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Generating synthetic pairs of raw and ground truth (GT) image is a strategy to reduce the amount of acquisition
and annotation by biomedical experts. Pair image generation strategies, from single-input paired images (SIP),
focus on patch-pyramid (PP) or on dual branch generator but, resulting synthetic images are not natural. With
few-input images, for raw synthesis, adversarial auto-encoders synthesises more natural images. Here we
propose Pair-GAN, a combination of PP containing auto-encoder generators at each level, for the biomedical
image synthesis based upon a SIP. PP allows to synthesise using SIP while the AAE generator renders most
natural the image content. We use for this work two biomedical datasets containing raw and GT images.
Our architecture is evaluated with seven state of the art method updated for SIP: qualitative, similitude and
segmentation metrics, Kullback Leibler divergences from synthetic and original feature image representations,
computational costs and statistical analyses. Pair-GAN generates most qualitative and natural outputs, similar
to original pairs with complex shape not produced by other methods, however with increased memory needs.
Future works may use this generative procedure for multimodal biomedical dataset synthesis to help their

automatic processing such as classification or segmentation with deep learning tools.

1 INTRODUCTION

Deep learning tools (DL) show powerful capabilities
for image segmentation or classification in various
computer-vision domains. The success of these tools,
greedy on training data and resources, relies on the
availability of large number of labeled images. In
the case of biomedical images, imaging and annota-
tions are difficult to obtain. Indeed the time required
to replicates the experiments, or the resources con-
straints for ethical or sustainable reasons, hindrance
the DL implementations.

Data augmentation is the method of choice to in-
crease dataset images Xun et al. (2022); Igbal et al.
(2022). Classical transformations usually proposed,
such as flip-flop or cropping, do not bring new con-
tent. Over the last decade, generative adversarial
networks (GAN) have given a gather speed to the
automation of image analysis supported by DL in
the biomedical field Goodfellow et al. (2014). This
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method synthesises a new specimen exhibiting the
representative characteristics of the original images,
however without duplicating one of them. The ar-
chitecture sustaining this process is based upon two
networks constituted by convolutional layers: a gen-
erator and a discriminator. The generator creates a
new realistic sample aiming at misleading the second
network, using an image or a noise as an input. The
discriminator aims at determining if the image given
in input is original or synthetic. Both networks are
improving each other using a loss function. However
the original GAN requires at least a minimal number
of images in input to proceed and give significant re-
sults Lindner et al. (2019).

To overcome this limitation, many GAN
dropping-down architectures have emerged to syn-
thesise images with single input (SI) image. These
architectures lie most of the time on pyramidal
architectures or dual generators. In the first case,
the generators of pyramidal single-input architecture
are multiscale-patch, which consists in convolutional
blocks taking in input a noise and an image at a
specific level of resolution. The output of this reso-
lution level is then given to the following block, also
taking a noise and an image as inputs Shaham et al.
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(2019). The second strategy consists in implementing
a two-branch generator, one focusing on local and
one on background features, with the same original
GAN architecture Sushko et al. (2021a).

To the best of our knowledge, most of SI gener-
ative architecture are based upon GAN architecture,
inheriting their limitations such as mode collapse or
non-natural generations. Other solutions have ap-
peared and could be integrated such as deep convo-
lutions, semantic information or, a conditional input
Igbal et al. (2022). Only two studies in SI propose
to replace the GAN generative convolutional layers
by variational autoencoders, which helps synthesis-
ing diversified raw images Gur et al. (2020); Yoon
et al. (2022). In previous work,some drawbacks has
been observed in using the original GAN architecture
to generate diversified and natural raw images, but
based only on a reduced input images dataset. This
GAN architecture replacement by an auto-encodeur
improves the image generation and has been validated
with three strategies Brémond Martin et al. (2022).
However, the generation of a pair of images and corre-
sponding ground truth (GT) in SI with an adversarial
auto-encoder generator structure has not been tested
yet.

Recently, two architectures have been updated to
handle the generation of a pair of raw and annotated
images from a single input pair (SIP) of raw and GT
images. The pyramidal improvement has been devel-
oped to handle the GT by increasing the number of
input channels Shaham et al. (2019). Another model
addressing this issue lies in a dual generator from a
noise a branch generates the raw image while the sec-
ond synthesise the mask. An attention mechanism al-
lows then to evaluate the realism of images Sushko
et al. (2023).

The characterisation of the natural aspect of syn-
thesised biological images has not yet been addressed.
In the literature, there is no consensus on a metric or a
metric combination allowing to ensure the naturality
of an image, which is a real issue in the biomedical
field Borji (2019). Recently, Brémond-Martin et al.
(2023) propose to compare metric and psychovisual
evaluation to choose appropriate metrics for an ap-
plicative case.

In this paper, we attempt to answer these ques-
tions by proposing a new Pair-GAN architecture us-
ing pyramidal auto-encoders generation for biomedi-
cal image and GT generations from a SIP. The pyra-
midal structure helps to generate images from SI and
the auto-encoder more natural samples. Some im-
provement has been dedicated to the generative part
of a SI image. However none of them identified if
the concomitant generation of a raw and ground truth
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images give similar results, and none of them to our
knowledge use a pyramidal auto-encoders generation.
We propose to compare the resulting synthetic pair
from Pair- with synthetic pair from state of the art ar-
chitectures dedicated to SI synthesis and adapted for
pair generation. To avoid the lack of consensus in
metrics, we use previously developed and validated
metrics and statistical strategy Brémond Martin et al.
(2022); Brémond-Martin et al. (2023) and a computa-
tional validation.

2 RELATED WORKS

2.1 Single Input Generative Methods

Pyramid Frameworks. To generate images from a
SI image, the first strategy is to use pyramidal archi-
tectures. The model learns internal statistics from
image patches across different image scales with a
Wasserstein loss. Each stage is constituted by con-
volutional layers. SinGAN is the first model to
synthesise images with a SI image strategy Shaham
et al. (2019). Improvements of this architecture may
rely on an attention module (SetGAN) or Gaussian
smoothing Mahendren et al. (2023). Another recent
model, ConSinGAN Hinz et al. (2021), is based upon
a cascaded framework of SinGAN. In this model, a hi-
erarchical module is added with a mixed reconstruc-
tion loss, providing various intensities of image gen-
eration, contrary to SinGAN. The Multi-scale-GAN
lies on cascaded frameworks such as SinGAN. Simi-
larly, it proposes an input based on noise and input im-
ages at various scales, the main difference being the
use of PAC-Bayes boundary theory to tighter general-
isation error bounds and synthesise more realistic im-
ages with a super-resolution Tang et al. (2022). SinIR
uses the same SinGAN cascaded architecture with
particular random pixels shuffling inside the genera-
tive part Yoo and Chen (2021). Likewise, Shuffling-
SinGAN proposes a pixel shuffling at each scale of
the pyramid generative framework, but adds a chan-
nel attention module and a spatial attention module.
Shuffling pixels allows strengthening the role of the
generator, misleading the discriminator Zheng et al.
(2021a). While previous methods focus on textural
information, SaSinGAN proposes to estimate larger
image feature information by positioning attention
modules at different locations according to the pyra-
mid scale Chen et al. (2021b). CCASinGAN proposes
cascades where the input characteristics are sketched
into weighted feature maps, increasing the robust-
ness of the attention module. Contrary to SaSinGAN
where the attention modules are updating their posi-
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tion at each scale, this architecture gives two atten-
tion modules at each scale around convolution layers
Wang et al. (2022). Another multi-scale architecture
consists of using Markov chain Monte Carlo as en-
ergy based model with no need of a discriminator net-
work, as demonstrated in PatchGenCN Zheng et al.
(2021b).

Discriminator Optimisations. One-shot-GAN,
also known as SIV-GAN, focuses on a double dis-
criminator module with a content and a layout branch
to take into account spatial information and improve
one shot image generation. This allows to not
memorise previous training samples and to generate
a different content from the origin Sushko et al.
(2021b). The InGAN is constituted of a multi-scale
discriminator composed of fully-convolutional patch
discriminators. ~ This formation allows capturing
at each scale specific size patch statistics, coarse
structures and details thanks to the multiscale dis-
criminator Shocher et al. (2018). MorphGAN uses
a double discriminator containing global and patch
discriminators with a generator constituted with style
encoder Ruiz et al. (2020).

Generator Optimisations. The Generalised One-
Shot-GAN focuses on the generator optimisations and
is composed of a main generative path and auxiliary
branch inherited from the previous generator. Auxil-
iary branch aims to give assets of particular elements
such as an object worn by a person, while the main
branch focuses on the style, i.e. generating a person
Zhang et al. (2022a). MoGAN architecture choose
the same strategy by creating region of interest and
background generator branches while the discrimina-
tor consists in Markovian chains. The ROI branch
uses an affine transformation after convolutional lay-
ers to precise the synthesisChen et al. (2021a). To
maintain diversity and avoid collapse generation, HP-
VAE-GAN uses hierarchical patch with VAE Gur
et al. (2020). Similary, the Our-GAN employs ver-
tical coordinate convolutions to produce more natural
contents Yoon et al. (2022). The RcGAN takes into ac-
count a random patch in generator input and consists
in an cGAN architecture where the output of the ante-
penultimate layer takes the conditional vector Arantes
et al. (2020).

Both Optimisations. For SGAN the generator and
discriminator are following a DCGAN architecture in
order to obtain better spatial information Jetchev et al.
(2016). GenDa optimises the generation by adding
a classifier in the discriminative part and truncate the

latent distribution of the generator with a strength fac-
tor Yang et al. (2021). PetsGAN avoids all the multi-
stage construction and allows a one-step training with
internal and external prior knowledge for the genera-
tive path and a regularised latent variable model. The
internal priors restore high-fidelity textural informa-
tion in images, and the external priors give the high-
diversity and layout Zhang et al. (2022b)

GAN Combinations. A particular One-Shot image
generation lies in the combination of many GAN
frameworks such as Ex-Sin-GAN. This framework
proposes a three-module assembly of GAN, each one
focusing on either structural information, semantic, or
textural information. While textural information is re-
trieved using SinGAN framework, the structural mod-
ule is based upon a fully connected discriminator with
a Wasserstein loss. Semantic information retrieval is
based on a GAN inversion with a patch discrimina-
tor and a perceptual loss, where GAN inversion aims
at finding the latent space code in a pre-trained way
in order to best reconstruct images, giving the seman-
tic content with the two other updates Zhang et al.
(2021). A particular implementation lies in the Adv-
GAN framework which adds a perturbation after the
generator, to render more diversified generation called
Image to Image Translation Zhang (2019).

2.2 Pair Single-Input Generative
Networks

To our knowledge, the only works generating a pair
of raw and segmented images are from Shaham et al.
(2019) and Sushko et al. (2023). The first one consists
in the SinGAN architecture updated for four-channel
images, with the last channel corresponding to the
segmentation mask. The second work is based upon
the One-shot architecture, however, a mask branch is
added inside the generator and an attention module
added in the discriminator.

These two architectures achieve to obtain similar
images to the original pairs. The main drawback of
SinGAN lies in the generator containing simple con-
volutional blocks, not allowing the synthesis of nat-
ural content. The One-Shot architecture proposes to
add an attention module to overcome this issue. The
strategy we choose to implement lies in the simple up-
date of generator convolutional blocks without mod-
ule additions, as an intent to render more natural the
generative process.
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3 METHODS

3.1 Datasets

We select two different biomedical datasets. The la-
beled and segmented gastrointestinal polyp images
are from the HyperKvasir open source dataset, ac-
quired with a standard endoscopy equipment from
Olympus (Olympus Europe, Germany) and Pen-
tax (Pentax Medical Europe, Germany). The
second dataset consists of a labeled brain mice
histopathological dataset, acquired in bright-field
from the open microscopy project (idrO018-neff-
histopathology/experimentA). .

3.2 Resources

The scripts we create for this study are in python
3.11.3 with an Anaconda framework containing Py-
Torch 2.0.1 and cuda 117. We execute the codes on
an Intel Core i7-10750H CPU, with 2.59 GHz and a
Nvidia GeForce GTX 1650 TI GPU device.

3.3 Pair-GAN Framework

Our objective is to propose a hybrid architecture be-
tween multi-scale pyramidal patch and auto-encoders
(AE) to generate images from a SIP of images. The
natural diversity of the generation is given by the AE
and, the statistics of a complex single image struc-
tures at various scales are captured by the multi-scale
architecture.

3.3.1 Multi-Scale Architecture

Our proposed multi-scale architecture illustrated in
Figure~1 consists of a patch-GANs pyramid, where
each level is responsible for capturing the patch dis-
tribution at a different scale of input Shaham et al.
(2019).

The pyramid starts at the lowest resolution and
end with the finest resolution with a Gaussian noise
image injected at each input. The deciphering is made
with the corresponding original pair of image resolu-
tion. The full script is adapted such as the four chan-
nel images in SinGAN-Seg; the input is composed of
the RGB raw image concatenated to the segmented
image. The pyramid starts by giving a Gaussian im-
age to a generator (Gn) which aims to map a noise
(zn) to a pair of raw and segmented images (pn):

pn = Gn(zn) (1)

The discriminator (Dn) attempts then to decipher if
the pair of images given are original or synthetic. The
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Table 1: Generator based upon an auto-encoder architec-
ture. The input shape in pyramid for an image of 100 x 100
pixels are from the lowest to the highest resolution level:
25 x 25,33 x 33,44 x 44, 58 x 58, 76 x 76 and 100 x 100.
f: filter, k: kernel, LR: LeakyRely, m: momentum, s: stride.

name shape parameters
conv input level shape (f=4, k=3, s=1 , LR=0.2)
conv max level shape (f=32, k=3, s=1, LR=0.2)
Batchnorm (m=0.1, affine)
deconv latent space shape  (f=32, k=3, s=1, LR=0.2)
deconv max level shape (f=4, k=3, s=1, LR=0.2)
Batchnorm (m=0.1, affine)
conv output level shape (f=1, k=3, s=1, Tanh)

two networks update each other by an adversarial loss.
The single difference between the Gn and the next
levels [Gn— 1 : GO] is that [Gn — 1 : GO] receive in ad-
dition to the Gaussian image the raw and segmented
pair of images at a finest resolution, thus:

pn— 1=Gn— l(Zn —1 (pnupsampled)) (2)

Generator. In the literature, the Generator of Path-
GAN or SinGAN and its derivatives is based upon
a classical GAN approach containing only convolu-
tional blocks Shaham et al. (2019). Here we use
an AE generator architecture as detailed in Table 1
Brémond Martin et al. (2022); Brémond-Martin et al.
(2023). The aim of this architecture is to reconstruct a
pair of raw and segmented image from a latent space
s composed of an encoder e, and a decoder d. The
encoder transforms the input by applying one or more
nonlinear parameters into a new representation of a
lower dimension. The decoder also uses nonlinear
transformations to reconstruct the original image with
the lower dimensional representation.

Training. The chosen discriminator is the same
Markovian discriminator than the Patch-GAN, Sin-
GAN and SinGAN-Seg implementation Shaham et al.
(2019). The selected loss reconstruction is from
SinGAN implementation. Instead of using a gradi-
ent penalty to optimise the Wasserstein loss, we use
Perceptual-Wasserstein loss from our previous study
to reproduce similar condition and a better contrast
and natural images Brémond Martin et al. (2022);
Brémond-Martin et al. (2023). This loss is applied
on the whole images and not on patch to help the net-
work to better learn the boundaries. This architecture
is a Vanilla kind, at the end of the pyramid training,
the 40 pair of images generated from a single original
pair are retrieved for comparisons.



Pair-GAN: A Three-Validated Generative Model from Single Pairs of Biomedical and Ground Truth Images

e(s|zl)

s~e(s) .

d(s|zl)

e

Figure 1: Pair-GAN for single input pair generation of raw and segmented biomedical images. This architecture contains
the classical cascaded network observed in the literature for the single input generation, hybridised with an auto-encoder
replacement instead of simple convolutions at each scale to give a natural content. z1 stands for input, s for the latent space,
e(s|z1) for an encoding distribution and d(1|z1) for the decoding distribution.

3.4 Evaluations
3.4.1 State of the Art Comparisons

To verify our results fairly, we choose to compare
the resulting raw and segmented pairs from our ar-
chitecture with pairs resulting from the run of oth-
ers architectures on the same datasets: SinGAN Sha-
ham et al. (2019), ConSinGAN Hinz et al. (2021),
hp-VAE-GAN Gur et al. (2020), SIV-GAN Sushko
et al. (2023), InGAN Shocher et al. (2018), PetsGAN
Zhang et al. (2022b) and Ex-Sin-GAN Zhang et al.
(2021). The scripts have been adapted to take as input
a four-channel image corresponding to an RGB image
and its GT except for SinGAN and Siv-GAN which
propose input pairs solution. For each architecture,
forty pairs of images are generated from each pair of
input images. For a simple visualisation, we show a
simple sample of input image, and a single sample
pair of each forty pairs of images resulting from each
tested architecture. We colored on segmented sam-
ples the added (pink) or eliminated (green) region of
interest (ROI) during the generation to verify the di-
versity from the original GT. To observe the forty gen-
erated masks shape and variations at the same time, a
heatmap is produced where the most generated pixels
are in pink and the background in black.

In order to verify the interest of using in the gen-
erative part the adversarial auto-encoder in single in-
put, we compare the AAE generation Brémond Mar-
tin et al. (2022) with a GAN Goodfellow et al. (2014),
a DCGAN Wau et al. (2020), and an INFO-GAN Chen
et al. (2016). To verify the number of image contri-
butions during the generation, we test various few in-
put synthesis: 20, 15, 10, 5 images in input and then

the single input configuration. To estimate the pair
generation interest in the same conditions, we synthe-
sise raw images and then ground-truth separately in
a vanilla way and stop the generation at 2000 epochs
see Tables &, 7, 9 and 3.

3.4.2 Dimensional Reduction

To verify if the generated raw and segmented images
are in the same feature space than the original im-
age, we apply a t-SNE dimensional reduction anal-
ysis. In order to compare the groups constituted by
images synthesised from each architecture, the mean
Kullback-Leibler distance is evaluated. First it has
been calculated between the representations of orig-
inal and synthetic pair of images, then between the
original sample tested and all the other original sam-
ples contained inside a dataset.

3.4.3 Maetrics

Due to the lack of consensus for natural synthetic im-
age characterisation, various metrics are evaluated to
give an asset of the similitude with the original pair of
images, and give their quality Brémond Martin et al.
(2022); Borji (2019). All raw and segmented pairs
are compared in terms of: Blur, structural similitude
index (SSIM), mutual information (MI), peak signal-
to-noise ratio (PSNR), mean square error (MSE), uni-
versal quality metric (UQM), single image Frechet in-
ception distance (SIFID) and learned perceptual im-
age patch similarity (LPIPS).

For segmented images, the interest is to consider
if the generative networks are generating more, less,
similar or various segmentation shapes than the orig-
inal dataset. For this reason, we calculate Jaccard,
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area of segmentation, differences between the origi-
nal GT and a synthetic segmentation, accuracy, sen-
sitivity, specificity, dice and fl scores. The genera-
tion giving the most diversified content different from
the GT is expected. All the mean, median, minimum,
maximum and standard deviation are given for each
metric and each group of architecture.

3.4.4 Statistics

The result of metrics (8 variables: Blur, SSIM, MI,
PSNR, MSE, UQM, SIFID, LPIPS and then 8 vari-
ables: Jaccard, Area, Ori-syntheticarea, Accuracy,
sensitivity, specificity, dice, f1) by group of archi-
tectures (8 factors: SinGAN, ConSinGAN, hp-VAE-
GAN, SIV-GAN, InGAN, PetsGAN, Ex-Sin-GAN
and Pair-GAN) are then compared statistically, and
also against the original dataset (9th factor: Original).
For this reason, we choose a Kruskall-Wallis method
followed by a Conover post-hoc in order to compare
all results from all the architectures against the origi-
nal pairs of images. Alpha risk is considered at 5%.

3.4.5 Computational

To verify the benefit of using such methods, we cal-
culate the execution time (in seconds), and memory
usage (in Tb).

4 RESULTS

The objective here is to compare in various ways and
on various datasets if the hybridisation of an AE with
a multi-scale generative network helps to generate
more natural and diversified images and their GT with
a SIP of biomedical images. In this part, we com-
pare qualitatively, with metrics, statistics, and com-
putationally, the results of our generative architecture
with state-of-the-art results and the original pairs of
images.

4.1 Qualitative Comparisons

We compare visually datasets containing GT labeled
images with the synthetic raw and segmented images
from all the architecture. In Table 2, a sample experi-
ment from a SIP of images is presented. For the polyp
dataset, generated raw images have the same aspect,
color and brightness as the original image regardless
of the method. The only aspect diverging in synthetic
raw results is the red coloration in the middle of the
polyp which disappears in SinGAN, ConSinGAN and
InGAN results while, some red pigmentations are ob-
served in our Pair-GAN architecture.
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Concerning the segmented mask, Siv-GAN, Pets-
GAN or Ex-Sin-GAN does not create a particular
shape variation compared to the original dataset. As
shown in the example, some architectures are creat-
ing structures with less region of interest (ROI) such
as SinGAN, ConSinGAN INGAN or our Pair-GAN.
Only hp-VAE-GAN creates an extension of structure,
adding new ROL.

The heatmap representation of all the segmenta-
tion mask generated by each architecture depicts al-
most a similar ROI synthesis for each GAN.

For histological dataset, with complex structures,
if the mice brain color and space representation is re-
produced by the GANs networks, only the Pair-GAN
architecture seems to generate all the structures. Oth-
ers solutions are mainly generating similar structures
at peripheral zones of the microscopic acquisition.

Whatever the architecture used, almost the same
proportion of additional or removal ROI are presented
in synthetic segmentation mask.

The heatmap renders external brain structure
zones more contrasted than the internal brain zones,
except for Pair-GAN images. Our solution visu-
ally generates the most similar and robust generation,
whatever the brain structure considered, with fewer
variations.

We propose in the following subsection to verify
our observation by statistically comparing metrics and
computational calculations on the overall datasets.

4.2 Statistical Space Comparison

In this part, we study the representation of original
and synthetic pairs of images in the same optimised
statistical space. Dimensional reduction is applied to
the extracted features on images during the generative
process. We then calculate Kullback Leibler diver-
gence (KL) on the ten t-SNE representations to verify
the stability of the representation shown in Figure 2.
To verify which architecture generates the most
diversified representation compared with the origi-
nal single pair of images, the mean KL between the
original representations and the generated raw or seg-
mented synthetic image representations is calculated.
For the polyp dataset, Pair-GAN generates raw im-
ages that are the most divergent from the original
raw images, followed by INGAN and CONSIN. The
mean KL between GT and segmented representations
is greater than the mean KL between raw and syn-
thetic image representations. For this kind of images,
Pair-GAN and CONSIN reach the highest scores and
give the most divergence from the original GT image.
According to the histological dataset, the KL diver-
gence is reduced when original and Pair-GAN syn-
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Table 2: Biomedical and segmented synthetic data paired generated with a SIP image with various GANs. In green are
represented synthetic missing regions and in pink added regions compared to the original GT image. The heatmap are
representing all the generated sample segmentation with the most occurring segmentation in pink and in black the pixels
which are never corresponding to a segmented region.

Dataset Original GT Original GT

i
L

Model Segmented

Heatmap Synthetic Segmented Heatmap

SinGAN

ConSinGAN

hp-VAE-GAN

One-Shot-GAN

INGAN

Pets-GAN

Ex-Sin-GAN

ot Rt B Bt et et
LELCECLELELEL

Pair-GAN(ours)

thetic images are considered. For the raw synthesis, To verify if these divergences are too far from nat-
the Ex-Sin-GAN generation gives the second-lowest ural images, we then compare original and synthetic
divergence and, for the segmentation, the ONE-SHOT pairs in terms of metrics.

generation.
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Figure 2: KL divergences on t-SNE on synthetic raw and segmented images in the same space as an original polyp image. a)
Raw polyp dataset b) Raw histological dataset c) Segmented polyp dataset and d) Segmented histological dataset.

4.3 Metric Comparisons
4.3.1 Qualitative and Similitude Metrics

The summary of metric calculations is presented in
Table 3.

For the Polyp dataset, raw synthetic images are
different from the original raw images, whatever the
architecture and metric considered. No differences
can be observed between synthetic raw images from
Pair-GAN and other generations.

For the histological dataset, raw images are not
different from original images, except if the genera-
tion is executed with Pair-GAN. This generation dif-
fers from other generative architecture, whatever the
metric considered (p<0.001). Concerning the seg-
mented images, only differences between PAIR-GAN
and HP-VAE-GAN can be observed see Appendix Ta-
ble 6.

Thus, for simple rounded objects in biological
images, the synthesis is qualitative and similar (low
PSNR high SSIM, MI, UQI) whatever the architec-
ture. However, for complex shapes, the synthesis
produces a different content from the original image
(high SSIM, MI, UQI scores) and loses some quality
(increase of PSNR scores) except with Pair-GAN .

For the raw polyp dataset the blurriest images are
synthesised with Consin (with 1253.98), the noisiest
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with Ingan (with 19.13) and the best similitude scores
depends on the architecture.

For the raw histological dataset, the blurriest im-
ages are synthesised with HP-VAE-GAN and Consin
(with 27.50 and 27.08), the noisiest and the most sim-
ilar with Pair-GAN (Psnr of 23.90, lowest MSE of
287.96 for quality and, highest Ssim of 0.73, lowest
SIFID of 236.94 and LPIPS of 0.29 for the simili-
tude).

4.3.2 Segmentation Metrics

Here we propose to use segmentation metrics to verify
the differences of synthesis segmentation compared to
the GT and to better characterize the generation. In-
deed, previously we observed the generation can add
or eliminate some regions of interest depending on
the architectures, these metrics could help to quantify
these differences and are summarized in Appendix
Table 5.

The Pair-GAN Jaccard scores for segmented
polyp images tend toward the Original dataset vari-
ation. All the other scores do not seem to be relevant
to compare, as the comparison between original in-
put sample and others originals are far. Indeed, the f1
score between a GT used in input and all the others
GT in the original dataset is 0.28, dice at 0.37, sensi-
tivity at 0.24, accuracy at 0.66 and a difference area
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Table 3: Metrics calculated on one-shot segmented synthetic images from various architectures. The stars correspond to
significant differences between a group of generation with the corresponding input with *: p<0.05; **:p<0.01; ***:p<0.001.
Best scores tending to perfect scores for a quality or similitude metric are bolded.

Metrics part A

Blur Mi SSIM Psnr

Mean Std Mean Std Mean Std Mean Std

SI Vs All Original 1361.07 546.48 1743.76 56.82 0.24 0.03 11.87 3.00
SinGAN 1011.16 ***  106.80 1.06 *** 0.01 0.29 #** 0.02 18.62 *** (.60
CONSIN 1253.98 ** 89.21 1.13 #%* 0.03 0.33 *%* 0.02 18.70 ** 0.56
HP-VAE-GAN 576.02 *** 46.50 1.13 sk 0.07 0.35 *** 0.02 18.76 ***  (0.99
Polyp ONE-SHOT-GAN | 687.90 *** 45.20 1.12 0.04 0.34 #** 0.02 19.00 *** (.68
INGAN 1058.21 #** 65.43 1.15 ##** 0.04 0.35 *#** 0.02 19.13 **%  0.77
Ex-Sin-GAN 938.56 *** 80.43 1.09 #** 0.04 0.32 #** 0.02 18.47 #**  (0.67
PETSGAN 1154.50 ** 73.30 1.16 ** 0.04 0.35 ** 0.02 19.00 ** 0.60
PAIRGAN (Ours) | 1055.14 *#** 77.67 111 #** 0.04 0.29 *#* 0.02 18.68 *** (.59
SI Vs All Original 46.47 6.64 -1824.43 303.29 0.41 0.14 19.71 18.43
SinGAN 25.52 2.09 -1810.91 20.99 0.52 0.03 19.06 0.73
CONSIN 27.08 1.40 -1802.24 23.29 0.53 0.04 19.31 0.82
HP-VAE-GAN 27.50 1.97 -1820.40 19.12 0.51 ,0.03 18.78 0.62
Histological ONE-SHOT-GAN 26.91 1.59 -1800.55 25.42 0.54 0.04 19.31 0.80
INGAN 26.50 1.58 -1807.53 21.94 0.53 0.03 19.28 0.76
Ex-Sin-GAN 25.10 1.75 -1798.80 23.57 0.55 0.04 19.35 0.83
PETSGAN 23.35 1.59 -1795.49 22.48 0.56 0.037 19.79 0.82
PAIRGAN (Ours) 17.33 ##* 2.89 -1677.16 *** 4582 0.73 0.07 23.90 ***  1.80

Metrics part B
MSE uQM SIFID LPIPS

Mean Std Mean Std Mean Std Mean Std

SI Vs All Original 4540.44 1469.52 0.72 0.08 890.92 117.81 0.57 0.03
SinGAN 902.60 *** 128.73 0.91 *#* 0.01 757.64 #** 90 0.46 *** 0.01
CONSIN 885.50 ** 113.84 0.9] #** 0.01 623.48 **  114.49 0.43 #* 0.01
HP-VAE-GAN 889.90 33 221.96 0.92 sk 0.01 757.13 =% 100.60 | 0.42 **:* 0.01
Polyp ONE-SHOT-GAN | 828.93 ##: 140.34 (.92 #* 0.01 778.04 **%  106.62 | 0.44 *** 0.01
INGAN 808.47 *** 153.73 0.92 #** 0.01 637.66 *** 9932 0.40 ** 0.01
Ex-Sin-GAN 935.92 #s#* 154.23 0.91 *#** 0.01 759.73 ##* - 139.39 | (.44 *** 0.01
PETSGAN 826.10 ** 121.79 0.92 #** 0.01 511.43 ** 90.14 0.40 ** 0.01
PAIRGAN (Ours) | 889.18 *#* 123.61 0.9] #** 0.01 598.45 #** 9215 0.44 #** 0.01
SI Vs All Original 1756.86 436.67 0.96 0.01 377.96 106.28 0.54 0.13
SinGAN 817.77 136.27 0.98 0.01 465.04 95.37 0.45 0.02
CONSIN 775.76 143.97 0.98 0.01 460.51 77.29 0.44 0.03
HP-VAE-GAN 869.64 123.48 0.98 0.01 416.30 98.95 0.46 0.02
Histological ONE-SHOT-GAN 775.42 135.63 0.98 0.01 382.49 77.83 0.44 0.02
INGAN 779.18 133.07 0.98 0.01 466.02 112.45 0.44 0.03
Ex-Sin-GAN 769.15 146.74 0.98 0.01 480.09 109.76 0.44 0.03
PETSGAN 694.36 125.28 0.98 0.01 414.39 99.71 0.44 0.02
PAIRGAN (Ours) | 287.96 *** 115.51 (.99 #** 0.01 236.94 *#**  100.81 | 0.29 *** 0.04

around 11000 while the difference between the GT
with the synthetic reaches are different, see Appendix
Table 5. Thus, for the area, difference area, accuracy,
sensitivity, specificity, dice and Fl-score, the Pair-
GAN result is different from the Original (p<0.001).
There are no statistical differences between the Pair-
GAN architecture segmentation synthesis and other
architecture results, except for the Jaccard and area
scores (and particularly with the HP-VAE-GAN ar-
chitecture with p<0.001).

Histological synthetic segmentation is different
from the original GT for all the architectures accord-

ing to all the scores except for the accuracy with
Pair-GAN architecture (0.78 versus 0.77, p>0.05).
The Pair-GAN dice and f1 scores are significantly
weaker than other architectures (p<0.01 while for
others groups p<0.001). The segmentation synthe-
sis is different for all the scores with Pair-GAN and
others architectures, except for the areas (the only dif-
ference concerns Pair-GAN with CONSIN p<0.001),
the total area scores (the only difference concerns
Pair-GAN with ONE-SHOT p<0.01), and the Jac-
card (there are no differences between Pair-GAN and
PETS-GAN p>0.05).
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Table 4: Computational comparisons.

Architecture Time(s) Memory (Tb)
SinGAN 1944.62 2986.95
ConSinGAN 2047.64 2871.04
hp-VAE-GAN | 2020.55 245271
One-Shot-GAN | 2245.21 582.03
INGAN 1999.47 2482.88
Pets-GAN 3747.69 441.43
Ex-Sin-GAN 8377.86 2785.37
Pair-GAN 2020.25 3034.33

4.4 Computational Comparisons

Pair-GAN run in the same time laps than SinGAN
architecture see Table 4(2020s vs 1944s). Concern-
ing memory consumption, Pair-GAN is the most ex-
pensive (3034Tb) and Pets-GAN needs the less mem-
ory.The Ex-Sin-GAN architecture needs almost four
times the SinGAN time to be executed.

S DISCUSSION

We present Pair-GAN, a hybrid framework containing
a multi-scale architecture with auto-encoders to help
generation of pairs of raw and segmented biomedi-
cal images from a SIP. This generation gives natu-
ral images and an accurate segmentation, which are
considered as qualitative and similar to the original SI
from which they have been generated. They are also
in the same statistical space as the original dataset.
Contrary to other frameworks, Pair-GAN generates
higher diversity from a SI as shown in the dimen-
sional reduction and the metric calculation for the
polyp dataset. For the histological dataset, with more
complex shape, it renders the most similar and natural
representations. However, Pair-GAN requires a huge
need of memory to be executed in approximately the
same time as other networks.

To our knowledge, Pair-GAN is the third imple-
mentation dedicated to a generation pair from a SIP
(SinGAN and ConSin-GAN) Shaham et al. (2019);
Sushko et al. (2023). This strategy generates im-
ages as natural as the other two frameworks, nev-
ertheless with more similar structures than SinGAN
and ConSin-GAN. These interesting results may be
due to the auto-encoding structure we added in the
pyramid layer combined with the perceptual loss
Brémond Martin et al. (2022) and Appendix Tables 8,
7,9, 3. To verify these observations, a psychovisual
study of raw synthetic images may help to decipher
if these images are also considered as natural by bi-
ological experts, and particular architecture misleads
more experts than others such as in Brémond-Martin
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et al. (2023). Another interesting approach to verify
the segmentation is trying to classify these images (by
their physio-pathological content, for instance). Here
we observe the results on two datasets with binary
segmentation, an interesting project would be to test
the generation of multimodal segmentation in order to
produce a data augmentation dedicated to multi-label
classifications Pandeva and Schubert (2019); Hong
et al. (2020).

Pair-GAN generates more diversified contents
than other architectures, as seen in the statistical space
comparison for simple shape. This diversity could be
a representation of the natural diversity present in the
original dataset composed of multiple labeled images.
This diversity of generation is a strong feature re-
searched in GAN field in order to improve deep learn-
ing training for image segmentation for instance Xun
et al. (2022). For a qualitative segmentation, increas-
ing the number of natural samples with various fea-
tures allows to render accurate the results. However,
more natural and diversified augmented samples in
a segmentation training process, without augmenting
the total number of training images allows to precise
the segmentation Brémond-Martin et al. (2023). An
interesting project may be to verify which data aug-
mentation architecture with single or few-input ren-
ders the most accurate segmentations.

Our architecture gives the most similar results
(SSIM,UQM,SIFID for instance) for complex biolog-
ical contents. For the histological dataset, only Pair-
GAN seems to produce a realistic image despite the
complexity of histological multiple structures. In-
deed, minima and maxima similitude scores for seg-
mented images from Pair-GAN are near the minima
and maxima GT scores. It is not the case for other ar-
chitectures, and these metrics results may be linked
with heatmap observations. For the polyp dataset,
containing a single object, all architectures except
Pair-GAN generate images similar to the input orig-
inal images. Pair-GAN generates shapes not already
produced (none of the similitude scores are reaching
their maximum) as shown in Table 3. Thus, a set of
metrics seems to help verify the naturality of images
produced with our architecture, while there is cur-
rently no consensus on the use of a particular metric
to validate the GAN synthesis Borji (2019). Another
interesting project should be to verify if these met-
rics are really useful in psychovisual evaluation task
Brémond-Martin et al. (2023). Particularly, if they
help to identify the naturality of rounded or simple
(such as polyp) or multiple or complex segmented ob-
jects (such as brain structures) in images.

Pair-GAN does not require more time to be ex-
ecuted, but needs a consequent amount of memory.
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The addition of an encoding and decoding part with
latent space increases memory needs. In compari-
son, the original SinGAN structure, composed of only
convolution layers, needs less memory Shaham et al.
(2019). To reduce the memory requirement, a future
work is to lighten the encoding architecture and op-
timise the latent space. Instead of using the maximal
resolution in the second encoding convolutional layer,
an idea could be to update the shape according to the
level of resolution, which may accurate the results.
In future directions, other noise inputs may be
evaluated for the generative part. Indeed, in previous
research, we show an influence of the noise injection
according to a kind of acquisition Brémond Martin
et al. (2022). Thus, it could be interesting to update
the noise injection according to the microscopic ac-
quisition considered and test if the result from a par-
ticular injection is still linked with the acquisition.
For the polyp dataset, the update of noise input may
reproduce particular saturation, the over/under expo-
sure of polyp topology during the imaging Ali et al.
(2020). Additionally, the generated image speculari-
ties may be evaluated to enhance the generated light
reflection on smooth objects. The loss function may
also be improved. As shown previously, it can im-
prove the contrast between the background and the
researched structureBrémond Martin et al. (2022).

6 CONCLUSION

In this article we present Pair-GAN:

* A generative architecture based upon patch-
pyramidal auto-encoders;

» Taking in input a single pair of raw and GT
biomedical images;

* Which synthesise natural images, similar and in
the same statistical space as original pairs and
compared with state-of-the-art methods.

Such approach may be interesting to increase minimal
datasets to automate for instance the diagnosis grade
of a disease from a single image with deep learning
methods. An interesting perspective may be to verify
the grade of each generation from a single input pair
of images annotated with the grade.

REFERENCES

Ali, S., Zhou, F., Braden, B., Bailey, A., Yang, S., Cheng,
G., Zhang, P, Li, X., Kayser, M., Soberanis-Mukul,
R.D., etal. (2020). An objective comparison of detec-
tion and segmentation algorithms for artefacts in clin-
ical endoscopy. Scientific reports, 10(1):2748.

Arantes, R. B., Vogiatzis, G., and Faria, D. R. (2020). Rc-
gan: learning a generative model for arbitrary size
image generation. In Advances in Visual Comput-
ing: 15th International Symposium, ISVC 2020, San
Diego, CA, USA, October 5-7, 2020, Proceedings,
Part I 15, pages 80-94. Springer.

Borji, A. (2019). Pros and cons of gan evaluation measures.
Computer Vision and Image Understanding, 179:41—
65.

Brémond-Martin, C., Simon-Chane, C., Clouchoux, C., and
Histace, A. (2023). Brain organoid data synthesis and
evaluation. Frontiers in Neuroscience, 17.

Brémond Martin, C., Simon Chéne, C., Clouchoux, C.,
and Histace, A. (2022). Aaegan loss optimizations
supporting data augmentation on cerebral organoid
bright-field images. In VISIGRAPP (4: VISAPP),
pages 307-314.

Chen, J., Xu, Q., Kang, Q., and Zhou, M. (2021a).
Mogan:  Morphologic-structure-aware generative
learning from a single image. arXiv preprint
arXiv:2103.02997.

Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever,
1., and Abbeel, P. (2016). Infogan: Interpretable repre-
sentation learning by information maximizing genera-
tive adversarial nets. Advances in neural information
processing systems, 29.

Chen, X., Zhao, H., Yang, D., Li, Y., Kang, Q., and Lu,
H. (2021b). Sa-singan: self-attention for single-image
generation adversarial networks. Machine Vision and
Applications, 32:1-14.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Ben-
gio, Y. (2014). Generative adversarial nets. Advances
in neural information processing systems, 27.

Gur, S., Benaim, S., and Wolf, L. (2020). Hierarchical patch
vae-gan: Generating diverse videos from a single sam-
ple. Advances in Neural Information Processing Sys-
tems, 33:16761-16772.

Hinz, T., Fisher, M., Wang, O., and Wermter, S. (2021). Im-
proved techniques for training single-image gans. In
Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision, pages 1300—1309.

Hong, D., Yao, J., Meng, D., Xu, Z., and Chanus-
sot, J. (2020). Multimodal gans: Toward cross-
modal hyperspectral-multispectral image segmenta-
tion. IEEE Transactions on Geoscience and Remote
Sensing, 59(6):5103-5113.

Igbal, A., Sharif, M., Yasmin, M., Raza, M., and Aftab, S.
(2022). Generative adversarial networks and its appli-
cations in the biomedical image segmentation: a com-
prehensive survey. International Journal of Multime-
dia Information Retrieval, 11(3):333-368.

Jetchev, N., Bergmann, U., and Vollgraf, R. (2016). Texture
synthesis with spatial generative adversarial networks.
arXiv preprint arXiv:1611.08207.

Lindner, L., Narnhofer, D., Weber, M., Gsaxner, C.,
Kolodziej, M., and Egger, J. (2019). Using synthetic
training data for deep learning-based gbm segmenta-
tion. In 2019 41st Annual International Conference of

47



VISAPP 2024 - 19th International Conference on Computer Vision Theory and Applications

the IEEE Engineering in Medicine and Biology Soci-
ety (EMBC), pages 6724-6729. IEEE.

Mahendren, S., Edussooriya, C. U., and Rodrigo, R. (2023).
Diverse single image generation with controllable
global structure. Neurocomputing, 528:97-112.

Pandeva, T. and Schubert, M. (2019). Mmgan: Gener-
ative adversarial networks for multi-modal distribu-
tions. arXiv preprint arXiv:1911.06663.

Ruiz, N., Theobald, B.-J., Ranjan, A., Abdelaziz, A. H.,
and Apostoloff, N. (2020). Morphgan: One-shot face
synthesis gan for detecting recognition bias. arXiv
preprint arXiv:2012.05225.

Shaham, T. R., Dekel, T., and Michaeli, T. (2019). Singan:
Learning a generative model from a single natural im-
age. In Proceedings of the IEEE/CVF international
conference on computer vision, pages 4570-4580.

Shocher, A., Bagon, S., Isola, P., and Irani, M. (2018). In-
gan: Capturing and remapping the” dna” of a natural
image. arXiv preprint arXiv:1812.00231.

Sushko, V., Gall, J., and Khoreva, A. (2021a). One-shot
gan: Learning to generate samples from single images
and videos. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition,
pages 2596-2600.

Sushko, V., Zhang, D., Gall, J., and Khoreva, A. (2021b).
Generating novel scene compositions from single im-
ages and videos. arXiv preprint arXiv:2103.13389.

Sushko, V., Zhang, D., Gall, J.,, and Khoreva, A.
(2023). One-shot synthesis of images and segmen-
tation masks. In Proceedings of the IEEE/CVF Win-
ter Conference on Applications of Computer Vision,
pages 6285-6294.

Tang, J., Tao, B., Gong, Z., and Yin, Z. (2022). Adap-
tive adversarial training method for improving multi-
scale gan based on generalization bound theory. arXiv
preprint arXiv:2211.16791.

Wang, X., Jiang, W., Zhao, L., Liu, B., and Wang, Y. (2022).
Ccasingan: Cascaded channel attention guided single-
image gans. In 2022 16th IEEE International Confer-
ence on Signal Processing (ICSP), volume 1, pages
61-65. IEEE.

Wu, Q., Chen, Y., and Meng, J. (2020). Dcgan-based data
augmentation for tomato leaf disease identification.
IEEE Access, 8:98716-98728.

Xun, S., Li, D., Zhu, H., Chen, M., Wang, J., Li, J., Chen,
M., Wu, B., Zhang, H., Chai, X., et al. (2022). Gener-
ative adversarial networks in medical image segmen-
tation: A review. Computers in biology and medicine,
140:105063.

Yang, C., Shen, Y., Zhang, Z., Xu, Y., Zhu, J., Wu, Z., and
Zhou, B. (2021). One-shot generative domain adapta-
tion. arXiv preprint arXiv:2111.09876.

Yoo, J. and Chen, Q. (2021). Sinir: Efficient general image
manipulation with single image reconstruction. In In-
ternational Conference on Machine Learning, pages
12040-12050. PMLR.

Yoon, D., Oh, J., Choi, H., Yi, M., and Kim, I. (2022). Our-
gan: One-shot ultra-high-resolution generative adver-
sarial networks. arXiv preprint arXiv:2202.13799.

48

Zhang, W. (2019). Generating adversarial examples in one
shot with image-to-image translation gan. /EEE Ac-
cess, 7:151103-151119.

Zhang, Z., Han, C., and Guo, T. (2021). Exsingan: Learning
an explainable generative model from a single image.
arXiv preprint arXiv:2105.07350.

Zhang, Z., Liu, Y., Han, C., Guo, T., Yao, T., and Mei, T.
(2022a). Generalized one-shot domain adaptation of
generative adversarial networks. Advances in Neural
Information Processing Systems, 35:13718-13730.

Zhang, Z., Liu, Y., Han, C., Shi, H., Guo, T., and Zhou, B.
(2022b). Petsgan: Rethinking priors for single image
generation. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 36, pages 3408-3416.

Zheng, M., Zhang, P, Gao, Y., and Zou, H. (2021a).
Shuffling-singan: Improvement on generative model
from a single image. In Journal of Physics: Confer-
ence Series, volume 2024, page 012011. IOP Publish-
ing.

Zheng, 7., Xie, J., and Li, P. (2021b). Patchwise generative
convnet: Training energy-based models from a single
natural image for internal learning. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 2961-2970.

APPENDIX

We implemented the baseline models for single in-
put image with open sources we adapted to generation
from various channel input. These are the links to the
open sources we employed:

* SinGAN: https://github.com/tamarott/SinGAN;

¢ ConSinGAN: https://github.com/tohinz/ConSin
GAN;

e HP-VAE-GAN: https://github.com/shirgur/hp-v
ae-gan;

» SIV-GAN: https://github.com/boschresearch/one
-shot-synthesis;

* InGAN: https://github.com/Caenorst/InGAN/tree
Ipy3;

e PETS-GAN: https://github.com/zhangzc21/petsg
an;

¢ Ex-Sin-GAN: https://github.com/zhangzc21/ExS
inGAN
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Table 5: Appendix segmentation metrics on segmented synthetic images compared to the single original segmented image.
The stars correspond to *: p<0.05; **:p<0.01; ***:p<0.001.

Dataset Architecture jaccard area ori-syntheticarea accuracy \
Mean Std Mean Std Mean Std Mean Std
SI Vs all Original 0.25 0.01 31219.698 25196.51 11004.698 25196.51 0.66 0.09
SinGAN 0.20 ##* 0.01 | 52925.52 ***  8278.16 | 32710.52 ***  8278.16 | 0.94 *** 0.03
CONSIN 0.21 *##*  0.01 | 53483.52 ***  5871.89 | 33268.52 ***  5871.89 | 0.94 *** 0.02

HP-VAE-GAN 0.21 *##* 0.004 | 50288.1 *** 10491.23 | 30073.1 **¥*  10491.23 | 0.93 *** 0.05
Polyp ONE-SHOT-GAN | 0.21 *** 0.003 | 53970.6 ***  4427.57 33755.6 *** 4427.57 | 0.95 #** 0.02
INGAN 0.22 #**  0.01 | 51999.66 ***  5983.92 | 31784.66 ***  5983.92 | 0.94 *** .03
Ex-Sin-GAN 0.22 ##* 0.01 | 51243.18 ***  5967.71 | 31028.18 ***  5967.71 | 0.94 *** 0.03
PETSGAN 0.22 *** 0.007 | 54153.54 *#**  3598.14 | 33938.54 ***  3598.14 | 0.95 *** 0.01

PAIRGAN 0.23 #*#* (0.009 | 53073.9 ***  5356.36 32858.9 ek 5356.36 | 0.95 *** 0.02

SI Vs all Original 0.95 0.02 374394.0 32243.30 254031.0 32243.30 0.78 0.06

SinGAN 0.16 ***  0.01 60167.0 *** 313326 | -60196.0 *** 313325 | (.74 *** 0.01
CONSIN 0.17 *** 0.01 | 60410.62 ***  2968.53 | -59952.38 ***  2968.53 0.75 0.01 ***

HP-VAE-GAN 0.18 ***  0.01 | 61367.82 ***  35]12.00 | -58995.18 ***  3512.00 | 0.75 *** 0.01
Histological | ONE-SHOT-GAN | 0.18 *#*  0.01 | 61623.28 ***  3669.62 | -58739.72 ***  3669.62 | 0.75 *** 0.01

INGAN 0.19 ***  0.01 | 61246.16 ***  3362.73 | -59116.84 ***  3362.73 | 0.75 *** 0.01
Ex-Sin-GAN 0.19 * 0.01 | 61790.96 ***  3268.68 | -58572.04 ***  3268.68 | 0.75 *** 0.01
PETSGAN 0.19 #*#* 0.0l | 621394 *** 273536 | -58223.6 *** 273536 | 0.75** 0.01
PAIRGAN 0.18 #*#* 0.0l | 61135.9**%*  1568.16 | -59227.1 ***  1568.16 0.77 0.01
Dataset Architecture sensitivity specificity dice fl \
Mean Std Mean Std Mean Std Mean Std
SI Vs all Original 0.24 0.22 0.87 0.13 0.37 0.22 0.28 0.21
SinGAN 0.84 #** .11 0.98 ##:* 0.02 0.82 *#* 0.02 0.89 ook 0.07
CONSIN 0.85 *** (.080 0.99 0.01 0.83 0.01 0.9] ok 0.04
HP-VAE-GAN 0.81 ***  0.16 0.99 *** 0.01 0.81 *** 0.05 0.88 #** 0.12
Polyp ONE-SHOT-GAN | 0.87 ***  0.06 0.99 ##* 0.006 0.83 kk 0.01 0.92 k% 0.04
INGAN 0.84 ***  0.08 0.99 #** 0.01 0.83 ok 0.01 0.90 #sksk 0.05
Ex-Sin-GAN 0.83 ***  0.09 0.99 *** 0.006 0.82 #** 0.01 0.90 #** 0.05
PETSGAN 0.88 ***  0.05 0.99 #** 0.01 0.83 ok 0.01 0.92 Hokk 0.03
PAIRGAN 0.86 ***  0.07 0.99 *** 0.009 0.83 *** 0.01 0.9] #** 0.04
SI Vs all Original 0.78 0.05 0.78 0.08 0.73 0.04 0.77 0.06
SinGAN 0.47 *** - 0.02 0.98 *** 0.01 0.48 *** 0.01 0.63 *** 0.02
CONSIN 0.47 *** 0.02 0.98 *** 0.01 0.48 *** 0.01 0.63 #** 0.02
HP-VAE-GAN 0.48 ***  0.03 0.97 #** 0.01 0.48 #kk 0.01 0.63 #** 0.02
Histological | ONE-SHOT-GAN | 0.48 *** (.03 0.98 #s#* 0.01 0.48 ok 0.01 0.64 ok 0.03
INGAN 0.48 *** (.03 0.98 *** 0.01 0.48 ##* 0.01 0.64 *** 0.02
Ex-Sin-GAN 0.48 ***  0.02 0.98 ##* 0.01 0.48 ##* 0.01 0.64 #** 0.02
PETSGAN 0.49 ***  0.02 0.98 ##* 0.01 0.49 ##* 0.01 0.65 ¥k 0.02
PAIRGAN 0.50 ***  0.01 0.99 *#** 0.01 0.50 ** 0.01 0.66 ** 0.01
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Figure 3: KL divergences on t-SNE from different generator architectures for the generation of biomedical images (left) and
ground-truth (right) from few input to single input generation.
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Table 6: Appendix qualitative and similitude metrics on segmented synthetic images compared to the single original seg-
mented image. The stars correspond to *:p<0.05, **:p<0.01, ***:p<0.001.

Blur Mi SSIM Psnr ‘
Mean Std Mean Std Mean Std Mean Std
SI Vs All Original | 1044.60  463.54 1970.92  25.46 0.61 0.09 543  3.26
SinGAN 1393.56 96.55 1815.03 3091 0.90 0.03 14.64 2.68
CONSIN 1405.06 108.52 1808.72  20.65 0.91 0.02 15.09 2.07
HP-VAE-GAN 1347.30 122.48 1814.70  43.28 0.90 0.05 15.00 3.16
Polyp ONE-SHOT-GAN | 1378.24 72.50 1798.90 19.78 0.92 0.02 16.07 1.92
INGAN 1369.70 88.71 1806.53  24.77 0.91 0.02 1556 2.32
Ex-Sin-GAN 1359.27 106.29 1814.48  27.50 0.90 0.03 14.68 2.23
PETSGAN 1395.62 63.91 1796.64  16.41 0.92 0.02 1642 1.78
PAIRGAN (Ours) 1339.51 92.59 1805.07  20.99 0.91 0.02 1547 2.02
SI Vs All Original | 1314.28 143.94 | -1834.47 130.65 0.46 0.13 945 995
SinGAN 357.94 27.52 -1765.31 13.14 0.09 0.02 10.31  0.51
CONSIN 380.86 18.98 -1761.32 13.78 0.10 0.02 10.47 0.56
HP-VAE-GAN 392.54 20.80 -1776.11  12.60 0.08 0.0 10.04 0.50
Histological ONE-SHOT-GAN 372.95 27.17 -1763.14  15.86 0.11 0.02 10.52 0.63
INGAN 353.75 24.53 -1759.07 14.44 0.01 0.02 10.44  0.55
Ex-Sin-GAN 326.89 28.06 -1747.43  15.08 0.11 0.03 10.62 0.60
PETSGAN 333.30 27.26 -1751.00 13.28 0.12 0.02 10.76  0.57
PAIRGAN (Ours) 382.87 70.71 -1682.05 29.28 0.24 0.05 14.08 1.26
MSE UuQM SIFID LPIPS ‘
Mean Std Mean Std Mean Std Mean Std
ST Vs All Original | 19838.83 5677.25 0.57 0.10 49337 141.04 | 030 0.05
SinGAN 2706.06  1798.89 0.89 0.03 260.87 126.65 | 0.12  0.03
CONSIN 224339  1056.01 0.89 0.02 22791  75.08
HP-VAE-GAN 2827.56  2861.19 0.88 0.05 256.94 13691 | 0.11 0.04
Polyp ONE-SHOT-GAN | 1781.11 890.11 0.90 0.02 221.83  82.55 0.10 0.02
INGAN 2098.39  1270.77 0.90 0.03 21538 96.59 0.10 0.03
Ex-Sin-GAN 2538.37  1405.72 0.89 0.02 298.78 165.67 | 0.11 0.03
PETSGAN 1616.76  724.83 0.91 0.02 203.15 71.88 0.09 0.02
PAIRGAN (Ours) | 2064.84 1061.74 0.90 0.02 237.87 80.27 0.11 0.02
ST Vs All Original | 11894.75 2939.43 0.46 0.13 200.58 52.96 0.39  0.09
SinGAN 6096.30  722.70 0.27 0.02 35590 58.27 0.71 0.01
CONSIN 5887.06  767.54 0.27 0.02 37043 5547 0.71 0.01
HP-VAE-GAN 6486.44  749.72 0.26 0.02 366.08 63.01 0.72 0.01
Histological ONE-SHOT-GAN | 5830.22 811.32 0.28 0.02 336.10 40.16 0.73 0.01
INGAN 5916.38 727.33 0.27 0.02 39993 58.59 0.70  0.01
Ex-Sin-GAN 5696.20  781.82 0.28 0.02 373.83 43.74 0.71 0.01
PETSGAN 5503.59  706.46 0.28 0.02 329.86 5147 0.72 0.01
PAIRGAN (Ours) | 2652.85  784.44 0.35 0.02 266.79  56.72 0.65 0.02
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Table 7: Benchmark on generative architecture based upon

Pair-GAN: A Three-Validated Generative Model from Single Pairs of Biomedical and Ground Truth Images

computational comparisons.
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Table 8: Sample from each generative architecture at 2000
epochs and for a certain number of input on histological

dataset.

Input

Model

original

few input (20)

GAN

DCGAN

INFOGAN

AAE

single input

GAN

DCGAN

INFOGAN

AAE
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Table 9: Benchmark on generative architecture based upon metric comparisons on raw images from histological dataset.

Number Input  Architecture Blur Mi SSIM Psnr \
Mean Std Mean Std | Mean Std | Mean  Std
20 Original 1439.95 226.79 1.28  0.59 036 0.16 | 2043 18.26
20 GAN 5179.59  2328.42 0.8 012 | 0.16 0.09 | 1399 295
20 DCGAN 811.27 128.62 1.10  0.06 033 005 | 1682 0.73
20 INFOGAN | 32884.89  1097.04 0.87  0.05 0.01 0.01 492 043
20 AAE 61.75 18.92 0.70  0.09 035 004 | 945 0.29
15 GAN 4575.59  2621.84 094  0.11 022 0.08 | 16.03 2.38
15 DCGAN 824.38 102.77 1.07  0.07 0.31 0.07 | 1673  0.77
15 INFOGAN | 29011.43 21650.14 | 0.85  0.05 0.02 0.008 | 976  0.35
15 AAE 57.61 24.92 0.65 0.1 035 004 | 919 027
10 GAN 5466.76  2834.79 098 0.11 0.21 0.1 15.32  3.01
10 DCGAN 17726.71  456.91 0.91 0.05 0.04 0.03 810 0.19
10 INFOGAN | 21180.05 2382.57 0.77  0.06 0.03  0.01 1142 041
10 AAE 40.77 17.47 0.71 0.11 036 0.04 | 931 0.35
5 GAN 8928.75  4573.26 0.88 00.12 | 0.14 0.11 | 12.58 4.67
5 DCGAN 25499.19  2080.48 096 0.05 004 002 | 759 0.23
5 INFOGAN | 12413.56  4570.68 075 0.10 | 0.06 0.04 | 12.06 0.41
5 AAE 29.72 22.39 0.61 0.09 034 0.04 870  0.25
1 GAN 50669.93  684.43 0.89  0.05 0.01 0.01 720 047
1 DCGAN 647.60 328.41 1.10  0.09 030 0.04 | 1593 0.62
1 INFOGAN | 4427.16  4525.23 052 022 | 017 010 | 963 053
1 AAE 130.38 5.03 1.17  0.07 044 0.06 | 19.13 0.79
Number Input ~ Architecture MSE UuQM
Mean Std Mean  Std
20 Original 1480.27 89.55 097  0.01
20 GAN 3334.66  2782.71 093  0.06
20 DCGAN 1369.91 225.85 097  0.01
20 INFOGAN | 21065.03  2088.27 048  0.06
20 AAE 7389.90 498.28 0.82  0.01
15 GAN 1983.19  1890.19 096  0.04
15 DCGAN 1400.04 229.64 097 0.01
15 INFOGAN | 6902.15 556.23 0.88  0.01
15 AAE 7842.50 494.37 0.81 0.01
10 GAN 262749  3185.54 094 0.07
10 DCGAN 10085.92  457.35 0.76  0.01
10 INFOGAN | 4705.10 450.31 093  0.01
10 AAE 7644.53 616.56 0.81 0.01
5 GAN 6597.83  8174.11 0.85 0.18
5 DCGAN 11351.16  600.82 0.72  0.01
5 INFOGAN | 4069.32 397.58 093 0.012
5 AAE 8780.68 506.66 0.79  00.01
1 GAN 12454.67  1387.32 0.75 0.03
1 DCGAN 1675.49 224.75 096  0.01
1 INFOGAN | 7129.98 790.86 0.85 0.02
1 AAE 806.59 143.83 098 0.01
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