
Comparative Evaluation of NLP Approaches for Requirements
Formalisation

Shekoufeh Kolahdouz Rahimi1 a, Kevin Lano2 b, Sobhan Yassipour Tehrani3 c,
Chenghua Lin4 d, Yiqi Liu4 e and Muhammad Aminu Umar2 f

1School of Arts, University of Roehampton, London, U.K.
2Department of Informatics, King’s College London, London, U.K.

3Department of Computer Science, University College London, U.K.
4Department of Computer Science, University of Sheffield, U.K.

Keywords: Requirements Formalisation, Model-Driven Engineering, NLP.

Abstract: Many approaches have been proposed for the automated formalisation of software requirements from semi-
formal or informal requirements documents. However this research field lacks established case studies upon
which different approaches can be compared, and there is also a lack of accepted criteria for comparing the
results of formalisation approaches. As a consequence, it is difficult to determine which approaches are more
appropriate for different kinds of formalisation task. In this paper we define benchmark case studies and a
framework for comparative evaluation of requirements formalisation approaches, thus contributing to improving
the rigour of this research field. We apply the approach to compare four example requirements formalisation
methods.

1 INTRODUCTION

Automated requirements formalisation (RF) has sig-
nificant potential as a means of reducing software de-
velopment costs, accelerating development processes,
and increasing the rigour of requirements engineer-
ing processes. Typically, RF involves producing a
software model in a language such as UML, or in
a domain-specific language (DSL), from natural lan-
guage requirements documents in text format. The
RF process or result can also provide useful analysis
information about the requirements statement, i.e., to
detect duplicated or invalid requirements.

Many approaches have been proposed for the for-
malisation of software requirements, typically involv-
ing some form of natural language processing (NLP) or
machine learning (ML) (Otter et al., 2023). However,
the research field lacks widely-recognised benchmark

a https://orcid.org/0000-0002-0566-5429
b https://orcid.org/0000-0002-9706-1410
c https://orcid.org/0000-0003-4417-0477
d https://orcid.org/0000-0003-3454-2468
e https://orcid.org/0000-0002-8070-5056
f https://orcid.org/0000-0001-9433-2409

case studies to support comparative evaluation of dif-
ferent approaches on the same requirements cases, and
the main evaluation technique, based on estimating
precision/recall and F-measure accuracy, is subjective.

F-measure gives the degree to which a proposed
formalised model correctly expresses the model ele-
ments implied by the source text, and has the definition

F = 2∗ precision∗recall
precision+recall

recall = correctly identified elements
total identified

precision = correctly identified elements
total correct elements

The judgement as to the correctness of the model ele-
ments has a subjective aspect, for example, it may be
based on agreement with a ‘gold standard’ model pro-
duced by a human expert. However different modellers
may produce significantly different gold standard mod-
els. Our view is that evaluation of RF approaches
should use objective measures where possible, and
also take into account the software engineering con-
text of use of formalised models. In general, software

Rahimi, S., Lano, K., Tehrani, S., Lin, C., Liu, Y. and Umar, M.
Comparative Evaluation of NLP Approaches for Requirements Formalisation.
DOI: 10.5220/0012318700003645
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 12th International Conference on Model-Based Software and Systems Engineering (MODELSWARD 2024), pages 125-132
ISBN: 978-989-758-682-8; ISSN: 2184-4348
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

125



developers should be able to effectively use the for-
malised models for further development stages, and
should be able to relate the models to the original
requirements statement. Thus the quality and inter-
nal consistency of the formalised model is important
(e.g., there should not be duplicated class or use case
names in formalised models, and names should adhere
to name style conventions for the respective model
kinds). There should be a high degree of traceability
between the formalised requirements and the source
text.

To effectively compare different RF approaches,
objective measures of accuracy are needed, which are
aligned to the SE context of use of the formalised
model. Thus we propose the evaluation model of
Figure 1, which involves three aspects: (i) an ob-
jective measure of similarity between the formalised
model and a rigorously produced ‘gold standard’ ref-
erence model; (ii) a measure of completeness of the
formalised model wrt the source requirements docu-
ment; (iii) a measure of internal quality of the model.

The reference model could be produced by agree-
ment between two or more human experts, with an
independent review by a further expert, to improve its
appropriateness as a correctness standard.

Figure 1: Evaluations of requirements formalisation.

1.1 Natural Language Processing (NLP)

NLP is a collection of techniques for the processing of
natural language text, including part-of-speech (POS)
tagging/classification, tokenisation and segmentation,
lemmatisation, parsing, chunking, dependency anal-
ysis and reference correlation. NLP tools include
Stanford NLP (Stanford University, 2020), Apache
OpenNLP (Apache, 2021), iOS NLP Framework,
Python’s NLTK, and WordNet (Princeton University,
2021).

The standard parts of speech include (Santorini,
1990): Determiners – tagged as DT , e.g., “a", “the";
Nouns – NN for singular nouns and NNS for plural;
Proper nouns – NNP and NNPS; Adjectives – JJ for
general adjectives, JJR for relative adjectives, JJS for
superlatives; Modal verbs – MD such as “should",
“must"; Verbs – VB for the base form of a verb, VBP
for present tense except 3rd person singular, VBZ for
present tense 3rd person singular, VBG for gerunds,
VBD for past tense; Adverbs – RB; Prepositions/subor-
dinating conjunctions – IN.

For specialised purposes, additional parts of speech
may be defined, as in (Xu et al., 2020). NLP has
been a key element of automated RE approaches (Otter
et al., 2023). However, the trained models available
for POS-tagging and parsing with the existing NLP
tools are usually oriented towards general English text,
which differs significantly from the subset of English
typically used in software requirements statements.
The existing POS-tagger models therefore sometimes
misclassify words in requirements statements (e.g.,
“stores" may be misclassified as a noun, even when
used as a verb, and “existing" used as an adjective
misclassified as a gerund).

1.2 Machine Learning (ML)

Machine learning covers a wide range of techniques
by which knowledge about patterns and relationships
between data is gained and represented as implicit
or explicit rules in a software system. ML can be
used for classification, translation or prediction. In
particular, ML is used to create the part-of-speech
and other models used in NLP tools. ML techniques
include K-nearest neighbours (KNN), decision trees,
inductive logic programming (ILP) and neural nets.
A key distinction can be made between techniques
such as decision trees and ILP where explicit rules
are learnt from data, and techniques such as neural
nets where the learned knowledge is in an implicit
form (consisting of the weights of connections in the
trained network). In recent years there have been sub-
stantial advances in neural networks (recurrent neural
networks or RNNs) which possess a ‘memory’ of a se-
quence of inputs, enabling them to perform prediction
tasks and process data (such as natural language texts
or programs) that consist of a connected sequence of
elements (sentences) (Kolahdouz-Rahimi et al., 2023).

The increasing power of ML approaches based on
large language models (LLMs) such as BERT (Guo
et al., 2021), Codex (Chen et al., 2021) and GPT (Zhao
et al., 2023) has already led to innovative software
assistants such as Copilot (GitHub.com, 2022) and
program translators such as CodeT5. The appropriate

MODELSWARD 2024 - 12th International Conference on Model-Based Software and Systems Engineering

126



pre-training and fine-tuning of LLMs to support soft-
ware engineering tasks is an area of active research.
There have been few works on using LLMs for require-
ments formalisation and existing LLM-based tools are
limited in their capabilities in this area (Camara et al.,
2023).

Toolsets for ML include Google MLKit, Tensor-
flow, Keras, ScikitLearn and Theano.

2 COMPARED APPROACHES

In this study we illustrate our proposed evaluation
framework by comparing four alternative approaches
for formalising behavioural system requirements ex-
pressed in unstructured English text or as semi-
structured user stories.

The approaches are:
Hamza and Hammad (Hamza and Hammad, 2019):

based on segmentation, POS-tagging, chunking,
grammar patterns.

Elallaoui, Nafil and Touahni (Elallaoui et al., 2018):
based on POS-tagging

AgileUML (Lano et al., 2021): based on POS-
tagging, chunking, semantic analysis and
word-similarity matching

Simple heuristic: As a baseline for comparison, a sim-
ple heuristic approach based on POS-tagging and
chunking is defined and evaluated.

User stories are widely-used in agile methods to ex-
press functional requirements. They have the semi-
structured format

As a/an [actor], I [wish/want/...] to [action],
[purpose]

where the stakeholder requiring the functionality is
identified in the first part, then the action in the second
part, and an optional purpose is described in the third
part.

For example:

As a doctor, I wish to view the patient’s EHR

2.1 Hamza and Hammad Approach
(Hamza and Hammad, 2019)

The approach starts from a textual specification of re-
quirements in English text, this is spell-checked to
eliminate erroneous text, then segmented into sen-
tences. POS-tagging is applied, and this information
is used to chunk the text into sequences of closely-
associated words. For example the sequence of adjec-
tives associated with a noun are grouped with it: this
is the chunk pattern JJ∗NN and related chunk patterns.

Stemming is used to identify the root form of words in
the text. Grammar knowledge patterns (GKP) are used
to recognise expected sentence structures, and provide
a corrective to semantic errors arising from incorrect
POS-tagging.

To identify actors and actions of a use case, differ-
ent rules are applied to handle variation in the way that
these can be expressed in unstructured text.

The approach is evaluated on four case studies of
requirements statements, of small size (each case has
between 11 to 23 functional requirements). It is not
clear if these are real systems or artificial examples.
Precision and recall are evaluated, however it is unclear
how the correctness of the formalisation is determined,
ie., how the correct reference model was constructed.
They find an average recall of 69% and precision of
72%, which indicates that the approach tends to pro-
duce both incorrect formalisations, and fails to produce
correct formalisations. The reasons for these errors are
mainly due to linguistic variability and ambiguity/in-
completeness in the requirements statements. Another
factor is that the requirements statements also express
constraints, such as “all fields of an edited asset can
be modified except Ids", which do not correspond to
use cases. The approach could be extended by adding
recognition of these different forms of requirement,
e.g., by classifying requirements statements.

On the example sentence, the approach produces
the result:
class doctor { }

usecase viewpatient’ehr
{ actor = doctor; }

The use case is correct, but the name of the use
case contains an invalid character.

2.2 Elallaoui, Nafil and Touahni
Approach (Elallaoui et al., 2018)

In contrast to the preceding approach, this approach
takes as input semi-structured user stories, and applies
POS-tagging as its main NLP technique. The input
text sentences are POS-tagged and the words of each
sentence are filtered to remove adjectives and auxil-
iary words, retaining only nouns and verbs. The first
noun/compound noun in each sentence is assumed to
be the actor of the use case. The following verbs and
nouns then make up the action of the use case.

The evaluation uses a single case, but of large size
(168 user stories). Recall and precision compared to a
manually-constructed use case model are calculated,
with high precision and recall values for actors (p =
98%, r = 98%), use cases (p = 87%, r = 85%) and their
relationships (p = 87%, r = 85%).

Comparative Evaluation of NLP Approaches for Requirements Formalisation

127



On the example sentence, the approach produces
the result:

class doctor { }

usecase wishviewpatientEHR
{ actor = doctor; }

This is a valid formalisation.

2.3 AgileUML (Lano et al., 2021)

This approach operates on either unstructured or semi-
structured behaviour specifications. It performs seg-
mentation into sentences and POS-tagging, and uses a
decision tree classifier to distinguish sentences that ex-
press user stories from those that express data require-
ments or general constraints. Both class definitions
and use cases are derived from the classified sentences,
using heuristics to recognise the class names, attribute
names, actors and actions in the text. A thesaurus/glos-
sary is used to classify words/phrases. Approximate
matching using text edit distance (Levenshtein et al.,
1966) is used in order to allow for variation in word
form.

The evaluation is performed on 27 cases, including
24 real-world cases. There are 10 large cases (over
75 user stories), 2 small and 15 of medium size (25 to
74 use cases). The average F-measure is 94%, based
on comparison of the automatically formalised models
with manually-derived models.

On the example sentence, the approach produces
the result:

class Doctor {
stereotype originator="1";

}

class Patient {
stereotype originator="1";

}

usecase viewThePatient : void {
parameter doctorx : Doctor;
parameter patientx : Patient;
stereotype originator="1";
stereotype actor="Doctor";
stereotype read;

::
true => patientx->display();

}

Here, tracing information is embedded into the
model using the originator tag. Executable behaviour
is produced for use cases where possible, so that they

can be immediately used for prototyping. However the
key noun ‘EHR’ is missing from the use case name.

The authors find that a major cause of poor formali-
sation results is incorrect tagging and incorrect parsing
by the NLP tools used (Stanford NLP and Apache
OpenNLP). Thus the formalisation algorithms fail be-
cause the input they are given is semantically incorrect
(e.g., ‘existing’ mis-classified as a verb in a phrase ‘the
existing files’).

2.4 Simple Heuristic Approach

This approach operates on semi-structured user sto-
ries as input. It tokenises the input sentences and
applies POS-tagging. For each sentence it attempts
to recognise the entities (classes) referenced in the
sentence as those noun phrases DT?JJ∗NN+ which
have a noun in a predefined glossary of ‘entity’
nouns. Use cases are recognised from those sen-
tences which contain both a verb and a modal verb.
Chunking of the sentence according to the pattern
[aVB]∗VB∗MD[aVB]∗VB[aVB]∗ is performed, where
the first block of non-verbs is used to form the ac-
tor name, and the second block starting with the first
verb following the modal verb is taken as the use case
action. Finally, the category of this verb is used to
classify the kind of use case as ‘create’, ‘edit’, ‘read’,
‘delete’ or ‘other’.

For example, “As a doctor, I wish to view the pa-
tient’s EHR" would be chunked as [As, a, doctor, I],
[wish], [to], [view, the, patient’s, EHR]. This would
produce the use case

usecase view_the_patient_EHR {
stereotype actor="doctor";
stereotype "read";

}

Doctor and Patient would become classes.

2.5 Summary

The approaches all use POS-tagging and segmenta-
tion of the text into sentences as initial steps. They
differ in their strategies for extracting use case ele-
ments from the resulting text, although some form of
chunking based on the expected form of behavioural
requirements is an essential part of each strategy. The
evaluations of each approach all use the concepts of
accuracy based on recall/precision and F-measure, but
the number, scale and provenance of evaluation exam-
ples differ, as does the basis for computing accuracy.
This approach to compute accuracy also depends upon
the subjective judgement of the evaluator as to whether
a formalised element is correct or not.

MODELSWARD 2024 - 12th International Conference on Model-Based Software and Systems Engineering

128



3 EVALUATION FRAMEWORK

In order to provide a platform for consistently compar-
ing different requirements formalisation approaches,
we define an evaluation framework which consists of:

• A domain-specific language (DSL) for expressing
NLP pipelines

• An instantiation of the DSL in Python, using the
Python NLTK NLP library, together with a spe-
cific library of utility functions for requirements
formalisation

• A set of evaluation examples taken from real-world
requirements documents, together with manually-
derived ‘gold standard’ formalised models pro-
duced by a rigorous process

• Evaluation tools, to perform a threefold evaluation
of the models created by each RF approach (Figure
1).

This framework has the benefit of a high degree of
automation: the evaluations can be performed without
human subjectivity entering into the assessment, as
could occur if precision/recall figures are estimated
based on manual comparison of two models.

The DSL includes statement constructs for loading
datasets, filtering and transforming datasets, and per-
forming analysis operations on them, and for saving
datasets. The syntax is based on SQL. A novel facility
is the ability to specify chunking transformations by
regular expressions. Thus a regular expression formed
from POS names or generalised POS names can be
written in order to specify that a POS-tagged text is to
be split into chunks that match the expression.

The evaluation examples for user stories include
1 large (FABSucs) and 1 medium sized example
(k3ucs) of user story specifications, taken from dif-
ferent sources (Kaggle, 2021) and (Mendeley, 2021),
and written using different styles. There are also eval-
uation examples for unstructured data requirements,
including a real-world requirements statement case.

The evaluation tools are as follows:

• checkModelNames.py – checks the names of model
elements, i.e., whether attributes, use cases and
classes have valid names, including a check for du-
plicate names and a check that class names should
be a singular noun. This check helps to ensure that
the models are suitable for use as the specification
for an application.

• compareModel2Source.py – checks the percent-
ages of source document nouns and verbs which
also appear in the generated models. This helps to
ensure that all information from the source docu-
ment has been represented in the formalised model.

• compareModels.bat – compares the reference
‘gold standard’ model for a case to the model pro-
duced by a formalisation approach. This gener-
alises the usual precision/recall estimates by (i)
comparing classes and attributes in the two mod-
els, in addition to use cases; (ii) allowing partial
matches between names of elements, based on
string edit distance.

The tools may be accessed at (Lano, 2023).
We also include the F-measure accuracy estima-

tion, based on the standard definition but with a 0.5
correctness score for an element which is identified
but with significant differences to the correct version
(e.g., its name includes several superfluous words or
omits necessary words).

We do not evaluate the efficiency/time performance
of approaches because these are implemented on dif-
ferent platforms and hence comparing execution times
would not give information about the intrinsic effi-
ciency of the approaches.

4 EVALUATION OF APPROACHES

We apply the three comparisons of Figure 1 to each of
the approaches of Section 2, for the k3ucs and FAB-
Sucs requirements cases. We also estimate our mod-
ified F-measure accuracy for recognising use cases.
All artefacts and results of these evaluations may be
accessed at (Lano, 2023).

Tables 1 and 2 show the model quality scores for
each approach and the two evaluation cases.

Table 1: Formalised model quality: k3ucs.

Approach Class Attribute Use case Flaws
validity validity validity

Hamza/Hammad 0 0 1 0
Elalloui et al 0.33 0 0.42 17
AgileUML 0.88 1 1 3
Simple heuristic 0.95 0 1 1

Table 2: Formalised model quality: FABSucs.

Approach Class Attribute Use case Flaws
validity validity validity

Hamza/Hammad 0 0 1 0
Elalloui et al 0.57 0 1 6
AgileUML 0.96 1 1 3
Simple heuristic 0.96 0 1 2

Tables 3 and 4 show the model completeness scores
for each approach and the two evaluation cases.

Tables 5 and 6 show the model accuracy scores for
each approach and the two evaluation cases.

Table 7 shows the modified F-measure for use case
recognition for each approach and both cases.

Comparative Evaluation of NLP Approaches for Requirements Formalisation

129



Table 3: Formalised model completeness: k3ucs.

Approach Noun Verb
completeness completeness

Hamza/Hammad 0 0.4
Elalloui et al 0.08 1.0
AgileUML 0.51 1.0
Simple heuristic 0.45 0.93

Table 4: Formalised model completeness: FABSucs.

Approach Noun Verb
completeness completeness

Hamza/Hammad 0 0.32
Elalloui et al 0.09 1.0
AgileUML 0.41 0.86
Simple heuristic 0.36 1.0

Table 5: Formalised model accuracy: k3ucs.

Approach Class Attribute Usecase
similarity similarity similarity

Hamza/Hammad 0 0 0.47
Elalloui et al 0 0 0
AgileUML 0.04 0.002 0.68
Simple heuristic 0.007 0 0.57

4.1 Discussion

The accuracy of all the approaches, as estimated by
model similarity (Tables 5, 6) is below 70%, which
indicates that they need to be used in conjunction with
human expertise to refine or correct their results, and
that they do not provide a fully automated solution.
The formalisation completeness results for nouns is
quite low (Tables 3 and 4), indicating that informa-
tion on data elements is being ignored or lost by the
formalisation processes. The completeness for verbs
is generally high except for the Hamza/Hammad ap-
proach. On inspection the low results for this approach
are due to verb stemming, so that the original version
of the verb is lost and only the stem retained in the
resulting model. On the other hand, the AgileUML
approach adds the purpose of the user story into the
use case name, resulting in excessively long and com-
plex names. The simple heuristic approach sometimes
adds the actor part of the user story into the use case
name: in cases such as “The system should allow a
staff member to ...", the actor is wrongly assigned as
‘The system’. The Ellaloui et al approach also has
the same flaw. It should be a user-configurable choice
whether certain terms such as ‘System’ or ‘Application’
can be accepted as actors.

Although the Hamza/Hammad and AgileUML ap-
proaches aim to recognise a range of different tex-
tual formats for user stories, there are still some cases
which they fail to process correctly. None of the ap-
proaches are able to create use cases involving two or

Table 6: Formalised model accuracy: FABSucs.

Approach Class Attribute Usecase
similarity similarity similarity

Hamza/Hammad 0 0 0.6
Elalloui et al 0.01 0 0.56
AgileUML 0.02 0 0.75
Simple heuristic 0 0 0.57

Table 7: F-measure for cases.

Approach k3ucs FABSucs
Hamza/Hammad 0.23 0.15
Elalloui et al 0.35 0.23
AgileUML 0.69 0.81
Simple heuristic 0.71 0.55

more actors, instead the AgileUML approach creates
use cases which can be linked to several entities via
data usage relationships.

All of the approaches use heuristic rules to recog-
nise use case elements. The only explicit use of ma-
chine learning (ML) is the decision tree classifier used
by AgileUML to distinguish different categories of
requirements. It may be difficult to use ML to learn
the derivation from user stories to use cases because
of the relatively small amounts of data available for
training.

The use of tools such as WordNet or Word2Vec
(Mikolov et al., 2013) to compute word similarity
scores could also be of potential use to improve the
approaches.

5 RELATED WORK

Since 2018 there has been a noticeable increase in the
number of papers that apply NLP and DL techniques
for automatic generation of UML diagrams from re-
quirements.

The automation of natural language analysis
for extraction of UML diagrams is emphasized in
(M. Maatuk and A. Abdelnabi, 2021). The main focus
of this work is to apply NLP techniques and heuristic
rules to generate usecase and activity diagrams. The
Stanford CoreNLP tool is used to perform NLP tasks.
Following these, heuristic rules are applied individu-
ally for generation of activity and usecase diagrams. In
(Xu et al., 2020) a utilities permitting system based on
an NLP algorithm is designed to formalise the require-
ments of road agencies in UML and OCL formats. The
input requirements are in textual format. The NLP pro-
cess includes a pre-processing step, which tokenises
and splits sentences. In this step words are classified
into parts of speech and labeled according to POS
tags. Then occurrences of the terms in the sentences
are recognised and in the third step by applying a

MODELSWARD 2024 - 12th International Conference on Model-Based Software and Systems Engineering

130



chunking technique the sentence structure is analysed
and represented as tree structures. Finally, five rules
are applied to generate target information from tree
structures. The system is validated in terms of perfor-
mance and applicability by using random cases. The
Requirement Transformation (RETRANS) approach
is presented in (Kamarudin et al., 2015), this gener-
ates usecase and activity diagrams from requirements
in text format by applying model transformation and
NLP techniques. An NLP algorithm is designed in
(Alashqar, 2021) to generate sequence and class dia-
grams from scenario-based requirements. A software
tool called automatic generation of UML (AGUML) is
presented to perform all the tasks automatically. Exper-
imental results are reported to show the applicability
and performance of the approach. In (Sanyal et al.,
2018) an automatic approach for generation of class
diagrams from semi-structured text inputs is presented.
Some keywords are used to structure the input. NLP
techniques and heuristic rules are used to generate the
result by applying the procedure in four steps. In the
first step classes are extracted followed by generation
of attributes in the next step. Following that methods
and relations are extracted. The last three steps depend
on the first step in this procedure.

A ML approach for extraction of classes and at-
tributes from unstructured plain text is introduced in
(Elmasry et al., 2021). Two classifiers are used to
classify each word into class and attributes. To relate
appropriate attributes to classes dependency parsing is
used. A public requirements dataset is used throughout
this research (Ferrari et al., 2017). NLP techniques are
used in the pre-process and post-tagged phases to trans-
fer data to the ML tasks. Then the machine learning al-
gorithms of Support Vector Machine (SVM) and Naive
Bayes (NB) are applied for extracting classes and at-
tributes. A text-to-model transformation framework
for mapping textual requirements to UML models is
presented in (Sedrakyan et al., 2022). The authors
emphasize on integrating machine learning methods,
word embedding, heuristic rules, statistical and lin-
guistic knowledge to increase the quality of the out-
come. A web application for generation of use case
and class diagrams from English text is presented in
(Narawita et al., 2017). In this research NLP and
ML techniques are used. Tokenization, POS tagging,
chunking and splitting are NLP techniques that are
applied in this process. Finally, the visual represen-
tation of diagrams are provided using Visual studio.
RF using LLMs is investigated with ChatGPT by (Ca-
mara et al., 2023). The results show that some basic
requirements formalisation ability is present in Chat-
GPT, however specific fine-tuning of a suitable LLM
(pre-trained with datasets including software models)

by instruction training for the formalisation task would
be necessary to improve this capability.

Although different works have been investigating
the concepts of RF by applying NLP and DL tech-
niques, however this field remains at an experimental
stage. Most of the works in this domain applied heuris-
tic approaches, however these were not evaluated on a
broad range of input cases. Therefore, it is not possi-
ble to determine the applicability of such approaches
in specific domains. Only a few approaches have ap-
plied DL in the RF domain, this limited use is likely
to be due to the limited quantity of available appro-
priate training data (i.e., relating requirements text to
formalised models). In general most of the ML ap-
proaches do not apply the whole potential of DL in
the domain. Furthermore, there is no standard bench-
mark and evaluation criteria for comparing different
RF cases. Therefore, in this research we provide a set
of requirement statement to compare the effectiveness
of RF approaches according to the standard criteria.

6 FUTURE WORK

We intend to enlarge the set of evaluation cases to in-
clude a wider range of requirements documents, and to
expand the evaluation to more approaches, including
data-oriented formalisation (creating class diagrams).
Formalisation approaches for unstructured and struc-
tured requirements documents will also be evaluated.

Further evaluation criteria could be added, for ex-
ample, some measure of how configurable and adapt-
able an approach is: to what extent it permits users to
modify any parameters, strategies or knowledge bases
used in its formalisation process. Another form of
comparison could be a ‘blindfolded taste test’ where a
group of independent software engineers evaluate and
rank alternative formalisations of a requirements state-
ment, without knowing the identity of the approach
which produced the formalisation.

7 CONCLUSIONS

We have provided the first framework for systematic
and objective comparison of requirements formalisa-
tion approaches, and demonstrated the application of
this framework to compare four alternative approaches
to behavioural requirements formalisation. The results
provided useful insights into the issues and factors
which such approaches need to address to produce
useful formalisations.

Comparative Evaluation of NLP Approaches for Requirements Formalisation

131



REFERENCES

Alashqar, A. M. (2021). Automatic generation of uml dia-
grams from scenario-based user requirements. Jorda-
nian Journal of Computers and Information Technol-
ogy, 7(02, June 2021).

Apache (2021). Apache opennlp toolkit. https://opennlp.
apache.org. 2021.

Camara, J., Troya, J., Burgueno, L., and Vallecillo, A. (2023).
On the assessment of generative ai in modeling tasks.
SoSyM, 22.

Chen, M. et al. (2021). Evaluating large language models
trained on code. arXiv preprint, 2107:03374v2.

Elallaoui, M., Nafil, K., and Touahni, R. (2018). Auto-
matic transformation of user stories into uml use case
diagrams using nlp techniques. Procedia computer
science, 130:42–49.

Elmasry, I., Wassif, K., and Bayomi, H. (2021). Extract-
ing software design from text: A machine learning
approach. In 2021 Tenth International Conference on
Intelligent Computing and Information Systems (ICI-
CIS), pages 486–492. IEEE.

Ferrari, A., Spagnolo, G. O., and Gnesi, S. (2017). Pure:
A dataset of public requirements documents. In 2017
IEEE 25th International Requirements Engineering
Conference (RE), pages 502–505. IEEE.

GitHub.com (2022). GitHub CoPilot,
https://copilot.github.com/.

Guo, D. et al. (2021). GraphCodeBERT: Pre-training code
representations with dataflow. In ICLR 2021.

Hamza, Z. A. and Hammad, M. (2019). Generating uml
use case models from software requirements using nat-
ural language processing. In 2019 8th International
Conference on Modeling Simulation and Applied Opti-
mization (ICMSAO), pages 1–6. IEEE.

Kaggle (2021). Kaggle software requirements
dataset. https:www.kaggle.com/iamsouvik/
software-requirements-dataset. Accessed: 2021.

Kamarudin, N. J., Sani, N. F. M., and Atan, R. (2015). Auto-
mated transformation approach from user requirement
to behavior design. Journal of Theoretical and Applied
Information Technology, 81(1):73.

Kolahdouz-Rahimi, S., Lano, K., and Chenghua, L. (2023).
Requirement formalisation using natural language pro-
cessing and machine learning: A systematic review.
International Conference on Model-Based Software
and Systems Engineering.

Lano, K. (2023). Requirements formalisation repos-
itory. https:www.https://github.com/kevinlano/
RequirementsFormalisation. Accessed: 2023.

Lano, K., Yassipour-Tehrani, S., and Umar, M. (2021). Au-
tomated requirements formalisation for agile mde. In
2021 ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems Compan-
ion (MODELS-C), pages 173–180. IEEE.

Levenshtein, V. I. et al. (1966). Binary codes capable of
correcting deletions, insertions, and reversals. Soviet
physics doklady, 10(8):707–710.

M. Maatuk, A. and A. Abdelnabi, E. (2021). Generating uml
use case and activity diagrams using nlp techniques and

heuristics rules. In International Conference on Data
Science, E-learning and Information Systems 2021,
pages 271–277.

Mendeley (2021). Mendeley user story dataset. https:
www.data.mendeley.com/datasets/bw9md35c29/1. Ac-
cessed: 2021.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013).
Efficient estimation of word representations in vector
space. arXiv preprint arXiv:1301.3781.

Narawita, C. R. et al. (2017). Uml generator-use case and
class diagram generation from text requirements. The
International Journal on Advances in ICT for Emerg-
ing Regions, 10(1).

Otter, D. W., Medina, J. R., and Kalita, J. K. (2023). Require-
ment formalisation using natural language processing
and machine learning: A systematic review. Model-
sward 2023.

Princeton University (2021). Wordnet. https:www.wordnet.
princeton.edu. Accessed: 2021.

Santorini, B. (1990). Part-of-speech tagging guidelines for
the penn treebank project. University of Pennsylvania,
School of Engineering and Applied Science.

Sanyal, R., Ghoshal, B., et al. (2018). Automatic extrac-
tion of structural model from semi structured software
requirement specification. In 2018 IEEE/ACIS 17th In-
ternational Conference on Computer and Information
Science (ICIS), pages 543–58. IEEE.

Sedrakyan, G., Abdi, A., Van Den Berg, S. M., Veldkamp,
B., and Van Hillegersberg, J. (2022). Text-to-model
(tetomo) transformation framework to support require-
ments analysis and modeling. In 10th International
Conference on Model-Driven Engineering and Soft-
ware Development, MODELSWARD 2022, pages 129–
136. SCITEPRESS.

Stanford University (2020). Stanford nlp. https:www.https:
//nlp.stanford.edu/software/. Accessed: 2020.

Xu, X., Chen, K., and Cai, H. (2020). Automating utility
permitting within highway right-of-way via a generic
uml/ocl model and natural language processing. Jour-
nal of Construction Engineering and Management,
146(12):04020135.

Zhao, W. et al. (2023). A survey of large language models.
arXiv, 2303.18223v10.

MODELSWARD 2024 - 12th International Conference on Model-Based Software and Systems Engineering

132


