
Real-Time Deep Learning-Based Malware Detection Using Static and
Dynamic Features

Radu Ştefan Mihalache, Dragoş Teodor Gavriluţ and Dan Gabriel Anton
Bitdefender Laboratory, Faculty of Computer Science, ”Al.I. Cuza” University, Iaşi, Romania

Keywords: Malware, Threat Detection, Neural Network, Static Features, Dynamic Features.

Abstract: Cyber-security industry has been the home of various machine learning approaches meant to be more proac-
tive when it comes to new threats. In time, as security solutions matured, so did the way in which artificial
intelligence algorithms are being used for specific contexts. In particular, static and dynamic analysis of a
threat determines certain characteristics of an artificial intelligence algorithm (such as inference speed, mem-
ory usage) used for threat detection. While from a product point of view, static and dynamic analysis of a
threat target separate product features such as protection for static analysis and detection for dynamic anal-
ysis, the feature sets derived from analyzing threats in those two scenarios (static and dynamic analysis) are
complementary and could improve the accuracy of a model if used together. The current paper focuses on a
multi-layered approach that takes into consideration both static and dynamic analysis of a threat.

1 INTRODUCTION

The cyber-security industry has evolved along with
the constant increase of attacks that led to more than
1.2 billion1 known malware in 2023. Nowadays, most
of the cyber-security solutions rely on different ma-
chine learning algorithms for threat detection.

At the same time, cyber-security solutions evolved
in an attempt to cover various needs from both con-
sumer and business markets. One of the major differ-
ences in these cases is that while consumers are more
focused on protection (the role of a security solution
being to make sure that nothing bad happens to a sys-
tem), the business solution also focuses on providing
visibility around an attack. Most of the requirements
that appear in the business market are a direct result of
several compliance rules that enterprises have to obey.
For example, if a cyber-security attack succeeds on a
bank, the bank is required to start an internal inves-
tigation that analyzes logs and additional attack arti-
facts to better understand the impact of that attack.

With this, requirements for a new type of machine
learning algorithm emerge, that focuses on the behav-
ior of an attack and uses logs or asynchronously ob-
tained events to create features that are further used by
the algorithm. These algorithms cannot block a threat
but can provide late triggers about an undergoing at-

1https://www.av-test.org/en/statistics/malware/

tack. These triggers are often referred to as detection
capabilities as they do not provide any protection.

Models designs for detection don’t necessarily
need to have a low false positive rate as they can
not block anything. As such they are usually al-
lowed a certain level of false positives if the detection
rate is increased. Another important observation is
that the output of such models is usually analyzed by
a SOC (Security Operation Center) team that deter-
mines if an attack is real or not. This behavior led to a
phenomenon called alert fatigue, meaning that alerts
from these models accumulate to a point where they
are hard to be analyzed by security officers.

Our paper focuses on a method that combines two
types of models: based on statically extracted features
and models designed for detection, with the purpose
of reducing the alert fatigue phenomena while pre-
serving a high detection rate. For this purpose we
have used multiple malicious files that were analyzed
from a dual perspective: a static analysis perspective
where we extract features based on meta information
we can extract from the malicious files and a dynamic
analysis perspective where we extract features that re-
flect the malware behavior at runtime.

The rest of the paper is organized as follows: sec-
tion 2 reveals similar research, section 3 describes
the current cyber-security landscape and the problem
we are tackling, section 4 presents our approach on
building a neural network that uses both statically and

226
Mihalache, R., Gavriluţ, D. and Anton, D.
Real-Time Deep Learning-Based Malware Detection Using Static and Dynamic Features.
DOI: 10.5220/0012316800003636
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 16th International Conference on Agents and Artificial Intelligence (ICAART 2024) - Volume 3, pages 226-234
ISBN: 978-989-758-680-4; ISSN: 2184-433X
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.



dynamically extracted features, section 5 shows the
databases used in our experiment and several results
and finally, section 6 draws several conclusions on the
practical aspects of our proposal.

2 RELATED WORK

Malware detection has been one field that attracted
a lot of attention from researchers who used various
machine learning methods. There are two main ap-
proaches that are usually employed when it comes to
deciding what features will be used in the process of
training and evaluating machine learning models.

The first approach involves extracting static fea-
tures from the files, without executing them. Thus,
this approach usually consumes fewer resources and
reaches high speed and potentially high accuracy.

(Ahmadi et al., 2016) proposed a malware fam-
ily classification system, using a wide range of static
features extracted from the original PE executable
files that were not unpacked or deobfuscated. By
combining the most relevant feature categories and
feeding them to a XGBoost-based classifier, their
model reached an accuracy of around 99.8% on the
Microsoft Malware Challenge dataset (Ronen et al.,
2018) of 20000 malware samples.

Other approaches demonstrated that minimal
knowledge is needed for extracting relevant static
features from executable files. For instance, a study
demonstrated that effective malware detection can be
obtained using the information in the first 300 bytes
from the PE header of executable files as input (Raff
et al., 2017b). The same year, a more comprehen-
sive study (Raff et al., 2017a) presented MalConv, a
deep convolutional neural network model which di-
rectly uses the raw byte representation of executable
(limited to the first 2 MB) as input, without any intelli-
gent identification of specialized structures or specific
executable or malware content. The model showed
good results, achieving 94% accuracy after training
on a large dataset of 2 million PE files.

In a more recently conducted study (Zhao et al.,
2023), the authors researched a different method, con-
verting the bytecode extracted from the original files
into color images and using them as input features
for training an AlexNet convolutional neural network
(CNN). The results were promising, the accuracy of
their model reaching more than 99% on two rather
small public malware datasets from Google Code Jam
and Microsoft of around 10000 samples.

However, using static features alone might bring
some limitations in real-world malware detection sce-
narios where advanced obfuscation, packing or en-

cryption are being used for creating malicious files.
In a recent study (Aghakhani et al., 2020) this aspect
was investigated and, using a dataset of almost 400
thousand files, it was demonstrated that using static
information exclusively is not indicative of the actual
behavior of the classified files and a substantial num-
ber of false positives on packed benign files occur.

The other main approach would be to extract dy-
namic features that describe the behavior of the mal-
ware during execution or partially retain information
regarding the said behavior.

One method is to include dynamic runtime op-
codes as input features, allowing the behavior of ex-
ecutables to be captured. An extensive study (Carlin
et al., 2019) showed that this approach can accurately
detect malware, even on a continuously growing and
updatable dataset that requires retraining. The authors
compared 23 machine learning algorithms and con-
cluded that their method worked best using the Ran-
dom Forest model.

In a recent study (Zhang et al., 2023), the authors
proposed another method of combining the API call
sequences-based dynamic features with the semantic
information of functions, bringing more context to the
actual performed action by the API call. Compared
to existing similar experiments that only used API
call information, their solution shows improvements
of 3% to 5% in detection accuracy.

(Ijaz et al., 2019) compare several methods based
on machine learning for detecting Windows OS ex-
ecutables. They use a small set of files of only
39000 malicious binaries and 10000 benign ones,
from which they statically extract a small set of 92
features from the PE headers using the PEFILE tool.
They also dynamically extract 2300 features from a
small part of the files from the execution in Cuckoo
Sandbox. Their detection measurements are made us-
ing either the static features or the dynamic features
separately. Also, using a sandbox for the training
and evaluation part when using the dynamic features
brings in a series of disadvantages, because it does
not provide a form of real-time protection for the new
malicious files that would need to be evaluated.

In one of the first such approaches, (Santos et al.,
2013) present a hybrid malware detection system that
combines both static and dynamic features. The
small dataset they use consists of 1000 malware and
1000 legitimate files, from which they extract two-
byte opcodes, perform feature selection using Infor-
mation Gain and select the first 1000 as the static fea-
tures that will be used. The dynamic characteristics
are extracted by monitoring the behavior of the pro-
grams in a controlled sandboxed environment.

Another different hybrid approach that uses both

Real-Time Deep Learning-Based Malware Detection Using Static and Dynamic Features

227



static and dynamic features for malware detection is
proposed in (Zhou, 2019). The authors use a sandbox
for recording API call sequences from the execution
of 90000 malicious and benign files and they extract
dynamic features out of a trained RNN model that is
fed with the recorded sequences. The static and dy-
namic features are then combined into custom images
that will be used in the training and validation phase
of a CNN model. Both studies demonstrate how com-
bining both static and dynamic characteristics brings
improvements in detection rates.

Compared to our approach, these two studies have
a few limitations, one related to the small number of
files used in the dataset and another related to the us-
age of a sandbox for extracting dynamic features dur-
ing execution. Thus, their systems could provide only
offline detection and classification mechanisms and
are no practical solutions for a product which must
provide real-time protection against malware.

3 PROBLEM/SECURITY
LANDSCAPE

The cat-and-mouse game has been a constant of the
cyber-security ecosystem for decades; malicious ac-
tors create a new threat, cyber-security solutions adapt
then the new threats adapt to the new cyber-security
changes and the cycle goes on. And while this type of
change is inevitable, there were other (more business-
related) changes that a security product suffered dur-
ing the years.

One such important change was the split between
types of users: enterprise and consumer. While con-
sumer users are more interested in protection (the
security solution is perceived as a tool that quietly
ensures that everything is secured), the business en-
vironment comes with several different challenges.
When a breach happens, there is a need (sometimes
driven by compliance regulations) to understand ex-
actly what endpoints were affected, what kind of data
was exfiltrated, when the attack started or what set of
measures would reduce the chance for a similar attack
to happen in the future.

While these differences relate mostly to a prod-
uct feature (centralized dashboard, reports for en-
terprise environment and automated flows for con-
sumer), there are several differences that regard threat
detection as well. As a result, threat detection differ-
ences can be classified in regards to:

• Static Detection - usually associated with pre-
execution / on-access scanners. The main char-
acteristic of this type of detection is that it takes
a file as an input (but a file that was not executed

yet) and analyzes it (in terms of its content). Se-
curity products refer to this type of detection as
protection as that file is not executed yet and de-
tecting it at this point blocks the attack and keeps
the user protected. This is heavily used in con-
sumer products where the expectation is to block
everything and keep the user protected.

• Dynamic Detection - usually associated with
post-execution scanners. It implies that the file
is allowed to run, while at the same time its ac-
tions are monitored. This type of detection is bet-
ter at identifying behavior and intent, but it’s less
resilient in terms of protection (once some data is
copied to an external site, even if we record the
event, we cannot un-copy it). Enterprise solutions
use this method as part of EDR/XDR products to
record data related to an attack and automatically
create a root cause report.

From a detection point of view (and in particular,
if we refer to machine learning models) there are sev-
eral distinct features that each of these two detection
methods (static and dynamic) have:

• Static Detection methods are usually used in the
pre-execution phase. This actually means that for
example, before a file gets executed, its content
is scanned. From a technical perspective, this is
achieved via a kernel mode driver that stops the
execution until the result from the scanner is avail-
able. While this method ensures protection (noth-
ing gets executed unless it was scanned), it also
imposes certain limitations. If for example, the
duration of a scan is one second for each file,
the entire operating system will be heavily slowed
down. As such, models that are used in this phase
have to be fast (fewer neurons or other forms
of more classical machine learning approaches
such as binary decision trees, random forests, etc).
It’s also important to notice that features used in
these methods are extracted directly from the file
content (strings, section information, disassembly
listings, imports and exports, etc) and don’t reflect
the behavior of a sample but rather a probability of
something being malicious.

• Dynamic Detection on the other hand is used
with events that are recorded asynchronously. As
such, the performance impact is reduced and as-
suming storage space is not an issue, larger mod-
els (e.g. neural networks with multiple hidden
layers) can be used. It is also worth mentioning
that the input to these models reflects behavior
(system events, APIs that are being used, etc).

As a general concept, a security solution uses
these two forms of detection sequentially (first a file

ICAART 2024 - 16th International Conference on Agents and Artificial Intelligence

228



Table 1: Static vs dynamic detection.

Static Dynamic
Detection Detection

Susceptible to packers and Yes No
obfuscation techniques
Behavior false positive No Yes
(use of startup registry keys)
Susceptible to dynamic No Yes
detection evasion techniques
(behave differently if
monitored)

is scanned with the static scanner, then if nothing is
found it gets executed and the dynamic scanner ana-
lyzes it). However, each one of these two solutions
comes with several limitations in terms of detection -
as shown in table 1.

Since these evasion techniques are often used by
advanced malware in different stages of an attack, us-
ing just one of these detection methods or both but
sequentially may be ineffective.

4 SOLUTION

In order to address the problem of advanced malware
detection, we set on developing a neural network that
classifies a program as benign (labeled 0) or mali-
cious (labeled 1) by analyzing static features of the
program’s file as well as dynamic features of the pro-
cess runtime behavior. Our solution targets PE files.

We chose to use deep learning because it allowed
us to apply transfer learning and also because it pro-
vided better results than other modeling approaches
(described in section 5.2).

To aid this approach, we designed the neural net-
work with two branches that process static and dy-
namic features separately. Results from these two
branches are concatenated and then fed to layers re-
sponsible for correlating static with dynamic data.
The diagram in figure 1 displays this architecture.

There are 2779 static features and 508 dynamic
features. These are fed through separate branches of
the neural network. A total of 576 values result by
concatenating the outputs of the static and dynamic
feature branches. These 576 values are fed through
fully connected layers of decreasing sizes (576, 384,
192). These were chosen by experimenting with neu-
ral layer sizes that are multiples of powers of 2.

In order to address the dying ReLU problem, we
experimented with SELU activation. On some layers,
this activation function improved the model’s perfor-
mance. SELU is a variant of ReLU that makes possi-
ble to compute non-zero gradients on negative values.

Figure 1: Proposed solution.

By having different sections of the neural network
that process static and dynamic features, we are able
to train neurons in these two sections separately. This
makes it possible to overcome a situation where for
training purposes, there is a lack of dynamic data but
an abundance of static data (as we will show later on,
this is the case).

An important point to make is that our solution
could perform well even against fileless malware.
Fileless malware infects legitimate programs already
present on the endpoint. Our solution could ascertain
the expected behavior of a legitimate program based
on the static analysis of the executable file and com-
pare it with the actual runtime behavior. Thus, if un-
expected suspicious actions occur that are indicative
of a fileless malware attack, a detection may be raised
with greater accuracy.

4.1 Static Component

The branch that analyzes static features is made up
of the first 4 layers of the neural network displayed
in figure 2. This neural network was trained as a self-
contained model and used to initialize weights and bi-
ases in the static feature branch of the final model.

The neural network in figure 2 takes as input static
features of a PE file. These features consist of both
boolean and numeric values. In order to extract static
features we used an AntiMalware engine that ana-
lyzes the structure and contents of the file.

Real-Time Deep Learning-Based Malware Detection Using Static and Dynamic Features

229



Figure 2: Layers for static features.

Examples of static features that were utilized are
found in table 2. Some of the features listed below
may be represented as fixed-length collections of nu-
meric or boolean values (for example, the APIs his-
togram).

Table 2: Examples of static features.

File header characteristics
Byte histogram
Used APIs histogram
Specific library imports
Byte patterns specific to known behavior (for exam-
ple, decoding memory section with XOR)
Known packer type used by file

4.2 Dynamic Component

Similar to the static component, the branch that ana-
lyzes dynamic features is made up of the first 4 layers
of the neural network displayed in figure 3. This neu-
ral network was trained as a self-contained model and
then used to initialize weights and biases in the dy-
namic feature branch of the final model.

The neural network in figure 3 takes input dy-
namic features extracted based on the process behav-
ior at runtime. In order to obtain these features we
used an EDR security solution (Endpoint Detection
and Response) which is installed on the machine and
it extracts dynamic features in real-time by monitor-
ing the process at runtime and the entire system at
large. The EDR solution correlates a sequence of
events representing actions done by the process. Mul-
tiple sensors installed on the machine monitor opera-
tions and send events to the correlation component.
Some of the used sensors are API hooks, network
probes and Event Tracing for Windows.

Examples of examined events and the correlation
logic used for extracting dynamic features are found
in table 3. The resulting dynamic features consist of
both boolean and numeric values.

Figure 3: Layers for dynamic features.

Table 3: Examples of runtime events and dynamic features.

Event name Example of dynamic feature

Process create A process with suspicious com-
mand line arguments was created

Process inject Code was injected into a running
process

Process load
module

A suspicious module was loaded
through DLL Search Order Hi-
jacking

Process API
call

A process called an asymmetric
encryption API

Windows
Management
Instrumenta-
tion operation

A process performed a suspi-
cious operation through Win-
dows Management Instrumenta-
tion

Registry
value write

A value was written in a registry
startup key

Network con-
nect

A process made an HTTP con-
nection to an untrusted domain

File create
A file was created that has a
name specific to a ransomware
note

File delete Multiple user files were deleted -
possible destruction of data

4.3 Evaluation Triggers

The proposed neural network is meant to be integrated
into an EDR security product where performance im-
pact is of the essence. This requires an efficient eval-
uation mechanism for the neural network.

Dynamic features are extracted as the program
is running. The evaluation mechanism must decide
when to perform a neural network inference in order
to detect a malware program as early in its execution
as possible. In order not to affect performance, infer-
ence should be performed only a limited number of
times per period and only when it is relevant.

The diagram in figure 4 displays the evaluation
mechanism we have chosen for EXE files. The mech-
anism for DLL files is similar but evaluation starts af-

ICAART 2024 - 16th International Conference on Agents and Artificial Intelligence

230



ter a process has loaded the DLL module.

Figure 4: Evaluation triggers and steps.

As shown above, for evaluation to be triggered,
static features of the EXE file must be available and a
process needs to have started execution based on said
EXE file. If those conditions are met, evaluation is
triggered in the following cases: one second into the
process execution, when a suspicious dynamic feature
is received and after the process is terminated.

After each time an evaluation is performed, an
evaluation lockout period is put in place for said pro-
cess in order to prevent a flood scenario that would
impact performance. The evaluation lockout period
lasts 15 seconds.

The evaluation triggers and overall logic is similar
for DLL file analysis.

5 RESULTS

5.1 Database

We used a private dataset containing 5455942 PE
files, of those 4068535 are labeled benign and
1387407 are labeled malicious. The reason for the
dataset containing 75% benign files is to reflect that
on a typical computer, there are many more benign
files than malicious ones. As such, this ratio helps us
avoid a model prone to false positive alerts.

The static features representing the PE file struc-
ture were extracted using a component of an AntiMal-
ware solution. Examples of static features are found
in table 2.

There were more than 150000 static features ex-
tracted for each file. Much like in (Dahl et al., 2013)
we had to reduce the number of features that would
be used for the model based on static features. The
total uncompressed size of the static data was 5.5TB.
In order to perform feature selection on such a large
quantity of data in a reasonable amount of time we
had to do the selection in multiple steps. These con-
secutive steps are described by the function Select.

function Select (D, limit,S,c);
Input : D dataset

limit the maximum amount of data
able to be processed
S selection methods
c maximum length of set A
containing relevant features

Output: Set A with the most relevant
features

A = all f eatures(D);
do

largest n s.t. n∗ len(A)< limit;
d = n random instances with features(D,
n, A);

k = max(c, len(A)/2);
A = {};
for select K best in S do

A = A ∪ select k best(d, k);
end

while len(A)> c;
Algorithm 1: Progressively select the best features of
the dataset.

The methods that we used for selecting the best
static features are the maximum information gain and
the importance given by a random forest classifier
trained on the dataset.

While there are many sandbox tools that emu-
late the execution of a PE file, nowadays there are
malware programs that employ anti-emulation tech-
niques. Considering that, we decided to run the files
on virtual machines with an EDR sensor installed.
The execution of the file produces a sequence of
events that are correlated by the EDR sensor through
various heuristics. These heuristics provide behavior
flags representing the dynamic features of a file’s exe-
cution. Examples of events and dynamic features ex-
tracted by the EDR sensor are found in table 3.

To minimize the time required for extracting dy-
namic features, we developed a system that uses mul-
tiple virtual machines to run PE files in parallel.

As displayed in figure 5, each file is run on a vir-

Real-Time Deep Learning-Based Malware Detection Using Static and Dynamic Features

231



Figure 5: Sample running and dynamic feature extraction
system.

tual machine for at most 3 minutes, the EDR sensor
extracts dynamic features, then the virtual machine is
reverted to an earlier snapshot in order to mitigate any
damage done by a malware program. Even with 10
virtual machines running samples in parallel, it would
have taken more than 3 years to extract dynamic fea-
tures for all files. Because of that, we selected in
a random uniform manner 13814 files. For 13217
of those we were able to extract dynamic features,
9978 labeled benign and 3239 labeled malicious, thus
maintaining the original ratio.

To clean up the dataset, we performed an analysis
on samples with static and dynamic data.
C - set of samples correctly classified by either the
model using static features or the model using dy-
namic features
M - set of samples incorrectly classified by both the
model using static features and the model using dy-
namic features
Nm,K - set of the K closest neighbors of m from C
based on Hamming Distance

∆K(m) = ∑
n∈Nm,K

1
dH(m,n)+ ε

·
{

γ, ym = yn
1− γ, ym ̸= yn

m ∈ M; dH - Hamming Distance; γ = 0.85
ym - label of m; yn - label of n

We chose γ = 0.85 to minimize the chances of re-
moving a correctly labeled sample from the dataset.

Based on these statistics, we removed 212 samples
we found to be possible mislabels. This represents
1.6% of the dataset containing dynamic features and
0.00003% of the dataset containing static features.

In order to visualize the extracted data, we per-
formed a PCA analysis. Figure 6 displays the PCA
analysis for static (left side) and dynamic (right side)
data.

Figure 6: Static data PCA and Dynamic data PCA.

5.2 Training & Inference

The training process was performed separately for the
model that uses static features and the model that uses
dynamic features. These two neural networks serve
as the building blocks to the final model that makes
use of transfer learning to better correlate static and
dynamic features.

In order to obtain the best results, the values of
both static and dynamic features in datasets were nor-
malized such that the standard deviation σ= 1 and the
mean µ = 0.

The neural network for static features was trained
for 30 epochs with a variable learning rate starting
from lr = 0.001 and then decreasing from epoch 5
by lr = lr · e−0.16. The loss function used was binary
cross entropy. To measure the model’s performance
we used K-fold cross-validation with 5 folds.

Table 4: Performance of the model using static features.

Metric Value STD Dev
FP Rate 0.368% 0.00086
TP Rate 86.746% 0.00195
F1 Score 92.234% 0.00022
Accuracy 96.346% 0.00016

The neural network using dynamic features was
trained on 30 epochs with a variable learning rate sim-
ilar to the model using static features and binary cross
entropy loss function. Its performance was measured
using K-fold cross-validation with 5 folds.

Table 5: Performance of the model using dynamic features.

Metric Value STD Dev
FP Rate 0.716% 0.00155
TP Rate 81.52% 0.01331
F1 Score 88.52% 0.00940
Accuracy 94.832% 0.00476

We wanted to see if we could obtain better per-
formance by training other machine learning algo-
rithms on the dynamic features. We tested the accu-
racy of both Random forest and XGBoost with 100

ICAART 2024 - 16th International Conference on Agents and Artificial Intelligence

232



estimators against our result obtained with a neural
network. As it turns out, Random forest algorithm
obtained 93.171% and XGBoost 93.394%, both less
than 94.832% that was obtained by our neural net-
work.

The final neural network uses both static and dy-
namic features and it processes them on two different
branches. Neurons on these branches load weights
and biases from the previous two models that are al-
ready trained, thus making use of transfer learning. At
first, only neurons processing the concatenated results
from the first two branches are trained, but after a cer-
tain epoch and learning rate, all neurons are trained.

We used this scheme in order to make the model
learn based on knowledge already gained by the pre-
vious two models. In this way, we are able to take full
advantage of the large number of instances with static
data while also using the statistically representative
number of instances with dynamic data. Furthermore,
by using this training scheme we were able to reduce
overfitting and obtain a considerable performance im-
provement.

In order to find the best combination of hyper-
parameters, we used a Bayes search algorithm that
tries to minimize a function we chose f (model) =
1−F1Score(model). Figure 7 displays the value of
this function at the number of attempts made by the
Bayes search algorithm.

Figure 7: Bayes search graphic.

The neural network that uses both static and dy-
namic features was trained on 25 epochs with a vari-
able learning rate that decreases starting from epoch
10. When epoch > 21 and lr < 0.00025 all layers of
the network are trained. The loss function used was
binary cross entropy. To measure the model’s perfor-
mance we used K-fold cross-validation with 5 folds.

In order to thoroughly analyze the performance
of the model that uses static and dynamic features,
we also considered the Confusion Matrix for thresh-
old=0.5 and the ROC AUC. The total ROC Area Un-
der the Curve is 0.99896.

Table 6: Performance of the model using static and dynamic
features.

Metric Value STD Dev
FP Rate 0.26% 0.00147
TP Rate 97.822% 0.00326
F1 Score 98.47% 0.00389
Accuracy 99.302% 0.00143

Table 7: Confusion Matrix of the model using static and
dynamic features.

Predicted
Clean Malware

Ground truth Clean 10532 34
Malware 60 3188

Table 8: Analysis of correctly classified samples by com-
bined model.

Element Accuracy
Correctly classified by
analyzing static data S∩C 98.704%

Improvement by analyz-
ing dynamic data (D\S)∩C 0.6%

Improvement by correlat-
ing both static and dy-
namic data

C\(S∪D) 0.0144%

Total correctly classified
samples by combined
model

C 99.319%

6 CONCLUSIONS

Based on the results, we can confidently say that the
model using combined features is best suited for prac-
tical application. By having the highest TP rate and
the lowest FP rate, the combined model is able to
raise alerts that offer a high degree of visibility while
keeping alert fatigue at a minimum. This offers a way
for cyber-security analysts to quickly identify an ad-
vanced threat without having to shift through large
amounts of false positive alerts.

Taking a closer look, we found that the increase in
accuracy was not just comprised of samples correctly
identified by either the model using just static fea-
tures or the model using dynamic features. The model
using combined features correctly classified samples
that neither of the two previous models did. This pro-
vides a way to counteract advanced attacks better.

We tested each model on the dataset containing
both static and dynamic features.

Let S, D, and C be the sets of samples correctly
labeled by each model (S for the model using static
data, D for the model using dynamic data and C for

Real-Time Deep Learning-Based Malware Detection Using Static and Dynamic Features

233



Figure 8: ROC AUC of the model using static and dynamic
features.

the model using combined data).

In table 8 we show how using static and dynamic data
contributes to the final model performance. Keep in
mind that, as accuracy approaches 100%, even small
improvements are significant, especially in the field
of malware detection.

One disadvantage our solution currently has is that
it was trained using just the initial access stage of an
attack. While from a protection perspective, this is
desired, the EDR philosophy is to provide visibility.
In the next iteration, we plan to train the model using
events from multiple steps of an attack, from initial
access to exfiltration.

REFERENCES

Aghakhani, H., Gritti, F., Mecca, F., Lindorfer, M., Or-
tolani, S., Balzarotti, D., Vigna, G., and Kruegel, C.
(2020). When malware is packin’ heat; limits of ma-
chine learning classifiers based on static analysis fea-
tures. Proceedings 2020 Network and Distributed Sys-
tem Security Symposium.

Ahmadi, M., Ulyanov, D., Semenov, S., Trofimov, M., and
Giacinto, G. (2016). Novel feature extraction, selec-
tion and fusion for effective malware family classifi-
cation.

Carlin, D., Okane, P., and Sezer, S. (2019). A cost analysis
of machine learning using dynamic runtime opcodes
for malware detection. Computers & Security, 85.

Dahl, G. E., Stokes, J. W., Deng, L., and Yu, D. (2013).
Large-scale malware classification using random pro-
jections and neural networks. In 2013 IEEE Inter-
national Conference on Acoustics, Speech and Signal
Processing, pages 3422–3426.

Ijaz, M., Durad, M. H., and Ismail, M. (2019). Static and
dynamic malware analysis using machine learning. In
2019 16th International Bhurban Conference on Ap-
plied Sciences and Technology (IBCAST), pages 687–
691.

Raff, E., Barker, J., Sylvester, J., Brandon, R., Catanzaro,
B., and Nicholas, C. K. (2017a). Malware detection
by eating a whole exe. In AAAI Workshops.

Raff, E., Sylvester, J., and Nicholas, C. (2017b). Learn-
ing the pe header, malware detection with minimal do-
main knowledge. pages 121–132.

Ronen, R., Radu, M., Feuerstein, C., Yom-Tov, E., and Ah-
madi, M. (2018). Microsoft malware classification
challenge. CoRR, abs/1802.10135.

Santos, I., Devesa, J., Brezo, F., Nieves, J., and Bringas,
P. G. (2013). Opem: A static-dynamic approach
for machine-learning-based malware detection. In
Herrero, Á., Snášel, V., Abraham, A., Zelinka, I.,
Baruque, B., Quintián, H., Calvo, J. L., Sedano, J.,
and Corchado, E., editors, International Joint Confer-
ence CISIS’12-ICEUTE´12-SOCO´12 Special Ses-
sions, pages 271–280, Berlin, Heidelberg. Springer
Berlin Heidelberg.

Zhang, S., Wu, J., Zhang, M., and Yang, W. (2023). Dy-
namic malware analysis based on api sequence seman-
tic fusion. Applied Sciences, 13:6526.

Zhao, Z., Zhao, D., Yang, S., and Xu, L. (2023). Image-
based malware classification method with the alexnet
convolutional neural network model. Security and
Communication Networks, 2023:1–15.

Zhou, H. (2019). Malware detection with neural network
using combined features. In Yun, X., Wen, W., Lang,
B., Yan, H., Ding, L., Li, J., and Zhou, Y., editors, Cy-
ber Security, pages 96–106, Singapore. Springer Sin-
gapore.

ICAART 2024 - 16th International Conference on Agents and Artificial Intelligence

234


