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Abstract: Accurate modeling the movement and behaviors of missing persons and vessels is critical in their finding and 
rescuing in maritime environments. Current methods focus on using particle techniques that model several 
factors including leeway and drift but lack the ability to model human factors and behaviors. This research 
explores the idea of using an agent-based approach to model missing objects with the goal of developing a 
methodology that accounts for missing person behavior in a maritime domain. This new approach leads to a 
more accurate missing persons movement trajectories and results in finding better search plans. The results 
show that an agent-based model can consider environmental elements, behavioral factors, and hazards when 
modeling target movement in a maritime domain which is critical in missing object modeling. The developed 
approach also shows how an agent-based model can help find optimal search plans. 

1 INTRODUCTION 

In this paper we examine and discuss the use of an 
agent-based model (ABM) in modeling missing 
maritime objects. Using a ABM could increase the 
accuracy of predicting how missing maritime objects 
move by modeling human factors and behavior.   

The motivation of this research is to increase the 
probability of search and rescue (SAR) personnel 
finding missing persons and saving lives. Between 
1993 and 2016, an average of 278 lives were lost 
annually after the United States Coast Guard (USCG) 
was notified of a missing person. (U.S. Coast Guard, 
2019). 

Consider a scenario that is loosely set on the 
eastern shore of Delaware. Consider yourself a 
manager of SAR operations who develops, 
implements, and oversees SAR activities in the area. 
It is a cool autumn day at a well-known coastline. 
There is a strong wind that shifts from the south to the 
east at 10 knots, and the sky is clear and cool. From 
New Jersey, the water currents travel south before 
turning east to join the Gulf Stream, which travels 
northwest. There have been emergency calls, so a 
search operation needs to be started. 
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The distress signal is sent by a fishing boat. The 
boat's operators claim that electrical problems. are 
impacting their motor and navigational gear. The 
caller said they were travelling northeast but weren't 
aware of their precise location. The call was cut off, 
and attempts to reach the other party were futile. The 
emergency radio call was triangulated to get the last 
known location. There are helicopters, cutters, and 
search boats among the search resources at hand. 

Such a situation requires a quick turnaround in 
terms of decision making and launching a SAR 
operation. The methodology described in this 
manuscript helps a SAR manager make qualified 
decisions that maximize the probability of finding the 
lost boat considering available resources.  

2 LITERATURE REVIEW 

How a search theory methodology simulates target 
movement is a key element in any search plan 
optimization for a mobile target. Historically, 
diffusion methods have been widely applied (Lin & 
Goodrich, 2010) and (Eagle, 1984), whereas 
SAROPS (Search and Rescue Operations Planning 
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System) currently employs a particle technique. 
(Kratzke, Stone, & Frost, 2010) Applying an ABM in 
wilderness searches has been studied in some detail 
(Mohibullah & Julie, 2013). A few case studies have 
also been done to use agent-based simulations to 
marine search operations in order to enhance 
verification and validation techniques (Onggo & 
Karatas, 2016).  

The majority of pertinent research on the 
employment of ABM in maritime settings is 
concentrated on military and security uses. Port 
security (Harris, Dixon, Dunn D.L., & Romich, 2013) 
and the use of UAVs for surface monitoring (Steele, 
2004) are examples of this. Additionally, a number of 
studies, including (Walton, Paulo, McCarthy, & 
Vaidyanathn, 2005) and (Sullivan, 2016), have been 
published on force protection simulations. The 
employment of ABM in counter-piracy activities has 
also been studied by numerous scholars (Deraeve, 
Anderson, & Low, 2010), (Dabrowski & Villiers, 
2015), and (Marchione, Johnson, & Wilson, 2014). 
The verification and validation of these models, as 
seen, for instance, while examining tactics to defend 
cargo ships against pirate attack (Deraeve, Anderson, 
& Low, 2010), is a frequent problem in this field of 
research. However, the methods utilized to evaluate 
and verify the simulations are not explicitly stated.  

The Pathfinder methodology introduced in 
(Grewe & Griva, 2022) and (Grewe & Griva, 2022) 
allows finding optimal SAR plans that maximize the 
probability of  target detection with available 
recourses. While these manuscripts can offer a high-
level overview of the Pathfinder methodology, the 
present manuscript focuses on ABM portion of 
Pathfinder. 

2.1 Limitations of Diffusion Methods 

Diffusion methods have been used several times to 
model mobile targets and have been applied in several 
search theory methodologies (Eagle, 1984); plus to 
model lost persons (Lin & Goodrich, 2010). These 
techniques, which rely on Bayesian statistics and 
probabilities, can get more difficult as the terrain gets 
more complicated. It may work in the open ocean but 
terrains like bays, marches, etc are far harder to 
model. The main problem is that targets' 
independence as independent agents with decision-
making abilities is not considered by diffusion 
methods. Additionally, they are unable to model 
changes in target type or survival mode. Because of 
these limitations, the diffusion method can only 

adequately model simple targets or objects over a 
unified terrain.  

2.2 Limitations of Particle Methods 

The particle method considers only environmental 
factors, while in addition to that the ABM can also 
account for various behavioral modes of a target. 
Each agent may have a special trajectory based on 
agent’s individual behavioral characteristics. 
Therefore, the ABM covers a much wider range of 
possible target movements, types, transitions, and 
thus results in search plans with higher probabilities 
of finding missing targets. 

3 PATHFINDER 
METHODOLOGY 

This section discusses Pathfinder, starting with an 
abstract overview and then breaking down Pathfinder 
into its core components. Next, we will review the 
relevant models, processes, and definitions. 

Pathfinder is a comprehensive search theory 
methodology that uses an ABM to model target 
movement and a nonlinear optimization model to find 
optimal search paths. This is a powerful blend of 
technology that has several advantages over existing 
methodologies. (Grewe & Griva, 2022).  

3.1 Components 

The nonlinear optimization model and the ABM are 
the two main parts of Pathfinder. While each element 
can be used independently to enhance an existing 
search methodology, their combined use is especially 
potent. The ABM incorporates both environmental 
and historical data. The nonlinear optimization model 
will produce the best search plans for the maritime 
search operation after receiving the information from 
the ABM. The relationship between these elements 
and search operations and data is shown in Figure 1. 

3.2 Design 

Figure 1 shows the breakdown of proposed rescue 
operations into logical sub-processes. It serves as the 
basis for the Pathfinder design. Only two of 
Pathfinder's many automated and sequential sub-
processes require human involvement. This 
manuscript describes in detail each sub-process 
necessary for the core components—ABM and 
optimization model—to function properly. 
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Figure 1: The relationship between search operations and 
the two main Pathfinder components, ABM and 
optimization model. 

The steps in this new methodology are introduced 
in this section. Each phase has a separate sub-process 
that is essential to the operation of Pathfinder. The 
setup procedure comes first. The search manager 
chooses search-specific information in this step, 
including target types, searcher types, domain, and 
last known location. Pathfinder then starts processes 
that load history data, topography data, and 
environmental data after the search manager makes 
these selections. The Epsilon model is the next phase, 
and it is used to find restrictions on the searchers' 
travel across the domain. The ABM is the next step, 
which simulates target movement. The search 
manager is presented the findings after the ABM is 
concluded. The search manager enters a preliminary 
search plan using this information. Once entered, the 
pre-processor uses this initial search plan for the 
nonlinear optimization model. In addition, the pre-
processor prepares the variables and data for the 
optimization model. The nonlinear optimization 
model then identifies the best search strategies for 
each searcher. After the nonlinear optimization model 
is finished, a post-processor is employed as a quality-
control step and to get the data ready for visualization. 
The search plan is visualized at this point, along with 
any necessary data files. The search plans are now 
prepared for use in search operations by a search 
manager.  

4 MODEL 

4.1 Environmental Factors 

Wind and water currents are the two main 
environmental elements that influence target 
movement. The following equations from the USCG 
(USCG, 2013) are used to compute the first element, 
leeway speed, or the movement induced by wind and 
waves, of a target. Assume 𝑠𝑙𝑜𝑝𝑒௚  and 𝑌𝑖𝑛𝑡௚  are 
constants, plus 𝐿௦  and 𝑊௦  are the leeway speed and 
wind speed, respectively. These parameters vary 
based on the target type. The y-intercept and slope of 
the leeway linear equation are the constants 𝑌𝑖𝑛𝑡௚and 𝑠𝑙𝑜𝑝𝑒௚. Regression analysis and experimentation are 
used to find these constants (Morris, Osychny, & 
Turner, 2008). When 𝑊௦ < 6 knots, the equation 
changes, resulting in 𝐿௦ = 0 at 𝑊௦ = 0.  

𝐿௦ = ቐ {𝑠𝑙𝑜𝑝𝑒௚𝑊௦ + 𝑌𝑖𝑛𝑡௚ 𝑓𝑜𝑟 𝑊௦  ≥  6 𝑘𝑛𝑜𝑡𝑠൬𝑠𝑙𝑜𝑝𝑒௚ + 𝑌𝑖𝑛𝑡௚6 ൰ 𝑊௦  𝑓𝑜𝑟 𝑊௦ < 6 𝑘𝑛𝑜𝑡𝑠  (1)

In the current prototype, this is a quick way to 
determine the leeway speed for various target types. 
For target types with a small 𝑠𝑙𝑜𝑝𝑒௚ , the future 
implementation of Pathfinder will additionally use 
the Rayleigh Method (Kratzke, Stone, & Frost, 2010). 
Water currents are the second environmental 
component. The vector sum of the existing currents in 
the environment is used to compute the overall water 
current. This calculation considers various currents, 
such as wind, surface, and tidal currents. Using 
historical data as well as information from 
organizations like NOAA, water currents will be 
gathered in a manner similar to SAROPS. Two 
environmental elements are present in the SAR 
scenario: a 10-knot wind and water currents that are 
moving from the south to the east into the northeast-
moving Gulf Stream. 

4.2 Hazards 

Next we discuss hazards and their effects on target 
movement. Hazards that can cause death of a 
searched target are problematic to model. Hazards 
that interfere with target movement, however, are 
simpler and depend on other behavioral elements. 
Currently there is incomplete data on the probability 
of death due to hazards. There is, however, data on 
survival times for cold exposure (Tikuisis, 1995) The 
USCG has utilized this mathematical model to 
determine when to stop looking for a missing person 
in the water. 
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When a target agent expires, it will be due to the 
whims of wind, currents, and other environmental 
factors. More investigation is required to compile this 
data and model death because of exposure. One can, 
however, model an agent’s ability to move around 
hazards such as jetties.  

4.3 Behavioral Factors 

Behavioral factors were based on “survival modes” 
which themselves are based on historical data and 
assigned to agents on setup. Koester lists eight 
different "survival strategies " that people who are 
lost could employ (Koester, 2008). Agents can switch 
between various "survival modes" while the search 
progresses. Five of the most popular survival 
strategies are included in the Pathfinder prototype: 
overdue, travel aide, route finding, staying put, and 
wanderer. Several survival modes are a subgroup of 
these five and can be modelled in the future; for 
example, direction sampling is a type of route finding. 
Based on the weather, geography, objective location, 
time of day, and other factors, the survival mode 
determines how each agent will act. The historical 
information utilized in the ABM was taken from 
(Koester, 2008), which has some useful information 
but not all the information required for a maritime 
environment. It will be crucial in the future to gather 
and derive data to adjust the ABM to a maritime 
environment. The next step is to go through each 
survival mode and how the ABM predicts target 
movement.  

When the target agent is trying stay put and is not 
actively moving, it is in the staying put mode. The 
SAROPS concept of "stickiness," which is inherent in 
this ABM, is also present. If the water is shallow 
enough, an agent who has a way to stay put—like an 
anchor—might decide to use the anchor. The target 
may also beach and remain put if they are sufficiently 
close to the shoreline. The agent will have to struggle 
against the environment to remain immobile if they 
are unable to drop an anchor or beach their watercraft. 
The wanderer mode is for the target agent who, 
individually or in combination, (a) has no idea where 
they are, (b) has no idea where they wish to go, (c) 
may not be mentally competent of making reasonable 
decisions. When an agent is in this survival mode, 
they move randomly, frequently taking the simplest 
routes (Koester, 2008). 

Overdue, route finding, and travel aid survival 
modes are all incorporated in the same way, but they 
have different end points in mind. Where the target 
agent wishes to go is the target destination. This 
might be a fishing spot, a boat ramp, or just a site in 

general. Each of these three survival strategies has a 
unique method for determining the location of this 
target. The target agent in the overdue mode is just 
overdue and not lost. As a result, the target agent's 
perception of their location and the target location is 
accurate. The travel aid mode is for a lost target agent 
who possesses navigational tools like a map or 
compass. As a result, a target agent's perception of its 
location and the target destination is generally 
accurate and becomes better as the agent approaches 
its destination. The target agent does not have a 
reliable estimation of their location or their 
destination in the route-finding mode. The target 
agent will move in a general direction until they come 
across landmarks that can direct them.  

The ABM employs a genetic algorithm to 
simulate the target agent's route in order to model 
these three survival options. The "bounded 
rationality" principle is applied in this genetic 
algorithm (Simon, 1982). Time, information, and 
human capacity for reasoning are all constrained, 
which causes rationality to be bounded. A person 
seeking to navigate a space may have a map of what 
lies ahead, but until they are closer, they cannot see 
the specifics of the path. For instance, a boat dock 
might be indicated on a map as being ahead, but as 
the user approaches, they find it is damaged and 
unusable. Accordingly, the path that will most likely 
take place in the near future is the actual one, but the 
path in the far future is just an estimate. 

The following paragraph describes how the 
genetic algorithm works. A straight path is made from 
the target agent's current location to its destination for 
t=0 and regularly during the modeled time, with each 
waypoint equally spaced and within the target agent's 
range of motion. If the target is late, the destination 
may be an accurate assessment, but if the target is lost 
and using a travel aids, the destination may be an 
inaccurate assessment of where its goal location is. 
For the route-finding mode, this straight line lays in 
one direction that is not necessarily in the direction of 
the destination. Following the creation of this first 
path, the target agent's current location serves as the 
starting point for the genetic algorithm to run on a 
small portion of the path. The portion of the future 
path that is rational can be referred to as the "genetic 
segment" or the "rational section" in this case. Each 
waypoint in this section is marginally altered until a 
faster, simpler, safer, more realistic, and within the 
target agent's capability alternate path is discovered.  

The new route is assessed using a weighted score. 
The target's preferences for a new path determines 
these weights. A shorter path could be more valuable 
to some targets than an easy one. The genetic 
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algorithm's scoring weights are based on data and 
research on previously lost individuals. Since there is 
only one terrain type to consider in this study—open 
water—these weights have no impact on target 
movement. As a result, the shorter route is always 
chosen. 

The target agent advances along the path by one 
step after the path is created then moves on to the next 
target agent. The ABM advances to 𝑡 = 𝑡 + 1 once 
all agents have moved. With analysis and integration 
of historical target behavior, several ABM 
components will require additional fine-tuning.  

Targets can be modeled leaving a search domain, 
which is another benefit of employing an ABM in this 
configuration. For example, if we use the ABM to 
model a lost boat in 𝛺, we also model boats leaving 
the search domain 𝛺௦. This is an important factor in 
SAR operations that enables search manager to 
calculate when to end a search. 

Modeling transitions between target types and 
survival modes is a crucial ability for an ABM. For 
instance, if a search team is looking for a boat, they 
must consider the possibility that the boat has sunk or 
may not have any power. It is possible that the target 
is now a life raft or someone in the water if the boat 
has sunk. A methodology should take these 
transitions into account in order to accurately model 
target behavior and movement. An example of a 
transition a boat might go through during a search is 
shown in Figure 2. Keep in mind that there are a 
number of possible transitions in this straightforward 
example, some of which can happen repeatedly.  

Boat Boat without 
power

Life-raft Person(s) in the 
water

 
Figure 2: Visualization of the transitions that a boat could 
undergo. In order to accurately model target movement and 
behavior, these transitions must be modeled. 

5 PRELIMINARY RESULTS 

5.1 Analyzing Illustrative Scenario 

Many of the actions and behaviors of agents in 
Pathfinder were modeled. Some of the agents are 
moved by the environment, some are propelled 
toward their objective if they have power, and some 
use an anchor in shallow water. High speed 
computing techniques seem to have the ability to 
train, tune, and optimize this ABM. In this scenario, 
there are two target kinds, and the model illustrates 
three different tactics a missing boat may use. The 
first visualization shows agent allocation, which is 
based on the three regions given to it, is shown in 
Figure 3. The agent colors are as follows; black are 
boats with power, green is boats without power, 
yellow are life rafts, and red are persons in water. 
Initial agent types are 60% boats with power, 30% 
boats without power, 5% are rafts in water, and the 
remaining 5% are persons in the water. 

 
Figure 3: The three probability regions that were given to 
the initial agent allocation were: A) the 50% region, B) the 
40% region, and C) the remaining 10% region. we used 
1001 agents in this visualization. The agent colors are as 
follows, with examples; boats with power are black (1), 
boats without power are green (2), life rafts are yellow (3), 
and persons in water are red (4). Initial agent types are 60% 
boats with power, 30% boats without power, 5% are rafts 
in water, and the remaining 5% are persons in the water. 
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Figure 4: The agent’s primary separated into four groups: 
A) an group of agents, primarily boats without power, 
that is traveling to its destination; B) a group of agents, 
primarily boats with power, that is being carried by the wind 
and currents; C) a group of agents, boats without power, 
that has anchored; and D) a group of agents, boats with 
power, that is traveling to the coastline In creating this 
visualization, we used 1001 agents. The agent colors are as 
follows, with examples; boats with power are black (1), 
boats without power are green (2), life rafts are yellow (3), 
and persons in water are red (4). Initial agent types are 60% 
boats with power, 30% boats without power, 5% are rafts 
in water, and the remaining 5% are persons in the water. 

Figure 4 demonstrates yet another benefit of 
utilizing an ABM to simulate target behavior. When 
looking for a missing boat, keep in mind that it might 
or might not be powered, have an anchor deployed, 
capsize, sink, have life rafts in the water, or even have 
passengers in the water. As a result, there are various 
target categories that SAR operations may be 
searching for, and each target may display a variety 
of distinct characteristics. Because it can represent all 
conceivable target kinds and target behaviors 
simultaneously, the ABM is advantageous for search 
operations. 

5.2 Analysis of the Number of Agents 
Needed 

When employing this prototype, a crucial question 
arises: How many agents are required for an accurate 
analysis of target movement? While further 
consideration will be given to this in future research, 
our preliminary analysis demonstrates how the 
probability of detection (POD) and performance 
depend on the number of agents employed. We 

anticipate that utilizing more agents will improve 
modeling target behavior accuracy at the expense of 
performance; going from 100 to 500 agents would be 
preferred and advantageous for accuracy, despite an 
increase in processing time. Although increased 
precision from 5,000 to 50,000 agents might be 
slightly better, but performance could be greatly 
hampered. There must to be an ideal quantity of 
agents to be employed. With the next experiment, we 
will investigate how accuracy and performance are 
affected by the number of agents. 

We will employ the initial search strategy shown 
in Figure 5 of a helicopter using a ladder pattern to 
search the domain. This preliminary search plan was 
made using USCG documentation.  

   
Figure 5: The initial search strategy for a helicopter (in 
orange) that will be used to assess the impact of Pathfinder's 
agent count. 

With 1 to 2001 agents, we will conduct a number 
of experiments in Pathfinder.  Then, for each series of 
runs, we will compile information on the searcher's 
runtime and distance covered. By looking at four 
agents from various prior distribution regions from a 
different run of the ABM, we will also examine POD. 
These agents will display the four main ABM 
movements: late, navigational aid, anchor 
deployment, and current-driven drifting. The use of 
these agents is necessary because the quantity of 
agents in the ABM will have an impact on 
Pathfinder's automatic POD calculation. So, in this 
experiment, we are testing the ability to find a single 
target by using these individual agents.  

An almost linear growth in Pathfinder's runtime as 
a function of the number of agents was the first 
outcome. This was anticipated because the data 
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source from the ABM extended the optimization 
model's runtime. 

 
Figure 6: Top: The number of agents employed in the ABM 
vs the runtime in minutes for Pathfinder. Bottom, based on 
the number of agents deployed in the ABM and the average 
searcher travel distance in kilometers. Observe how it 
reaches a plateau because of the time constraints and 
searcher performance.  

Next, we look at how the number of agents affect 
searcher travel distance. The searcher has a limited 
amount of time to search and can only move at a 
certain speed, so this effect was also anticipated. 
Around 1,320 km is the maximum distance that our 
searcher, a helicopter, can travel. In some 
experiments with 801 agents this limit was reached.  

We expected that the POD would rise as the 
number of agents rose, but for agents coming from the 
50% region, the POD peaks between 1000 and 1600 
agents. There are peaks at 400 and 1000 agents for 
agents coming from the 40% region. Last but not 
least, using more agents did not significantly increase 
POD for agents in the 10% region. Since some 
modeling techniques, like SAROPS, use up to 10,000 
particles to model a probability distribution, this was 
unexpected.  

Future research should determine the ideal agent 
count and the reasons why, after 1000 agents, 

performance for agents inside the 50% region seems 
to decline but only slightly improves for those outside 
the 50% region. Many experiments we performed 
experience a drop in POD performance at around 501 
agents. The impact of agents on the significant 
adjustments in search paths is related to this. The 
complexity of the plans rises along with the number 
of agents.  

6 DISCUSSION 

6.1 Verification Efforts 

The output of the ABM is employed to verify 
simulation findings. During the verification process, 
numerous computations were used, and hundreds of 
executions were scrutinized. Agents were also 
examined to make sure they were produced properly 
and moved realistically inside the domain. This 
entails verifying calculations for movement, leeway, 
and drift. 

An active verification process was used in the 
prototype after the static verification techniques. This 
was achieved by placing checkpoints throughout the 
prototype to resolve errors in calculations. For 
instance, targets situated on terrain types that are 
incompatible. 

6.2 Validation Efforts 

A critical research direction involves collecting more 
data for the ABM. More behavioral data is needed. 
For example, how often people in boats without 
power deploy their anchor or how often a missing 
kayaker will beach their kayak to conserve energy? 
This data needs to be collected and analyzed to 
finetune the ABM. The ABM is the component of 
Pathfinder that will need the most research and 
development in the future. This research will focus on 
both maritime and land scenarios.   

7 CONCLUSION 

The obtained results demonstrated that an ABM can 
aid in developing the search plans in a marine 
environment. When simulating target movement, an 
ABM may take environmental factors, behavioral 
aspects, and hazards into account. This is crucial in 
scenarios where a missing person may choose various 
modes of behavior. Environmental elements are 
similar to those used in earlier techniques, such as 
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SAROPS. The results also provide some guidance on 
the number of agents needed in the ABM to 
accurately detect target activity and movement. At the 
same time we believe that the number of agents as 
well as finding the probabilistic distribution of 
various modes of agents' behavior require more 
investigation.  

8 FUTURE RESEARCH 

A crucial study direction entails obtaining more ABM 
data. More behavioral information is required, such 
as how frequently anchors are dropped by vessels 
without power or how frequently a missing kayaker 
beaches their kayak to save energy. Finding the path 
score weights for the genetic algorithm will also be 
important for land searches. Depending on the 
geography, this will influence the preferred paths of 
lost people. For the ABM to be improved, this 
information must be gathered and examined. The part 
of Pathfinder that will require the most future 
research and development is the ABM. Both maritime 
and land-based scenarios will be the focus of this 
study.    

Data can be gathered in a variety of ways for 
adaptation and validation. One could first collaborate 
with the USCG and ask for authorization to gather 
data from their search efforts. With volunteers 
equipped with GPS devices, field experiments might 
be conducted. This strategy has limitations since 
people who are missing behave differently than others 
who are following the instruction to "act as if you are 
in a life threating situation." Modeling how people 
move across a wilderness or maritime terrain may 
benefit from data collection and analysis from 
wilderness parks and habitats like those mentioned by 
(Crooks, et al., 2015). Land SAR analysis will also be 
helpful. For instance, a right-handed person is more 
likely to turn right when there is a choice in direction 
(Koester, 2008). Finally, historical data can be 
employed, but it is challenging to get and it may have 
gaps. Many missing persons do not know the exact 
path they took before being found although data on 
where they were found can generally be ascertained. 

REFERENCES 

Crooks, A., Croitoru, A., Lu, X., Wise, S., Irvine, J. M., & 
Stefanidis, A. (2015). Walk this Way: Improving 
Pedestrian Agent-Based Models through Scene 
Activity Analysis. ISPRS International Journal of Geo-
Information, 1627-1656. 

Dabrowski, J. J., & Villiers, J. P. (2015). Maritime piracy 
situation modelling with dynamic Bayesian networks. 
Information Fusion, 116-130. 

Deraeve, J., Anderson, M., & Low, M. (2010). Maritime 
counte-piracy study using agent-based simulation. 2012 
Spring Simulation Multiconference (SpringSim '10), 
(pp. 1-8). 

Eagle, J. (1984). The Optimal Search for a Moving Target 
When the Search Path is Constrained. JSTOR. 

Grewe, J., & Griva, I. (2022). Optimizing Heterogeneous 
Maritime Search Teams using an Agent-based Model 
and Nonlinear Optimization Methods. In Proceedings 
of the 11th International Conference on Operations 
Research and Enterprise Systems, ISBN 978-989-758-
548-7. 

Grewe, J., & Griva, I. (2022). Optimizing Searchers that 
can Transport and Deploy another Searcher using an 
Agent Based Model and Nonlinear Optimization 
Methods in a Maritime Domain. Munich, Germany: In 
Proceedings of the 10th International Conference on 
System Modeling and Optimization. 

Harris, S., Dixon, D., Dunn D.L., & Romich, A. (2013). 
Simulation modeling for maritime port security. 
Journal of Defense Modeling and Simulation, 193-201. 

Koester, R. J. (2008). Lost Person Behavior. Charlottesville 
VA: dbS Production. 

Kratzke, T., Stone, L., & Frost, J. (2010). Search and 
Rescue Optimal Planning System. 2010 13th 
International Conference on Information Fusion. 
Edinburgh, UK . 

Lin, L., & Goodrich, M. A. (2010). A Bayesian approach to 
modeling lost person behaviors based on terrain 
features in Wilderness Search and Rescue. 
Computational and Mathematical Organization 
Theory, 300-323. 

Marchione, E., Johnson, S. D., & Wilson, A. (2014). 
Modelling Maritime Piracy: A Spatial Approach. 
Journal of Artificial Societies and Social Simulation. 

Mohibullah, W., & Julie, S. J. (2013). Developing an Agent 
Model of a Missing Person in the Wilderness. 2013 
IEEE International Conference on Systems, Man, and 
Cybernetics. Manchester, UK: IEEE Xplore. 

Morris, J. T., Osychny, V. I., & Turner, A. C. (2008). 
Analytical Techniques for the Calculation of Leeway as 
a Basis for Search and Rescue Planning. 

Onggo, B. S., & Karatas, M. (2016). Test-driven simulation 
modelling: A case study using agent-based maritime 
search-operation simulation. European Journal of 
Operational Research, 517-531. 

Simon, H. (1982). Models of Bounded Tationality . 
Cambridge MA: MIT Press. 

Steele, M. J. (2004). Agent-Based Simulation of Unmanned 
Surface Vehicles: A Force in the Fleet. Monterey CA: 
Naval Postgraduate School. 

Sullivan, P. J. (2016). Evaluating the Effectiveness of 
Waterside Security Alternatives for Force Protection of 
Navy Ships and Installations Using X3D Graphics and 
Agent-Based Simulation. MONTEREY CA: NAVAL 
POSTGRADUATE SCHOOL. 

Modeling Missing Maritime Objects Using an Agent Based Model

243



Tikuisis, P. (1995). Predicting survival time for cold 
exposure. International Journal Biometeorol, 94-102. 

U.S. Coast Guard. (2019). USCG Search and Rescue 
Summary Statistics. U.S. Department of Homeland 
Security. Retrieved from https://www.dco.uscg.mil/ 
Our-Organization/Assistant-Commandant-for-Response 
-Policy-CG-5R/Office-of-Incident-Management-Prepa 
redness-CG-5RI/US-Coast-Guard-Office-of-Search-an 
d-Rescue-CG-SAR/CG-SAR-1/SAR-Facts-Reports/ 

USCG. (2013). USGS Addendum to the US National Search 
and Rescue Supplement (NSS). Washington DC: 
USCG. 

Walton, D., Paulo, E., McCarthy, C., & Vaidyanathn, R. 
(2005). Modeling force response to small boat attack 
against high value commercial ships. Proceedings of 
the Winter Simulation Conference . Orlando FL USA: 
IEEE. 

 
 

ICORES 2024 - 13th International Conference on Operations Research and Enterprise Systems

244


