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Abstract: This study assesses blink rate as a potential indicator for mental workload (MWL) in a dual task scenario in 
a flight simulator. Prior research indicated that blink rate decreases as mental workload increases across 
various tasks and domains. In our study, we aimed to determine if these findings are consistent in a dual task 
environment within a fast jet simulator. Furthermore, we evaluated blink rate fluctuations caused by the 
dynamic shifts in MWL as tasks are executed, switched, or completed. To investigate this, we executed a 
flight simulator experiment involving ten participants. They were tasked with two distinct activities: first, 
classifying air and ground targets, and second, maintaining a specific flight altitude. The results validated that 
blink rate decreases with increasing task difficulty. However, when a secondary task imposes significant 
workload, blink rates did not reliably indicate the primary task's difficulty. We also found that the timing of 
spontaneous blinks was influenced by task completion and switches. Specifically, blink rates surged 
immediately after decision-making points and during transitions between tasks.

1 INTRODUCTION 

In recent years, there has been growing interest in 
measuring cognitive states, especially when humans 
control dynamic systems. Accurate assessment of 
these states not only provides insights into human-
machine performance but also offers new possibilities 
for enhancing human-machine interface (Feigh et al., 
2012). For example, displays or assistance systems 
that adjust to their users’ cognitive state could 
improve interaction and promote a cooperative 
relationship between users and machines. 

A central focus of this research is the concept of 
mental workload (MWL). It can be described as the 
extent to which a limited set of cognitive resources 
are engaged over time while processing a task (for a 
full explanation, see Longo et al. (2022)). 
Understanding MWL is crucial because it directly 
affects human performance, especially in tasks that 
require continuous attention. In the context of 
adaptive systems, MWL measurements were 
successfully applied in assisting users based on their 
workload level (Brand & Schulte, 2021; Hajek et al., 
2013). 
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Rather than relying on user feedback, MWL can 
be objectively gauged using physiological sensors. 
This subject has been extensively researched using 
various metrics, including heart rate, pupil dilation, 
and EEG alpha waves (Ayres et al., 2021; Charles & 
Nixon, 2019). Of these metrics, blink rate (BR) has 
emerged as an effective measure due to its balance 
between simplicity of measurement and sensitivity to 
MWL, as reported by several studies (Da Tao et al., 
2019). Compared to more complex sensors such (e.g., 
fNIRS, EEG), BR can be easily obtained with a basic 
camera and image processing. In the following 
section, we review relevant studies dealing with the 
relationship between BR and MWL. 

1.1 Blink Rate and MWL 

In an early study, Holland and Tarlow (1972) 
demonstrated in a memory and mental arithmetic test 
that blink rate decreased with increasing task 
difficulty. Interestingly, they observed that BR 
increased before participants made mistakes. 

Boehm-Davis et al. (2000) showed in a simulated 
radar track classification task that blink rate decreased 
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in a time frame of 1.5s before a classification event 
compared to a baseline. This suggested that blink rate 
rebounds after high MWL situations and could also 
be an indicator of task progress. 

Faure et al. (2016) reported in a driving task 
experiment that blink frequency decreased with 
increasing task load of the primary driving task but 
within a fixed driving task difficulty, the addition of 
auditory secondary tasks increased blink frequency. 
Therefore, it is not clear if blink frequency is only 
sensitive to tasks with visual demands. 

In addition, there are some challenges when using 
blink rate as an indicator for MWL. First, blinks are 
not continuous signals, which complicates processing 
(Cho, 2021; Siegle et al., 2008). Second, blink rate 
was also reported as an indicator of fatigue and time 
on task, which could be a confounding factor for 
MWL measurement (Maffei & Angrilli, 2018; Stern 
et al., 1994). However, it could also be argued that 
blink rate does not measure MWL but rather 
activation and engagement in a visual task which 
happens to correlate well with performance and 
reported MWL in visual tasks. 

1.2 Contributions 

In this study, we aimed to evaluate if blink rate for 
MWL measurement is applicable to adaptive systems 
in a cockpit environment. This entails the following 
research questions: 

What is the general relationship between BR 
and MWL in single and dual visual task settings? 

Based on the results of other studies, we expect 
BR to be sensitive to MWL in a cockpit task 
environment. However, no reviewed study has tested 
the relationship between MWL and blink rate in a 
dual task setting with two visual tasks. Since most 
cockpit tasks are visual, we aim to evaluate (1) the 
sensitivity of BR as a MWL measurement and (2) if 
the BR-MWL correlation still holds in single 
compared to a dual task setting. 

Can blink rate be associated with changing 
MWL due to task progress? We evaluate if the 
timing of spontaneous blinks is related to the 
dynamics of the task environment and associated 
changes in MWL. Boehm-Davis et al. (2000) reported 
that, in a single-task experiment, blink rate rebounds 
after a task has been completed.  Therefore, we would 
expect to observe a fluctuating BR during task 
execution, such as rebounds after task completion or 
at switching between two tasks. If there is a valid 
relationship, this could be used to improve the timing 
of adaptations in adaptive systems, which is difficult 
to determine. Adaptations at the wrong moment can 

heavily disrupt the workflow of the user. Also, 
physiological measures with high time constants 
(measures that react slowly to changes in the task 
environment, e.g., heart rate) can not provide 
cognitive state estimation in a timely manner.  

To address these questions, we conducted a flight 
simulator study. In the following, we describe the 
experimental design and subsequently discuss our 
results. 

2 EXPERIMENT 

The experiment was conducted in a research fighter 
jet simulator at the HuMiCS Lab (“Humans, 
Missions, and Cognitive Systems Laboratory”) of the 
University of the Bundeswehr in Munich (see Figure 
1). The experimental design was inspired by an early 
study by Boehm-Davis et al. (2000) and transferred 
into a military aviation domain. Furthermore, we 
added a secondary task condition to evaluate our 
research questions. 

 
Figure 1: Jet simulator cockpit at the HuMiCS Lab. Setup 
consists of a throttle, stick, three touch display and a 
projected outside view with a head-up display overlay. 

2.1 Design 

We created a 2x2x2 design with the following 
conditions: 

Primary Task Type. In the first task type (T1), 
participants classified air tracks based on altitude and 
velocity as hostile versus not hostile (see Figure 2). 
Participants had a decision matrix that indicated high 
speed and high altitude to be hostile, while all other 
combinations should be classified as not hostile. The 
second task type (T2) was the classification of ground 
targets based on incoming sensor images. Images of 
military vehicles should be classified as hostile as 
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opposed to civilian vehicles (see Figure 3 for an 
example). 

Primary Task Difficulty. Difficulty was varied 
by the ambiguity of the targets. At low difficulty 
(Low), target classes could be easily identified, e.g., a 
single tank on the sensor image in T1 or instant high 
speed and high altitude in T2. At high difficulty 
(High), target classes were ambiguous, and sensor 
data were cluttered by distractors, e.g., multiple 
different vehicles on the sensor data and accelerating 
air targets in speed and altitude. Note that the 
difficulty was only varied by how easily a target could 
be classified and not by a higher number of targets. 

 
Figure 2: Display for air track classification in T1. 

Secondary Task Present. As a secondary task, 
participants were asked to fly a fighter jet at a 
specified altitude of 4000ft MSL. The primary task 
was briefed to be more important than the secondary 
task. There were two conditions: Secondary task 
present (Dual-Task, DT) or absent (Single-Task, ST). 

 
Figure 3: Sensor Picture for T2 with high difficulty 
containing several different vehicles. 

 
 

2.2 Participants & Procedure 

Ten participants took part in the study (1 female, 
mean age=24.5y). All participants were students of 
aerospace-related studies at the University of the 
Bundeswehr in Munich but had no prior experience 
in flying with the used research simulator. At the 
beginning, participants were briefed about the 
experimental procedure and provided their consent 
with data collection in written form. 

After that, eye-tracking cameras for blink 
detection were adjusted and calibrated using a 
standard point calibration procedure. Then, the 
participants conducted two training missions 
encountering task types T1 and T2 at both levels of 
difficulty. In the third training mission, the secondary 
task was trained without any other task present. 
Participants were encouraged to ask questions during 
training since no questions were allowed in the 
subsequent experimental tasks. In total, each training 
mission lasted 15 minutes. 

After training, the experimental tasks were 
conducted in sequence. After each mission, 
participants were asked to fill out a NASA-TLX 
questionnaire. Order of conditions was randomized 
and different for each participant to compensate both 
effects of training and fatigue influence. The Total 
duration of the experiment was approximately 2 
hours. 

2.3 Data Analysis 

During the missions, we logged the following data: 
Gaze Tracking. We measured gaze with a 

commercial camera-based eye-tracking system 
(SmartEye 4-camera system, 0.3 MP). The system 
measures at a frequency of 60 Hz and classifies gaze 
samples into either fixation, saccade, or blink. For this 
study, blinks were analyzed in post-processing.  
Saccades were used to measure gaze switches 
between cockpit displays and outside windows. 

Subjective Workload. Participants answered a 
simplified NASA-TLX to report subjective workload. 
In the simplified NASA-TLX, no weights are 
assigned to the different dimensions. 

Task Progress. Time points of classification 
were logged when participants pressed the 
corresponding button in the cockpit. Time points of 
task switches were logged in the DT condition when 
participants gaze switched from inside the cockpit to 
outside. 

The data were analyzed using Python Pandas. The 
plots were generated using the Seaborn library and 
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error bars always indicate the standard deviation 
divided by the square root of the sample size3. 

3 RESULTS 

We first evaluate the general relationship between 
blink rate and MWL and proceed to compare ST to 
DT conditions. Then, we present the results on the 
relationship between blink rate and task situations. 

3.1 Blink Rate, Task Difficulty and 
Mental Workload 

Figure 4 shows the participants’ subjective rating of 
MWL via the NASA-TLX questionnaire across all 
experimental conditions. The figure displays the non-
weighted mean values of all TLX dimensions for each 
participant, with error bars. In general, the task 
difficulty aligns well with the experimental design, 
with exception from the “DT High” condition for the 
air track classification task (T1), which was rated as 
causing a lower workload than the “DT Low” 
condition. Generally, participants reported lower 
MWL in the air track task T1. 

 
Figure 4: Mean NASA-TLX results over all conditions. 

Figure 5 shows the mean BR (average blink rate 
per mission) across all conditions (n=10 per 
condition). The mean blink rate dropped considerably 
when comparing ST to DT conditions in both task 
types, T1 and T2. The primary task difficulty slightly 
reduced mean BR within ST (T1: -0.8, T2: -0.99), but 
there was no change within DT conditions. 

 
3 https://seaborn.pydata.org/tutorial/error_bars.html 

 
Figure 5: Mean BR over experimental conditions. 

The correlation between reported MWL and blink 
rate is displayed in Figure 6, and shows a strong 
negative correlation (r = -0.9, p < 0.003) between 
mean NASA-TLX scores and mean blink rate in each 
experimental condition. 

 
Figure 6: Regression plot of mean subjective MWL rating 
versus blink rate. Data points refer to the mean of one 
experimental condition over all participants. 

These results indicate that there is a negative 
correlation between mean BR and workload.  Since 
the study only had 10 participants, we also analyzed 
the BR for each participant across the experimental 
conditions, which is shown in  Figure 7 containing the 
individual mean BR per trial. 

Evaluating Blink Rate as a Dynamic Indicator of Mental Workload in a Flight Simulator

365



 
Figure 7: Individual BR in T1 and T2 of all participants.

The mean BR values in the low difficulty 
conditions vary greatly among individuals from 2 to 
almost 16 blinks per minute.  This variance is 
decreasing with increasing difficulty. A second 
observation is that the change in BR is not consistent 
for each participant. There is one outlier (P3) who has 
an inverse relationship between BR and task 
difficulty in T2. Another outlier is P7, whose BR 
change “Low” and “High” difficulty in the ST 
condition is also inverse compared with the expected 
trend. Although, the data of these two participants is 
not clear, all other participants show the expected 
relationship between the mean values of BR and 
MWL.  

3.2 Dynamic Changes of MWL 

Our second investigation focused on how BR and 
changing MWL due to task progress (e.g., task 
completion) are associated. For this, we chose to 
analyze two distinct time points. We start with 
classification events, during which participants 
assigned an ID to targets by pressing a button on the 
cockpit interface. 

Figure 8 and Figure 9 show a comparison of 
different blink rates for each condition in both tasks. 
“Average” represents the mean overall BR, which 
was already discussed in the previous section. As a 
relevant event, we chose the moment of classifying a 

target as hostile or not-hostile. Based on this, we 
computed blink rate for the following time frames: 5 
seconds preceding classification (“Before 
Classification”) and 5 seconds post-classification 
(“After Classification”). 

 
Figure 8: Comparison of average BR to BR in timeframes 
near classification (t±5s) in the air track task T1. 

The results in the Low ST condition for Task T1 
(see Figure 8) indicate that there is a large difference 
in blink rate before and after classification, which 
confirms the results from Boehm-Davis et al. (2000). 
However, the BR in the other three conditions shows 
that this difference decreases as overall task difficulty 
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increases. In the High DT condition, there is no 
difference in BR before and after classification. 

 
Figure 9: Comparison of average BR to BR in timeframes 
near classification (t±5s) in the ground track task T2. 

In task T2 (see Figure 9), the difference in time 
before and after a classification exists in all 
conditions, but it also decreases with increasing task 
difficulty and the presence of a secondary task. 

Secondly, we conducted an analysis for task 
switches in the dual task scenario. The time of a task 
switch 𝑡்௦ was defined as the moment the 
participants’ saccades between cockpit screen and the 
outside view. We used this switch of focus to identify 
the current task. Outside view was associated with the 
altitude tracking task while focus on the cockpit 
screen was linked to the primary task. 

 
Figure 10: Comparison of average BR to BR in timeframes 
near task switch (𝑡 േ 1𝑠) in all DT conditions. 

Figure 10 shows the average blink rate in the 
vicinity of a task switch (time frame േ1𝑠ሻ, compared 
to the cumulative average blink rate throughout each 
trial. The data underscore that blinks are frequent 
during task transitions, supporting the notion that 

blinks predominantly occur post-task completion or 
during switches. 

3.3 Discussion 

In the following, we discuss our general findings and 
the limitations of our experiment. 

3.3.1 General Findings 

The results from the experiment confirmed the 
findings of the reviewed studies: blink rate decreases 
with increasing task load. The strongest effects were 
observed when comparing ST and DT scenarios. 
Within the DT settings, BR did not reflect the 
changing difficulty of the primary task. This suggests 
that there is a limit to the sensitivity in cases where 
the visual task load is high and participants’ blink rate 
does not decrease further. It remains an open question 
whether this corresponds to a MWL limit in visual 
tasks. Individual BR data also showed that baseline 
BR is different among participants. Therefore, 
individual calibration should be considered for the 
design of robust measurement systems. 

BR also showed effects regarding the dynamic 
changes of MWL due to task progress. In the low 
difficulty ST conditions of T1 and T2, there was a 
large difference between average blink rate before 
and after a classification event. Similarly, BR was 
significantly higher within a short time frame at task 
switches, also indicating that spontaneous blinks are 
inhibited during task execution and rebound in the 
moments between tasks. This relationship could be 
utilized in adaptive systems to identify opportune 
moments to interrupt a user. The moment a user 
finishes a task might be an optimal point to disrupt 
them, since they are not committed to another task in 
the cockpit yet. 

3.3.2 Limitations 

Our experimental design did not perfectly align with 
the subjective MWL reports. The air track task T1 at 
high difficulty was regarded as almost equally 
workload-inducing as at the easy difficulty level. 
Another confounding factor of the experimental 
design was that the DT conditions took significantly 
longer than the ST conditions. This could be 
problematic as BR increases with time-on-task and 
fatigue. In addition, we were not able to design a 
completely counterbalanced study with the low 
number of participants. Individual BR results showed 
that the correlation between BR and difficulty was not 
present for some participants. A possible explanation 
is the different order of experimental conditions or 
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individual capabilities. In conclusion, future 
experimental design should therefore focus on equal 
time-on-task and a higher number of participants as 
well as a sufficient training before the experimental 
trials. 

4 CONCLUSIONS 

This study demonstrated that blink rate is indeed a 
sensitive measure for MWL and should be considered 
as a reliable measure in visual task settings. Using BR 
has the great advantage, that blinks can be robustly 
detected with low-tech equipment, presenting a good 
trade-off between effort and sensitivity for MWL 
estimation in real-world applications. Apart from 
mean MWL measurement, our results also indicated 
that the moments of blinking are not necessarily 
random but rather indicate task progress, which could 
be valuable for the application in adaptive systems. 
Future research should focus on integrating BR 
estimation into an adaptive policy by evaluating 
strategies that act upon both MWL estimation and 
dynamic changes of user BR. For this, the main 
challenge is two-fold: First, we must show that the 
BR measurement is robust enough to allow for a 
reliable classification of MWL across a broad 
spectrum of situations and users. Second, we must 
evaluate, if adapting a system based on this measure 
is useful to the user. 
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