Room, which has the property weight. From here on, 
we will refer to Neo4j nodes and RDF and RDF* 
resources as “nodes of individuals” and to the nodes 
with the name of the classes and the value of the data 
properties as “nodes of literals”. 

3.3 Query Definition 

We defined three queries representing relevant 
clinical tasks for detecting and studying an infection 
outbreak. All these queries could be described as 
reachability and pattern-matching graph-based tasks, 
where the paths are temporarily and semantically 
conditioned. Tables 1, 2 and 3 show the description 
and characteristics of every query. Figure 3 shows a 
schematic representation of each query. Each query is 
defined by the following characteristics: 

• A general description of the query as a graph-
based task. 

• Number of required and optional paths, where 
“required” means that the path must match with 
the data and “optional” means that it is not 
mandatory that all of these paths match, but at 
least one must do it. 

• Tentative number of steps (number of traversed 
edges) that each path should have in a 
pseudocode version of the query defined 
directly over the domain model diagram. When 
translated to Cypher, SPARQL and SPARQL*, 
these paths and their length may change. 

 

Figure 2: Graphical representation of the relation placedIn 
between two nodes Bed and Room with their properties. In 
Neo4j nodes, <id> property is an internal identifier. In 
RDF* representation, the small yellow node symbolises the 
statement that links the purple nodes and on which a new 
statement is added to link to it the weight property. 

3.4 Dataset Characteristics 

We have generated ten graphs of different sizes from 
MIMIC-III. We have used admissions and transfers 
tables to get the stays and ward movements of the 
patients, services table to get the services responsible 
for the patients and microbiologyevents table to get 
their positive microbiological tests. 

Since the information provided by MIMIC-III 
only partially covers the classes and relations of our 
domain model, we have extended it by creating a 
fictitious hospital with a simple layout. 

In the physical spatial dimension, MIMIC-III 
works with wards. For each ward, we have created a  
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Table 1: Description of Query 1. 

Query 1 (Q1) 
Clinical 
task Outbreak detection. 

D
es

cr
ip

tio
n Given a Service and a Microorganism, 

find all the Patients hospitalised under 
that Service who had an infection of the 
given Microorganism. The search is 
within a time interval. 

Ch
ar

ac
te

ris
tic

s 

Graph-based 
task 

Find the nodes that 
are the union points 
between two nodes. 

Required paths: 2 

Description 
Number of 

steps 
- From the given 
Microorganism to 
connected Patients 

3 

- From the given Service 
to connected Patients 

4 

Optional paths: 0 
 
set of rooms with a maximum of ten beds. There must 
be sufficient beds in each ward to encompass the 
maximum number of simultaneous hospitalised 
patients if we compacted all its hospitalisations in just 
one year. Then, these beds are homogenously 
distributed between the rooms. 

We organised the rooms into four groups 
(surgical, medical, mixed and neonatal) according to  
the type of service that attends the most 
hospitalisations in their wards. All the rooms are 
located on a single floor and distributed in two 
parallel main corridors. These corridors are divided 
into several shorter corridors, each with a maximum 
of twenty rooms. Our fictitious hospital has 156 
Surgical rooms with 1,413 beds, 23 Medical rooms 
with 179 beds, 56 Mixed rooms with 510 beds and 4 
Neonatal rooms with 13 beds. Figure 4 is a schematic 
representation of the hospital layout where we can see 
the four groups of rooms and their distribution. For 
the logical spatial dimension, we have added to each 
service several hospitalization units, such that no 
hospitalization unit attends more than 1,500 
hospitalisations. 

Note that the specific design for this example did 
not impact the resolution of the queries, and other 
distributions would be possible since the data model 
allows for more complex designs while the classes 
used are the same. 

To evaluate the scalability of the queries at the 
maximum extent with the data available, it is 
necessary to generate graphs of different sizes. We 
generated every graph to comprise the whole MIMIC- 

Table 2: Description of Query 2. 

Query 2 (Q2) 

Cl
in

ic
al

 
ta

sk
 

Outbreak detection from the index patient. 
The index patient is the first patient that 
catches the attention of the researchers. 
This patient may not be the first person 
infected. 

D
es

cr
ip

tio
n Given a Patient and a Microorganism, find 

all the Patients spatially connected with 
them and who had an infection of the given 
Microorganism. The search is within a time 
interval. 

Ch
ar

ac
te

ris
tic

s 

Graph-based 
task 

Find all the connected 
nodes to two nodes 
through some specific 
paths. 

Required paths: 2 

Description 
Number 
of steps 

- From the given Patient to all 
the Seats they have been 

3 
 

- From the Patients found in 
the optional paths to the given 
Microorganism 

3 

Optional paths: 6 

Description 
Number 
of steps 

- From the Seats to their 
connected Locations via 
placedIn until Area 

1-3 
 

- From the Rooms to other 
adjacent Rooms 

1 

- From the Areas to other Areas 
belonging to the same Logic 
zone (group of areas, not 
necessarily contiguous, with 
some common characteristics) 

2 

- From all the Locations found 
in the previous paths to their 
connected Seats 

1-3 

- From the Seats of the 
previous path to their 
connected Patients 

3 

- From the Events of the given 
Patient to the Hospitalization 
Units that cared for them. 
Then, from these 
HospitalizationUnits to other 
connected Patients 

4 

 
III dataset in one year and then picked sets of events 
(with their linked episodes, patients and 
microorganisms)   such   that   it   goes  from  around  
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Table 3: Description of Query 3. 

Query 3 (Q3) 
Clinical 

task 
Investigation of contagion sources 

D
es

cr
ip

tio
n 

Given a set of Patients and a period of 
time, find the shared Locations, 
Hospitalization Units, Services and 
Microorganism between them. That is, 
we want to find what connects 
patient_1 with patient_2, patient_1 with 
patient_3, patient_2 with patient_3, 
etcetera. 

Ch
ar

ac
te

ris
tic

s 

Graph-based 
task 

Find the nodes that are 
the union points 
between a given set of 
nodes through some 
specific paths. 

Required paths: 1 

Description 
Number 
of steps 

From the given Patients to 
all their Events 

2 
 

Optional paths: 6 

Description 
Number 
of steps 

- From each Event to every 
other Event passing through 
their: 

 

• shared Hospitalization 
unit. 

2 

• shared Service. 4 

• shared Locations. That 
is, first from the Event to 
its connected Seat and 
from this to its higher-
level Locations, and 
then the inverse path. 

2-8 

• shared Locations, 
through Logic zone. 

10 

• adjacent Rooms. 5 

 - From each TestMicro to 
every TestMicro passing 
through their shared 
Microorganisms. 

2 

 
25,000 events up to 475,000 events in MIMIC-III 
with successive increments of 50,000 events. 

In total, we have ten graphs called G1 to G10, 
being G1 the smaller and G10 the bigger. The hospital 
layout and number of hospitalization units and 
services are the same in all the graphs. Hence, there 
is a different density of events per location. 

 

Figure 3: Schematic representation of each query. Green 
nodes represent the initial nodes given as a parameter, and 
red nodes represent the result nodes after traversing the 
defined required and optional paths, represented with the 
black lines. In the case of Q3, red nodes have an asterisk 
because they can be of any class since they are the union 
between some initial nodes. Yellow nodes represent all the 
nodes of the traversed paths, which are returned with the 
red ones. 

Table 4 shows for each graph the number of nodes 
of the classes that most significantly impact the 
execution of the queries. These are the most 
numerous classes, and their nodes are often the start 
or end of the queries or a connection between paths. 
Table 5 shows the main “general graph features” of 
each graph, differentiating between each graph 
representation. 
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Figure 4: Schematic representation of our MIMIC-III hospital room layout. To simplify this figure, each corridor (except 
Neonatal_Corridor) has half the number of rooms actually assigned, and only a portion of the Surgical corridors are shown. 

Regarding the specific domain, a big hospital in 
Spain would be the Complex University Hospital of La 
Coruña in Galicia with about 1,300 beds. It registers 
about 37,000 admissions yearly according to the 
National Institute of Statics of Spain. This number is 
near the 38,000 patients in the most extensive graph. 

3.5 Storage Use 

Concerning the disk space required to store the 
graphs, we have observed a noteworthy difference 
between Neo4j and GraphDB, which could be critical 
for the scalability of large graphs. To optimise the data 
storage, Neo4j uses linked lists of fixed-size records to 
store each data type (nodes, edges, properties). 
GraphDB combines an entity pool (files where all the 
entities -URIs, literals, RDF* triples- are stored as 32-
bit or 40-bit internal IDs) with two main indexes, 
subject-predicate index and predicate-object index.  

Figure 5 shows how much disk space each graph 
needs to be stored in each database engine. As 
expected, the implementations in RDF* of the graphs 
are a bit lighter than in RDF. The difference between 
these two technologies goes between 6.2% and 14.4% 
and increases with the size of the graph. It is worth 
mentioning that each database usually represents an 
increase of about 55 MB in RDF and RDF*. In Neo4j, 
this increase goes from 5 MB in the last graphs to 12 
MB in the first ones.  

An interesting side finding was that although the 
number of nodes and edges has been multiplied by 17, 
the size to store the graphs has only been increased 
around 7 times in RDF and 6.5 times in RDF*. In 
contrast, G10 is 20 times bigger than G1 in Neo4j. 
These findings could suggest that future studies 
would need to analyse at which point graphs stored in 
Neo4j are bigger than in GraphDB. 

Table 4: Classes with a high impact on the execution of the 
queries. 

G
ra

p
h

 

# 
P

at
ie

n
ts

 

# 
E

ve
n

ts
 

# 
E

ve
n

ts
 w

it
h

 
L

oc
at

io
n

 

# 
T

es
tM

ic
ro

 

# 
M

ic
ro

or
ga

n
is

m
s 

G1 1,903 25,050 8,054 16,722 135 

G2 5,702 75,039 24,612 49,560 197 

G3 9,028 125,200 39,458 84,351 219 

G4 14,027 173,307 61,862 109,379 227 

G5 14,114 225,214 63,139 159,633 257 

G6 15,471 275,625 71,090 201,674 288 

G7 17,244 324,776 77,864 243,646 298 

G8 20,032 375,211 89,471 281,996 303 

G9 27,276 425,141 122,393 298,212 304 

G10 38,066 474,922 169,435 299,870 304 

3.6 Benchmark Characteristics  

In this work, we analysed the performance of the 
database engines when executing the queries defined. 
We set two representative measures: 

• Execution Time: it represents the time 
between sending the query request to the 
API and receiving its answer. 

• Maximum Main Memory: it is the amount of 
main memory required to execute the task. 
We   got   the   maximum  main  memory   by 
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Table 5: General graph features. RDF and RDF* are deployed in GraphDB. The numbers are represented in thousands. 
G

ra
p

h
 

Database 
Engine 

# Nodes of 
individuals 

# Nodes 
of 

literals 
# Edges 

G
ra

p
h 

Database 
Engine 

# Nodes of 
individuals 

# Nodes 
of 

literals 
# Edges 

G1 
Neo4j 31 0 66 

G6 
Neo4j 312 0 643 

RDF 54 49 230 RDF 519 431 2,286 
RDF* 31 49 208 RDF* 312 431 2,079 

G2 
Neo4j 90 0 186 

G7 
Neo4j 365 0 750 

RDF 145 134 648 RDF 614 495 2,689 
RDF* 90 134 593 RDF* 365 495 2,440 

G3 
Neo4j 148 0 305 

G8 
Neo4j 422 0 866 

RDF 238 215 1,064 RDF 710 566 3,107 
RDF* 148 215 974 RDF* 422 566 2,819 

G4 
Neo4j 208 0 430 

G9 
Neo4j 490 0 1,008 

RDF 323 303 1,473 RDF 793 663 3,544 
RDF* 208 303 1,358 RDF* 490 663 3,240 

G5 
Neo4j 260 0 534 

G10 
Neo4j 565 0 1,168 

RDF 425 362 1,885 RDF 870 774 3,997 
RDF* 260 362 1,720 RDF* 565 774 3,692 

 

using a background process that measures 
the main memory consumption of the 
database engine while the query is running. 
Then, we pick the maximum value. 

From here on, we will refer to the execution time 
as “time” and to the maximum main memory 
consumption as “memory”.  
We have configured three benchmarks to study the 
performance of Neo4j and GraphDB. Each 
benchmark evaluates one of the proposed queries in 
the ten graphs (G1, G2…). For each graph, we have 
defined 12 sets of values representing each month of 
the year. These 12 sets are requested three times. 
Then, we calculated the mean of the time and memory 
values. 

For each query, we have selected the patient, 
microorganism or service that is in the third quartile 
of the nodes of its class with more connections. In 
queries requiring a set of patients, we always used 15. 
These patients have been chosen randomly between 
those with more connected patients than the third 
quartile. We consider that 15 is a high enough number 
to represent a significant outbreak. 

To ensure that cache memory is not preserved 
between different processes, each query request is 
executed in cold cache. 

Regarding the execution features, we have 
worked with Neo4j CE 4.4.18 and GraphDB Free 
10.2.0. We have implemented all the queries in 
Cypher, SPARQL and SPARQL*. The requests have 
been made locally. For the communication with the 
 

 

Figure 5: Storage size of each graph on each database 
engine. 

databases we have used Neo4j Python Driver(Neo4j 
Python Driver, 2023)1F1F for Neo4j and 
SPARQLWrapper(SPARQLWrapper, 2022)2F2F Python 
library for GraphDB. The experiments were run on a 
PC with an Intel i9-12900K, 16GB RAM and 1TB 
M2 drive, running a 64-bit Linux Ubuntu 22.04. 

4 EXPERIMENTAL RESULTS 
AND DISCUSSION 

4.1 Query 1 

Q1 consists of the intersection of two short required 
paths with a fixed length. It can be observed in 
Figures 6a and 6b that Neo4j performs better in time 
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and memory in all the graphs. Another finding is that 
SPARQL* requires a less time and memory than 
SPARQL for almost all the graphs. 

We can also observe that both the time and the 
memory remain stable for all the graphs even though 
the proportions of TestMicro per Microorganism and 
Events per Service increased significantly. The only 
exception is found in G3 and G4, where the memory 
in SPARQL doubles that of the rest of the graphs. This 
exception will be present in the rest of  the queries and 
might be related to a change in the query schedule, 
which can be corroborated by the curves depicted by 
the time series in SPARQL and SPARQL*. They 
grow slightly and stay higher until G5, then descend, 
and finally remain stable until the last graph. 

The time behaviour of the three engines can be 
explained if we assume that the number of results 
(Patient nodes) of a query is related to the number of 
edges and nodes traversed. For each Patient node, it 
is necessary to traverse a path to its connected 
Microorganism nodes and other path to its connected 
Services. For example, if none of the Microorganism 
nodes is the requested one, then the paths to the 
Service nodes will not be traversed.  

In Table 6, we have calculated for every graph the 
average number of results (number of distinct Patient 
nodes returned) for each month's set. Then, we have 
divided it between the average time of Q1 in that 
graph to measure how much time is needed to get a 
result. This table shows that the number of results 
does not increase with the graph’s size (total number 
of nodes and edges) and that the time per result 
depicts similar curves to the execution time. 

4.2 Query 2 

Q2 is a query that traverses a complete tree from a 
Patient node to all the Patient nodes connected with 
it through some optional paths over the entire domain 
model. Note that the proportions of Events per Bed 
and Events per HospitalizationUnit are high and 
increase in each graph, implying an “explosion” of 
paths to traverse. Thus, Q2 is a suitable query to 
understand better how the engines behave when 
traversing large subgraphs. 

The period used as a parameter in the query is 30 
days, which is a period even larger than the usually 
considered in the initial investigation of an outbreak. 

Figures 7a and 7b show the time and memory of 
executing Q2. Regarding time, SPARQL and 
SPARQL* are faster than Neo4j (except for the three  
 

 

Figure 6: Comparison of Neo4j, SPARQL and SPARQL* 
for Q1 executions in the graphs G1 to G10. a) Execution 
time comparison in seconds. b) Maximum main memory 
consumption comparison in MB. In memory chart, for 
every graph the smallest value is marked in bold. 

most minor graphs), and the difference grows with the 
size of the graphs. If we observe Neo4j time, we can 
differentiate two rises. The first one goes from G1 to 
G5. The second one starts on G7 and does not seem 
to have a maximum nearby.  

 We have calculated the average time per result as 
in Q1, where results are the Patient nodes connected 
to the starting one. The results are in Table 7, where 
we can see that the time curves also happen in the 
time per result series. But note that in the first hill, the 
time per result grows with the number of results, 
while in the last rise, the number of results remains 
around 40, and the time per result only increases. We 
suspect that from G5 to G7, there must be a change in 
the strategy selected by the query scheduler. 
In SPARQL and SPARQL*, time and memory 
present curves with similar shapes and values to those 
we got in Q1. Table 7 shows two similar behaviours 
in the average time per result whose start and end 
graphs coincide. This fact supports the supposition 
that the query scheduler of GraphDB starts to change 
the strategy with graphs with a size similar to G4 
(around 500,000 nodes and 1,300,000 edges), and this 
change is effective when the graph has a size similar 
to G6 (around 1,000,000 nodes and 2,000,000 edges). 
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Table 6: Comparison of Neo4j, SPARQL and SPARQL * for Q1 executions in the graphs G1 to G10 of the average time to 
get a result. We also show the average time of the query in each graph (Figure 6-a). We have marked the groups of 
neighbouring graphs with similar behaviour in yellow and green. We have also marked the time relative maximum in orange. 

  G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 

 Avg 
#Results 

14 25 26 31 34 38 36 36 37 38 

N
eo

4j
 Avg time 

(secs) 1.69 1.85 2.07 2.29 2.09 2.40 2.47 2.30 2.33 2.50 

AvgTime/ 
AvgRes 

0.12 0.07 0.08 0.07 0.06 0.06 0.07 0.06 0.06 0.07 

S
PA

R
Q

L
 Avg time 

(secs) 
4.73 5.19 7.16 6.68 5.77 5.21 4.62 4.82 4.83 5.04 

AvgTime/ 
AvgRes 

0.33 0.21 0.28 0.22 0.17 0.14 0.13 0.13 0.13 0.13 

S
PA

R
Q

L
 *

 

Avg time 
(secs) 

4.59 5.19 5.88 5.80 6.55 4.78 5.15 4.91 5.08 5.31 

AvgTime/ 
AvgRes 

0.32 0.21 0.23 0.19 0.19 0.13 0.14 0.14 0.14 0.14 

 

4.2.1 Query 2: Version that Returns the 
Solution Paths 

Given the aim of Q2, it could be interesting that in 
addition to the Patient nodes, it also returned the 
traversed paths from the starting Patient to the Patient 
nodes in the tree’s leaves. We have defined a modified 
version to return the effective paths so we can study 
if “saving” the paths along the query execution 
implies a significant increase in time and memory. 

Figures 7c and 7d show the time and memory of 
executing the modified version of Q2. Neo4j time and 
memory series show the same curves but with 
increases of around 130% in time and 120% in 
memory. SPARQL and SPARQL* present very 
different behaviours between time and memory. Like 
Neo4j, memory keeps the same curve with a slight 
increase of around 105%. On the contrary, in time, we 
can find that from G1 to G5, the query is about 125% 
slower, and for the rest, the increase in time is around 
155%. 

Neo4j has a more significant memory 
consumption than SPARQL and SPARQL*, possibly 
due to how the queries are built. In Neo4j, it has been 
necessary to add explicit instructions to save the 
traversed paths as lists in new variables that must be 
kept in memory. These instructions must also be 
responsible for the overtime in this version of Q2. In 
the case of SPARQL and SPARQL*, we did not need 

to use explicit instructions for saving paths. However, 
we had to add a new query connected to the original 
one with a UNION sentence to keep the paths 
between the Location nodes. This new query should 
not imply a relevant cost in memory since the nodes 
and edges it traverses should be already cached. 
However, traversing them again and joining the 
results of both queries should mean overtime. 

4.3 Query 3 

Q3 traverses the trees from 15 given Patients (15 is a 
fixed value parameter, as commented on above) to 
their Events. Then, some optional paths are defined to 
search for the union nodes between the Events from 
different Patients. Thus, it is a query where the 
exploration of the graph is not as crucial as the 
repetitive passage over a set of nodes and edges. 
Therefore, the relation between time and memory 
should differ from the other queries. 

As we can see in Figures 8a and 8b, that is the case 
of Neo4j. We find that the maximum memory is 
around 120MB (with some exceptions in G3 and G4 
that might be related to the strategy of the query 
scheduler), a low number compared with those in Q2. 
However, time in all the graphs is similar to that of 
the biggest graphs in Q2.  
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Figure 7: Comparison of Neo4j, SPARQL and SPARQL* for Q2 executions in the graphs G1 to G10. a) Execution time 
comparison in seconds for original Q2. b) Maximum main memory consumption usage comparison in MB for original Q2. 
c) Execution time comparison in seconds for alternative Q2. d) Maximum main memory consumption comparison in MB for 
alternative Q2. In memory charts, for every graph the smallest value is marked in bold. 

Table 7: Comparison of Neo4j, SPARQL and SPARQL* for original Q2 executions in the graphs G1 to G10 of the average 
time to get a result. We also show the average time of the query in each graph (Figure 7-a). We have marked the groups of 
neighbouring graphs with similar behaviour in yellow and green. We have also marked the time relative maximum in orange. 

  G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 

 Avg 
# Results 

13 26 29 33 34 43 40 40 36 41 

N
eo

4j
 Avg time 

(secs) 2.62 4.86 9.25 11.86 12.21 9.94 7.60 9.76 12.14 16.08 

AvgTime/ 
AvgRes 

0.20 0.19 0.31 0.36 0.36 0.23 0.19 0.25 0.34 0.39 

S
PA

R
Q

L
 Avg time 

(secs) 
4.99 6.98 9.51 8.60 8.42 7.20 5.82 6.08 6.23 6.21 

AvgTime/ 
AvgRes 

0.37 0.27 0.32 0.26 0.25 0.17 0.14 0.15 0.17 0.15 

S
PA

R
Q

L
* Avg time 

(secs) 
4.78 6.40 7.26 6.67 6.70 6.55 5.43 5.37 5.66 5.61 

AvgTime/ 
AvgRes 

0.36 0.25 0.25 0.21 0.20 0.15 0.13 0.14 0.16 0.14 

 

This difference between time and memory could 
be explained because the nodes and edges between 
the Events are charged in memory the first time they 
are accessed and remain cached for the rest of the 
accesses. 

In the case of queries in SPARQL and SPARQL*, 
they present memory consumptions with values 
similar to those in Q1 and Q2, while the time is much 
longer than in any other query. 

Before analysing time, it is necessary to comment 
that for the experiments, 15 Patients were chosen 
between those in the quarter of Patients with more 

connected Patients. However, it does not mean that 
there must exist connections between all 15 Patients. 
What is more, in this work, a bigger graph does not 
have to mean more connection between a set of 
patients. In Table 8, we can observe that the average 
number of results (the number of different paths that 
connect a Patient with another) does not increase with 
the size of the graphs. In fact, the maximum number 
of results is in G7, and the minimum is in G4. The 
time series of Neo4j follows the direction of the 
number of results: when the number of results 
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increases, time increases too, and the same when the 
number of results decreases. 

Curiously, SPARQL* presents a curve more similar 
to Neo4j than SPARQL. In fact, the time differences 
between SPARQL and SPARQL* stand out in this 
query compared to the rest: here, SPARQL presents 
times between 115% and 153% bigger than SPARQL*. 
This significant difference may be because the majority 
of the computation in this query is in traversing edges 
with properties, which in SparQL* are represented 
with a single edge (actually a statement of a statement), 
while SparQL requires one “node of individuals” and 
two edges (see Figure 2). Thus, we can judge that the 
“edges with properties” from SPARQL* speed up 
traversing the graph. Under this assumption, we can 
observe that in Q1, where the edges with properties are 
barely traversed, the time difference is not so 
pronounced, and even in some graphs, SPARQL* is 
slower than SPARQL. 

4.4 General Aspects 

Our experiments suggest that there are common 
characteristics between queries related to time and 
memory. 

First, in Neo4j, there is a strong relation between 
time and memory that is perceptible in Q1 and Q2, 
but not in Q3. Q1 and Q2 consist of exploring a tree 
in which traversing new edges and nodes is the main 
computing effort. Contrarily, Q3 works with a limited 
set of nodes traversing different combinations of 
edges between them. These opposite behaviours give 
us a clue about how Neo4j manages memory: as new 
edges and nodes are traversed, they are saved in 
memory and not deleted until the end of the query (as 
long as there is enough memory) to avoid the costly 
work of fetching data from disk. 

Concerning Neo4j, it is shown that memory usage 
does not depend so much on the total size of the graph 
but rather on the subgraph to be traversed. 
In the case of GraphDB, SPARQL and SPARQL* 
present a memory usage similar, but clearly different 
from Neo4j. We can observe that in all the 
benchmarks, the memory is between 325MB and 
400MB (with the exceptions in G3 and G4) and 
increases or decreases slightly depending on the 
query complexity and the data to save during the 
execution (for example, the number of classes of 
nodes and edges to return). The size of the graph also 
affects the memory usage in GraphDB. We can find 
clues about this in Q2 and Q3, where memory 
gradually increases from G1 to G10 although the 
traversed subgraphs are not necessarily bigger 
because they are in a bigger graph. 

 

Figure 8: Comparison of Neo4j, SPARQL and SPARQL* 
for Q3 executions in the graphs G1 to G10. a) Execution 
time comparison in seconds. b) Maximum main memory 
consumption comparison in MB. In memory chart, for 
every graph the smallest value is marked in bold. 

Table 8: Average number of results of Q3 executions in the 
graphs G1 to G10. 

Graph Avg #Results 
G1 1683 
G2 1340 
G3 1598 
G4 1060 
G5 2453 
G6 3030 
G7 4138 
G8 3715 
G9 2595 
G10 1517 

The results strongly suggest Neo4j and GraphDB 
work with different memory usage schemes. But to 
better understand GraphDB memory usage, it would 
be necessary to measure its memory consumption 
during query execution and analyse how it changes 
from the start to the end. This way, we could confirm 
our supposition that memory consumption is stable 
throughout the execution and that the maximum 
memory is not a peak like in Neo4j.  

Regarding time, the results yielded some 
interesting findings regarding Neo4j and GraphDB. 
While in Neo4j, time changes depending on the type 
of query and the size of the subgraph to traverse, in 
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SPARQL and SPARQL*, time oscillations are lighter. 
In Q1 and Q2, they start from a high minimum base 
time (around 5 seconds, as opposed to Neo4j’s 2 
seconds), but the maximum does not exceed more 
than three times the minimum, in contrast to the 
maximum times of Neo4j, which can multiply the 
minimum by eight. 

5 CONCLUSIONS AND FUTURE 
WORK 

In this research work, we evaluated the performance 
of property and knowledge graphs based on triple 
stores in the context of spatiotemporal 
epidemiological investigation of an infection 
outbreak in a hospital. Specifically, we chose Neo4j 
as the graph database engine, which has its own data 
model and query language, Cypher; and for 
knowledge graphs, we used RDF and RDF* as 
standard technologies to define the graphs, SPARQL 
and SPARQL* languages to query data and GraphDB 
database to store the graphs. We defined a domain 
model that describes a hospital layout, the 
organisation of its healthcare workers and the path of 
its patients as a log of all their events. We stated three 
queries that are steps of the epidemiological 
investigation process and designed a benchmark to 
evaluate the queries' time execution and memory in 
ten graphs of different sizes whose data come from 
the open-data clinical dataset MIMIC-III.  

Our experiments provide convincing evidence 
that neither in Neo4j nor GraphDB time and memory 
are influenced by the total size of the graph, but for 
other factors like the complexity of the query (number 
of required and optional paths and their length), the 
size of the traversed subgraph and if the goal of the 
query is retrieving the leaves of a tree or do additional 
paths between a set of nodes. Neo4j's performance 
highly depends on these factors. For simple queries 
and small traversed subgraphs, time and memory can 
be half of those of GraphDB. On the other hand, time 
and memory on GraphDB present minimum values 
much higher than Neo4j but with less aggressive 
growth. Thus, SPARQL and SPARQL* will scale 
better than Neo4j for queries that need to traverse big 
subgraphs.     

Our research suggests that the extensions 
provided by RDF* with respect to RDF, such as the 
addition of the statements about other statements that 
allows defining edges with properties, seem 
promising for a more complete, compact and 
comprehensible modelling. Furthermore, our 

experiments suggest that RDF* offers a better 
performance of the query execution and less storage 
size for the graphs.     

It is worth mentioning that RDF and RDF* are 
W3C standards and not proprietary formats, as it is 
Neo4j. This offers the advantage of greater flexibility 
and solidity when choosing between possible 
additional tools to work with. 

To further compare property graph and knowledge 
graph technologies in our context, we plan to define 
queries for the rest of the epidemiological 
investigation process tasks and, especially, queries to 
execute general graph tasks (shortest path, 
community detection) over our domain. It would also 
be necessary to generate synthetic data that covers the 
whole domain model. 
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