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Abstract: Albeit the widespread application of recommender systems (RecSys) in our daily lives, rather limited research 
has been done on quantifying unfairness and biases present in such systems. Prior work largely focuses on 
determining whether a RecSys is discriminating or not but does not compute the amount of bias present in 
these systems. Biased recommendations may lead to decisions that can potentially have adverse effects on 
individuals, sensitive user groups, and society. Hence, it is important to quantify these biases for fair and safe 
commercial applications of these systems. This paper focuses on quantifying popularity bias that stems 
directly from the output of RecSys models, leading to over recommendation of popular items that are likely 
to be misaligned with user preferences. Four metrics to quantify popularity bias in RescSys over time in 
dynamic setting across different sensitive user groups have been proposed. These metrics have been 
demonstrated for four collaborative filtering based RecSys algorithms trained on two commonly used 
benchmark datasets in the literature. Results obtained show that the metrics proposed provide a 
comprehensive understanding of growing disparities in treatment between sensitive groups over time when 
used conjointly.

1 INTRODUCTION 

RecSys have become an integral part of our daily 
lives, influencing the products we buy, the movies we 
watch, the music we listen to, so on and so forth (Lu 
et al., 2015). These systems aim to predict users' 
preferences and provide personalized 
recommendations by analysing their past behaviour, 
preferences, and interactions (Lü et al., 2012). The 
explosion of e-commerce and the growth of online 
platforms resulted in RecSys becoming essential tools 
for businesses to increase user engagement and 
customer loyalty (Khanal et al., 2020). Similarly, 
RecSys are also finding its applications in sensitive 
sectors such as law enforcement (Oswald et al., 
2018), health care (Schäfer et al., 2017), and human 
resources (Vogiatzis & Kyriakidou, 2021); usage in 
these sensitive sectors necessitates that 
recommendations provided can be explained, 
evaluated, and demonstrably unbiased & fair.  

Contemporary research in RecSys has focussed 
on improving accuracy and processing speed (Chen 
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et al., 2023). Meanwhile, RecSys algorithms continue 
to be trained on data with real-world user behaviour, 
which is shown to contain various biases such as 
representation bias and measurement bias (Mehrabi et 
al., 2021), despite that research on biases in RecSys 
lacks consensus on definition of bias (Chen et al., 
2023; Deldjoo et al., 2023). Additionally, prior works 
on algorithmic fairness focus primarily on defining 
conditions for fairness to answer the question “is an 
algorithm unfair?”, but do not provide evaluation 
metrics for unfairness to answer how unfair an 
algorithm is (Speicher et al. (2018)). This is further 
supported by Lin et al. (2022), emphasising on how 
to quantify bias in RecSys still remains understudied.  

Bias, in context of RecSys, can be viewed as 
recommendations provided by such systems that may 
potentially lead to discrimination towards certain 
items, groups or individuals based on factors such as 
demographics, item popularity, personal preferences 
or historical data (Chen et al., 2021). The various 
types of biases that exist in RecSys can be categorized 
into four categories: data bias, model bias, results 
  

Braun, V., Bhaumik, D. and Dey, D.
Metrics for Popularity Bias in Dynamic Recommender Systems.
DOI: 10.5220/0012316700003636
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 16th International Conference on Agents and Artificial Intelligence (ICAART 2024) - Volume 2, pages 121-134
ISBN: 978-989-758-680-4; ISSN: 2184-433X
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

121



bias, and amplifying biases (Chen et al., 2023).  
Data bias refers to biases that are present in input 

data used to train RecSys algorithms. This consists of 
selection bias, conformity bias, exposure bias, and 
position bias. Selection bias arises from users’ 
freedom to choose which items to rate, leading to 
users tending to select and rate items that they like 
and are more likely to rate particularly good or bad 
items (Marlin et al., 2007). Conformity bias involves 
users rating items in line with group behaviour and 
not to their true preferences (Liu et al., 2016). 
Exposure bias results from disproportionate 
presentation of unpopular items to users compared to 
popular items (Liu et al., 2020), whereas position bias 
occurs when item positions in a list of recommended 
items influence user interaction (Collins et al., 2018). 

Model bias represents inductive biases that are 
purposefully added to the model design in order to 
achieve desirable results which cannot be derived 
from training data (Chen et al., 2023). 

Results bias pertains to biases that originate 
directly from output of RecSys models. Such biased 
recommendations lead to: (i) popularity bias, where 
popular items are recommended with higher 
propensity, potentially mismatching user preferences, 
and (ii) unfairness, in which discriminatory 
recommendations are provided to certain individuals 
or groups with specific attributes like race or gender 
(Mehrabi et al., 2021; Ekstrand et al., 2018). 

Amplifying biases occur when existing biases 
present in the data, model or results are amplified 
unintentionally, thus, intensifying disparities. This 
effect involves self-reinforcing feedback loops where 
recommendations reinforce existing preferences and 
perpetuate bias (Mansoury et al., 2020). 

Biased recommendations have varied negative 
consequences (Kordzadeh & Ghasemaghaei, 2022); 
Popularity bias might undermine user’s interactions 
with items that are unpopular and prevent them from 
becoming popular (Baeza-Yates, 2020). Mehrotra et 
al. (2018) illustrated that a small number of popular 
artists on Spotify get an overwhelmingly larger 
number of listens, resulting in an unfavourable 
consequence for the remaining less renowned 
musicians. Similarly, it has been studied that 
popularity and demographic biases led to users with 
different ages, genders, and/or demographics 
receiving recommendations with significant 
differences in accuracy (Ekstrand et al., 2018). Since, 
these factors can potentially lead to discrimination 
and unfairness towards individuals or groups, it is 
important to quantify popularity bias and unfairness 
in RecSys (Deldjoo et al., 2023; Ekstrand et al., 2018; 
Mehrabi et al., 2021). 

Studies done on quantifying popularity bias 
mostly focus either on static settings or at a global 
level (Ahanger et al., 2022; Abdollahpouri et al., 
2019; Ekstrand et al., 2018). However, in real-life 
applications, unfairness may only become apparent 
over time across different user groups. To measure 
unfairness, this paper proposes metrics to quantify 
popularity bias in dynamic settings across sensitive 
user groups in RecSys. 

In section 2, metrics currently used to measure 
popularity bias and their limitations are discussed. In 
section 3, the proposed metrics for quantifying 
popularity bias over time across various sensitive user 
groups are presented. In section 4 the proposed 
metrics are demonstrated using two commonly used 
datasets in literature for two sensitive user groups, 
males and females. In section 5 and 6, conclusions 
and future work are discussed, respectively. 

2 POPULARITY BIAS IN RECSYS 

When training algorithms on long-tailed data, RecSys 
models tend to give higher scores to items that are 
more popular, resulting in popular items being 
recommended with higher propensity than their 
actual popularity (Abdollahpouri & Mansoury, 
2020). This results in recommendations provide by a 
RecSys based on a biased selection of items that do 
not align with the user's actual preferences, thereby, 
negatively impacting the user experience (Bhadani, 
2021). Additionally, if popularity bias is ignored, a 
negative feedback loop can result in popular items 
getting even more popular (Zhu et al., 2021). 

It is important to note that popularity bias is not 
always harmful. Item popularity is not only a result of 
conformity, where people tend to behave similarly to 
others within a group but can also result from the item 
being of high quality. This implies that leveraging 
popularity bias appropriately into a RecSys may 
improve its performance (Zhao et al., 2022). 

2.1 Static versus Dynamic Setting 

Studies conducted on evaluating fairness in RecSys 
use either a static or dynamic setting. Whereas static 
refers to data usage at a single point of time, dynamic 
setting includes usage of user interaction data over 
time including feedback interactions; the latter being 
closer to real-life implementations. Access to real-life 
dynamic data is a challenge. As a result, 
approximately 85% percent of recent studies on 
RecSys are performed on static data (Deldjoo et al., 
2023). Evaluating biases in RecSys within static 
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settings may lead to under-representation of 
unfairness as it may only surface over time. 

To this end, to measure biases in RecSys without 
access to real dynamic data from live platforms, user 
interactions must be simulated from static datasets. A 
common approach to transform a static dataset into a 
dynamic one by simulating new (dynamic) 
interactions (Aridor et al., 2020; Chong & Abeliuk, 
2019; Zhu et al., 2021; Khenissi et al., 2020) is 
deployed in this paper. This approach uses the 
assumption that users interact with their top-N 
recommendations and appends these interactions to 
the static dataset for a predefined number of 
iterations. An iteration is a step in which a RecSys 
algorithm is trained to provide top-N 
recommendations to each user and their interaction is 
simulated (see section 4.2). 

2.2 Individual versus Group Fairness 

Concepts in algorithmic fairness can be categorized 
into two groups: individual- and group- fairness 
(Dwork et al., 2012). Individual fairness refers to the 
principle that similar individuals should receive 
similar predictions or outcomes from a machine 
learning model, ensuring that decisions are consistent 
across comparable cases (Zemel et al., 2013). On the 
other hand, group fairness focuses on preventing 
unfair discrimination against specific demographic or 
social groups, aiming to ensure equitable outcomes at 
a larger societal level (Luong et al., 2011). 

Fairness metrics that contain a subgroup 
decomposability property (e.g., generalised entropy) 
can be used to decompose the overall individual-level 
unfairness into two components, namely between-
group and within-group (un)fairness (Shorrocks, 
1984). It has been observed that minimizing the level 
of between-group unfairness may, in fact, increase the 
level of within-group unfairness, leading to an 
increase in overall unfairness (Speicher et al., 2018). 
Recognizing the importance of considering both 
between-group and within-group (un)fairness, this 
paper measures both. 

2.3 Current Metrics of Popularity Bias 

Metrics that have been proposed in literature to 
measure popularity bias in RecSys are defined at a 
global level such as Gini coefficient (Deldjoo et al., 
2023) or at group levels such as generalized entropy 
index (GEI) (Speicher et al., 2018) or in static settings 
such as delta group average popularity (ΔGAP) 
(Abdollahpouri et al., 2019). These metrics are 
summarized in this section. 

2.3.1 Gini Coefficient 

Gini coefficient, originally developed to serve as an 
indicator of income inequality within a society (Gini, 
1936), has in recent years been applied to measuring 
popularity bias in RecSys (Abdollahpouri et al., 2021; 
Analytis et al., 2020; Chong & Abeliuk, 2019; 
Leonhardt et al., 2018; Lin et al., 2022; Sun et al., 
2019; Zhu et al., 2021). Gini coefficient is used on the 
distribution of popularity score of each item in a 
dataset. Popularity score (𝜙 ) of item 𝑖 is the ratio of 
the number of users that have interacted with an item 
by the total number of users, i.e.,  𝜙 = 𝑁𝑁 , (1)

where 𝑖  is an item, 𝑁  is the number of users that 
interacted with the item, and 𝑁  the total number of 
users in the dataset (Abdollahpouri et al., 2019; 
Kowald & Lacic, 2022). By creating a distribution of 
item popularity scores from equation (1), Gini 
coefficient (𝐺 ) is computed to quantify inequality 
within that distribution and is given by (Sun et al., 
2019): 𝐺 = ∑ (2𝑖 − 𝑛 − 1)𝜙𝑛 ∑ 𝜙 , (2)

where 𝜙  is the popularity score of the 𝑖  item, 
where the rank of 𝜙  is taken in ascending order (𝜙 ≤ 𝜙 )  and 𝑛  the number of items. Gini 
coefficients take values between 0  and 1 , with 0 
representing perfect equality and 1  representing 
maximum inequality.  

The Gini coefficient as a fairness metric is used in 
both static (Abdollahpouri et al., 2021; Analytis et al., 
2020; Leonhardt et al., 2018; Lin et al., 2022) and 
dynamic (Chong & Abeliuk, 2019; Sun et al., 2019; 
Zhu et al., 2021) settings. In a dynamic setting, 
increasing values usually indicate that certain items 
are being recommended more frequently than others 
(Deldjoo et al., 2023), suggesting a concentration of 
recommendations on a selection of items. Decreasing 
values suggest that a diverse range of items are being 
recommended to users. 

However, Gini coefficient has only been used as 
an indicator of fairness at a global level in literature. 
As indicated in section 2.2, it is also important to 
assess the trade-off that exists amongst between-
group and within-group (un)fairness. Hence, metrics 
to measure popularity bias using Gini coefficient for 
different sensitive user groups are proposed and 
demonstrated in sections 3.1 and 4.3.1 respectively. 
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2.3.2 Delta Group Average Popularity 
(𝜟𝑮𝑨𝑷) 𝛥𝐺𝐴𝑃, originally proposed by Abdollahpouri et al. 

(2019), is a metric that is used to measure popularity 
bias at a user group level by evaluating the interests 
of user groups towards popular items (Kowald et al., 
2020; Yalcin & Bilge, 2021). It is based on the notion 
of calibration fairness, which assumes that fair 
recommendations should not deviate from historical 
data of users (Steck, 2018). Consequently, the 
objective is to minimise the difference between the 
recommendations and the profiles of users within a 
group, in which a user profile consists of all observed 
item-rating interactions of the user.  

In general, 𝛥𝐺𝐴𝑃  computes the difference 
between the average popularity of items in group-
recommendations to the average popularity of items 
in group-profiles (Wundervald, 2021). Based on the 
definition of item popularity as defined in equation 
(1), the group average popularity per user group 𝑔, 𝐺𝐴𝑃(𝑔), is defined as (Abdollahpouri et al., 2019): 

𝐺𝐴𝑃(𝑔) ∶=  ∑ ∑ 𝜙∈|𝑝 |∈ |𝑔| , (3)

where 𝑔 is a user group, |𝑔| the number of users in 
that group, 𝑝  is the list of items in the profile of a 
user 𝑢, |𝑝 | is the number of items in the profile of 
user 𝑢, and 𝜙  is the popularity score of item 𝑖 . In 
other words, 𝐺𝐴𝑃(𝑔) is the average of the average 
item popularity within each user profile belonging to 
a user group 𝑔.  

To evaluate the difference between the 
recommendations and historical data of a specific 
user group, equation (3) is used to provide values for 
user profiles 𝐺𝐴𝑃  and for their corresponding 
recommendations 𝐺𝐴𝑃 . 𝐺𝐴𝑃  is computed by 
changing 𝑝 , the lists of observed interactions, with 
the lists of recommended items to users within that 
group. In an ideal situation of calibration fairness, the 
average popularity of the recommendations is equal 
to the average popularity of user profiles, i.e., 𝐺𝐴𝑃 =𝐺𝐴𝑃 . Subsequently, Abdollahpouri et al. (2019) 
proposed 𝛥𝐺𝐴𝑃  to calculate the level of undesired 
popularity in group recommendations: 𝛥𝐺𝐴𝑃(𝑔) ∶=  𝐺𝐴𝑃(𝑔) − 𝐺𝐴𝑃(𝑔)𝐺𝐴𝑃(𝑔) . (4)

The values of 𝛥𝐺𝐴𝑃 range from −1 to ∞ and can 
be interpreted as the relative difference of the average 
item popularity between user profiles and 
recommendations within a user group 𝑔 . In this 

context, complete fairness is achieved when 𝛥𝐺𝐴𝑃 =0 . As 𝐺𝐴𝑃(𝑔)  tends to 0 , indicating that all 
recommended items are unpopular, 𝛥𝐺𝐴𝑃  tends to −1. Whereas, when 𝐺𝐴𝑃(𝑔)  tends to 0, indicating 
that all items interacted with by users in a user group 
are unpopular, 𝛥𝐺𝐴𝑃 tends to ∞.  

The current adaptations of 𝛥𝐺𝐴𝑃  to measure 
popularity bias in literature is only limited to static 
settings. Hence, a new metric  𝑑𝑦𝑛𝑎𝑚𝑖𝑐 − 𝛥𝐺𝐴𝑃 , 
pertaining to more real-life dynamic settings is 
proposed in this paper (see section 3.2). Additionally, 
to measure between-group unfairness another metric 
in dynamic setting, 𝐵𝑒𝑡𝑤𝑒𝑒𝑛𝐺𝑟𝑜𝑢𝑝 − 𝐺𝐴𝑃  is 
proposed in section 3.3. 

2.3.3 Generalised Entropy Index (𝑮𝑬𝑰) 𝐺𝐸𝐼, a measure like the Gini coefficient, is used to 
quantify the degree of inequality or diversity within a 
distribution (Mussard et al., 2003). In the context of 
popularity bias, 𝐺𝐸𝐼 is used to measure inequality in 
the distribution of item popularity score. In contrast 
to the Gini coefficient, 𝐺𝐸𝐼 possesses the property of 
additive decomposability. For any division of a 
population into a set of non-overlapping groups, the 𝐺𝐸𝐼 over the entire population can be decomposed as 
the sum of a component for between-group unfairness 
and a component for within-group unfairness 
(Speicher et al., 2018). This allows to quantify how 
unfair an algorithm is towards sensitive groups within 
a population and visualise the trade-offs between 
individual-level and group-level fairness when 
debiasing RecSys models (Speicher et al., 2018).  

3 PROPOSED METRICS FOR 
POPULARITY BIAS 

Gini coefficient and 𝛥𝐺𝐴𝑃  are deployed in global 
contexts and in static settings respectively. 𝐺𝐸𝐼 has 
been used to measure popularity bias both at group 
levels and in dynamic settings, although Gini 
coefficient and 𝛥𝐺𝐴𝑃  remain more accessible 
measures due to their simpler structure (Wang et al., 
2023). To measure time evolution of popularity bias 
and its differential treatment among sensitive groups, 
variants of Gini coefficient and 𝛥𝐺𝐴𝑃 are proposed 
in this paper, namely Within-group-Gini coefficient, 
Dynamic- 𝛥𝐺𝐴𝑃 , and Between-group 𝐺𝐴𝑃 . 
Additionally, another metric, group-cosine similarity, 
to quantify differential treatments between groups 
with similar characteristics has also been proposed. 
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3.1 Within-Group-Gini Coefficient 

In RecSys, Gini coefficient is used as a measure of 
global inequality in the distribution of item 
popularities over time. We extend this application of 
Gini coefficient to dynamic settings to calculate 
Within-group-Gini coefficient and compare how it 
varies between different (sensitive) groups over time. 
Within-group-Gini coefficient is calculated as: 

[1] The original dataset containing all user-item 
interactions is split into distinct datasets per 
group under consideration and encompassing 
all interactions concerning each group. 
Example of such groups are males and females. 

[2] For each of the datasets pertaining to the 
groups, item popularity score (see equation (1)) 
is computed based on the respective 
interactions, thus generating separate 
distributions of item popularities for each 
group. For example, if we consider males and 
females to be the groups to assess, two separate 
distributions of item popularity score for males 
and females are generated. 

[3] Within-group-Gini coefficients is calculated for 
each of the generated distributions of item 
popularities per group, using equation (2).  

[4] Steps [1]-[3] are repeated per iteration, in 
which the top-N recommendations of all users 
are appended to the dataset to compute Within-
group-Gini coefficients over time, pertaining to 
the dynamic setting adopted from Sun et al. 
(2019) and Zhu et al. (2021). For more details 
on this approach see Section 4.2. 

By analysing the trends of Within-group-Gini 
coefficients of different user groups, it can be assessed 
whether the RecSys model exhibits differential 
treatment in recommendations between sensitive 
groups (such as males-vs-females) over time. This 
helps to understand if a RecSys model is offering less 
diverse recommendations to a particular group.  

3.2 Dynamic-𝜟𝑮𝑨𝑷 

When reviewing the original proposal of 𝛥𝐺𝐴𝑃  by 
Abdollahpouri et al. (2019), it is expected that the top-
N recommendations provided to a user in the testing 
dataset, contains only those items that a user has not 
previously interacted with. This approach has also 
been adopted by Kowald et al., (2020) for computing 𝛥𝐺𝐴𝑃. However, upon analysing their code base4, it 
is found that in their approach, users are 
recommended items from the testing data with which 

 
4 https://github.com/domkowald/LFM1b-analyses 

they have already interacted. This leads to the 
following concerns:  
 Recall that 𝛥𝐺𝐴𝑃 is defined such that a model 

is fair when recommendations align with 
historically observed data with the 
recommendations representing the 
performance of the model (see equation (4)). 
Therefore, providing recommendations that 
users have already interacted with, distorts the 
representation of 𝛥𝐺𝐴𝑃.  

 For cases in which a user needs to be provided 
with more recommendations than the number 
of observed interactions in the testing data, the 
model returns all available interactions in the 
testing data for that user regardless of her 
predicted rating. This implies that when 
computing 𝛥𝐺𝐴𝑃, the user profile is compared 
to only a sample of items pertaining to that 
profile. This concern would primarily affect 
users in a small profile size, as there is a higher 
chance of having insufficient interactions in the 
testing dataset to generate an adequate number 
of predictions. 

Setting aside these concerns, if recommendations 
are based on unobserved interactions, 𝛥𝐺𝐴𝑃 
possesses the true potential to provide the intended 
insights on the level of popularity bias present in a 
RecSys model. Therefore, this paper proposes 
computing 𝛥𝐺𝐴𝑃 on unobserved interactions.  

To compute dynamic-𝛥𝐺𝐴𝑃, 𝛥𝐺𝐴𝑃 is computed 
using unobserved interactions over-time using 
simulated dynamic data with the approach described 
in section 2.1. Following are the steps for computing 
dynamic-𝛥𝐺𝐴𝑃: 

[1] Split original dataset into training and testing 
data.  

[2] Define necessary user groups. 
[3] Compute 𝐺𝐴𝑃(𝑔)  (see Equation (3)) for each 

user group based on the training data. 
[4] Train the specific RecSys algorithm on the 

training data. 
[5] Predict the rating of all unobserved user-item 

combinations which can be seen as “true” 
ratings. 

[6] Provide the top-N recommendations to each 
user based on all unobserved user-item 
interactions. 

[7] Compute 𝐺𝐴𝑃(𝑔)  (see Equation (3)) for each 
user group. 

[8] Compute 𝛥𝐺𝐴𝑃(𝑔) (see Equation (4)) for each 
user group. 
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[9] Append the user-item combinations from the 
recommendations with their respective “true” 
rating to the dataset as new interactions. 

[10] To simulate the feedback loop for 𝑀 iterations, 
steps [1] - [9] are repeated 𝑀 − 1 times. 

The above steps provide the evolution of 𝛥𝐺𝐴𝑃 
(i.e., dynamic-𝛥𝐺𝐴𝑃  ) over time for different user 
groups. This is demonstrated in section 4.3.2 below. 

3.3 Between-Group GAP 

Currently, 𝛥𝐺𝐴𝑃  is formulated as the relative 
difference between 𝐺𝐴𝑃  (recommendations) and 𝐺𝐴𝑃  (user profiles). This results in 𝛥𝐺𝐴𝑃  ranging 
from (−1, ∞) , with negative values suggesting 
recommendations being less popular than user 
profiles, and vice versa for positive values (see 
section 2.3.2). Whereas, this approach allows for a 
comprehensive interpretation of within-group 
unfairness, it proves challenging to visualise 
unfairness between different groups. Therefore, we 
propose a revised formula of 𝛥𝐺𝐴𝑃 that can be used 
in Between-group 𝐺𝐴𝑃 metric. 

Since 𝐺𝐴𝑃  and 𝐺𝐴𝑃  are both average item 
popularity scores, under the assumption that items 
can only be interacted with once (i.e., users can only 
provide one rating to an item), we subtract 1 from 
their respective values to calculate the average item 
non-popularity scores, i.e., ∆𝐺𝐴𝑃 =  1 − 𝐺𝐴𝑃  1 −  𝐺𝐴𝑃  , (6)

the values of ∆𝐺𝐴𝑃  range from 0  to ∞ . ∆𝐺𝐴𝑃 = 1, when 𝐺𝐴𝑃 = 𝐺𝐴𝑃 , implying the 
non-popularity score of items is the same in the 
recommendations as in the profiles of a user group. 
When ∆𝐺𝐴𝑃 < 1, the popularity of items in the 
recommendations are higher than the popularity of 
items in the user profiles. Whereas, when ∆𝐺𝐴𝑃 > 1 , the recommended items are less 
popular than in the user profiles.  

The benefit of this approach is that it allows taking 
into consideration the impact of popularity bias when 
comparing groups. To illustrate this, consider the 
following situations: 
 Situation 1: Items recommended to a group are 

50% more popular than items in their user 
profiles. 

 Situation 2: Items recommended to a group are 
50% less popular than items in their user 
profiles. 

From the perspective of calibration fairness, both 
situations are similar, i.e., items recommended to a 
user group differs by 50% from their user profiles. 
However, based on the definition of popularity bias, 
where the over-recommendation of popular items 
leads to “the rich getting richer, the poor getting 
poorer”, we argue that the situation 1 is more unfair 
compared to situation 2.  

The formulation of ∆𝐺𝐴𝑃  metric allows us 
to take this argument into account when comparing 
two sensitive groups. To compute the level of 
popularity bias between two groups we propose the 
Between-group 𝐺𝐴𝑃 metric as follows: 𝐵𝑒𝑡𝑤𝑒𝑒𝑛𝐺𝑟𝑜𝑢𝑝 𝐺𝐴𝑃(𝑔, ℎ)= ∆𝐺𝐴𝑃 (𝑔) − ∆𝐺𝐴𝑃 (ℎ)𝑚𝑒𝑎𝑛(∆𝐺𝐴𝑃 (𝑔), ∆𝐺𝐴𝑃 (ℎ) , (7)

where 𝑔  and ℎ  are two sensitive user groups. 
Between-group 𝐺𝐴𝑃  ranges from 0 to 2, with a 
perfect situation ∆𝐺𝐴𝑃 (𝑔) =  ∆𝐺𝐴𝑃 (ℎ)  
and Between-group 𝐺𝐴𝑃  = 0. In other words, the 
level of unfairness towards group 𝑔 is the same as the 
level as the level of unfairness towards group ℎ.  

Since the metric aims to compare two sensitive 
group, the absolute difference is taken to avoid 
specifying one group as baseline. The output of 
Between-group 𝐺𝐴𝑃 can be interpreted as the level of 
unfairness between two user groups. The higher the 
value of Between-group 𝐺𝐴𝑃 is, the further apart the 
level of unfairness towards each group is. This is 
demonstrated in section 4.3.3 below. 

3.4 Cosine Similarity 

Cosine similarity is a measure that is widely used to 
compute the similarity between two vectors in a 
multi-dimensional space (Kirişci, 2023). In the 
context of popularity bias, cosine similarity can be 
used to calculate the similarity between frequency 
distributions of recommended items between two 
sensitive user groups. When deploying this metric in 
a dynamic setting, it may provide additional insights 
into the differential treatment in recommendations 
provided to two sensitive groups. Exploring the use 
of cosine similarity in addition to previously 
mentioned fairness metrics could enhance our 
understanding of popularity bias in RecSys. 

The proposed cosine similarity metric to measure 
popularity bias in a dynamic setting is computed as 
following within each feedback iteration: 

[1] For each sensitive group, generate a vector of 
zeros of length equal to the number of items in 
the dataset. For example, if a dataset consists of 
5 items, the initial vector is [0, 0, 0, 0, 0].  
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[2] Update each element corresponding to an item 
in the vector with the number of times the item 
has been recommended to the sensitive group 
under consideration. For example, if item 2 is 
recommended 3 times, the updated vector 
would be [0, 3, 0, 0, 0].  

[3] Normalise the vectors by the total number of 
users in the group, to take different group sizes 
into account.  

[4] The two normalised vectors corresponding to 
two sensitive groups under consideration are 
then used to compute the cosine similarity of 
the frequency of recommended items between 
two sensitive groups.  

The value of cosine similarity indicates the degree 
of similarity between the frequency of recommended 
items between two user groups. In an ideal situation, 
the cosine similarity equals 1 ; in the context of 
popularity bias this implies that the two user groups 
receive recommendations with similar frequencies. 

4 DEMONSTRATIONS 

Metrics that have been proposed in section 3 to assess 
popularity bias in dynamic setting and at user group 
level are demonstrated in this section.  

4.1 Datasets 

In academic research on RecSys, a variety of datasets 
have gained recognition as benchmark datasets such 
as the MovieLens 1M dataset, the Netflix dataset, the 
Amazon Product Datasets, and the Yelp dataset 
(Deldjoo et al., 2023; Lin et al., 2022; Singhal et al., 
2017). As metrics of popularity bias for different user 
groups is in focus, datasets containing demographic 
features, such as gender, ethnicity, or education level 
has been used in this paper. Both the MovieLens and 
Yelp datasets possess sensitive features such as 
demographics and gender; therefore, these two 
datasets have been selected for demonstration.  

The MovieLens dataset was developed by the 
GroupLens 5  team at the University of Minnesota, 
while the Yelp dataset was created by Yelp6 having a 
subset of their businesses, reviews, and user data. In 
the pre-processing stage of the datasets, users and 
items with fewer than 10 interactions were removed 
to ensure an adequate level of data density and 
reliability (Lin et al., 2022). 

 
5 https://grouplens.org/ 
6 https://www.yelp.com/dataset/ 

4.2 Simulation Dynamic Setting 

To simulate dynamic data, an approach similar to that 
of Sun et al. (2019) and Zhu et al. (2021) is adopted. 
First, a random sample of 1,000 users is taken from 
the original dataset, resulting in the dimensions 
presented in Table 1. In this table, ‘items’ represent 
the number of unique items present in the sample, 
‘ratings’ the number of observed interactions (i.e., the 
observed user-item-rating combinations), and 
‘density’ the indicator for the density of the user-item 
matrix calculated by dividing the number of observed 
interactions by the maximum number of possible 
interactions.  

Table 1: Dimensions of selected datasets. 

Dataset Users Items Ratings Density 
MovieLens 1,000 3,214 161,934 0.05 
Yelp! 1,000 1,272 74,527 0.06 

In the first feedback iteration, a specific RecSys 
algorithm is trained and used to predict the rating for 
all unobserved user-item combinations. These 
predictions are classified as the true rating for that 
combination to be used for the next iteration.  

Then the top-10 recommendations are provided to 
each user in the dataset and user-item combinations 
of the recommendations is appended with their 
corresponding “true” ratings. In each subsequent 
iteration, the RecSys algorithm is trained using the 
appended dataset to predict the ratings for all 
unobserved interactions and then used to provide each 
user with their top-10 recommendations and the 
results are appended to the dataset. To study long 
term effects this process of simulating feedback 
iterations is repeated 40 times. Asymptotic behaviour 
is already observed at these iterations. 

4.3 Demonstration of Proposed Metrics 
of Popularity Bias 

To compute the proposed metrics of popularity bias, 
multiple RecSys algorithms were trained to assess 
how these metrics vary per algorithm over time. 
Algorithms trained were Singular Value 
Decomposition (SVD) (Koren et al., 2009), Non-
Negative Matrix Factorization (NMF) (Lee & Seung, 
2000), user-based K-Nearest Neighbors (userKNN), 
and item-based K-Nearest Neighbors (itemKNN) 
(Adomavicius & Tuzhilin, 2005). Table 2 presents the 
hyperparameters of the trained RecSys models.  
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Table 2: RecSys model details. 

Dataset Algorithm Optimal Hyperparameters RMSE 
MovieLens SVD Epochs: 50  Factors: 150 LR: 0.005 RT: 0.05 0.90

NMF Epochs: 100 Factors: 150     0.89 

userKNN K: 20 Metric: mean-squared deviation 0.95 
itemKNN K: 75 Metric: mean-squared deviation 0.95 

Yelp! 
  

SVD Epochs: 10  Factors: 75 LR: 0.005 RT: 0.05 0.92 

NMF Epochs: 100 Factors: 150     0.94 

userKNN K: 50 Metric: mean-squared deviation 0.97 

itemKNN K: 50 Metric: mean-squared deviation 0.97 

Note: Epoch is a single pass through the dataset during training, factor the number of latent user and item factors used in 
the model, learning rate (LR) the hyperparameter determining the size of the steps taken during optimisation affecting how 
quickly the model converges, regularization term (RT) the penalty term added to the loss function to prevent overfitting, K 
the number of neighbours that are taken into account for aggregation, and metric the method for distance computation. 

4.3.1 Within-Group-Gini Coefficient 

In this section, results of the metric within-group-Gini 
coefficient is presented for two sensitive user groups, 
males and females. Note, if a model consistently 
provides fewer or more diverse recommendations to 
a specific user group, it will lead to diverging values 
of this metric between the groups. Figure 1 presents 
the within-group-Gini coefficient of males and 
females for the MovieLens and Yelp datasets. The 
gap between the genders is visible more in 
MovieLens than in Yelp due to larger preferential 
differences between groups in movies than in their 
choice of restaurants. Additionally, 4 observations are 
made in Figure 1.  

First, when evaluating differences between 
genders, consistent trends across both datasets are 
observed. Initially, in the first iteration, the metric’s 
value for males is higher than for females. This 
disparity is more prominent in the MovieLens dataset 
(see Figure 1), but a similar trend also exists within 
the Yelp dataset, although with a smaller difference. 
These findings indicate that in the original dataset, 
males have interacted with a smaller diversity of 
items compared to females. 

Second, in both datasets across both groups, 
except for in itemKNN, the Gini coefficient increases 
rapidly followed by an asymptote (MovieLens) or a 
slow decline (Yelp). This is expected because over 
time the propensity of recommending only popular 
items increases. Hence the diversity of 
recommendations decreases. 

 

 
Figure 1: Results of within-group-Gini coefficient for male 
and female over a feedback loop per RecSys model. 

Third, the initial separation observed in values of 
within-group-Gini coefficient between the groups 
decreases over time, especially for MovieLens. This 
implies that over time, males and females are 
provided with increasingly similar recommendations 
in terms of item diversity. This does not suggest that 
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the recommended items are the same between the two 
user groups, but the ascending order of distribution of 
item popularity scores are similar.  

Fourth, itemKNN’s behavorial difference 
compared to the other algorithms is expected as 
recommendations made in itemKNN are based on 
similarity in item features and not on user similarity. 
The difference between within-group-Gini coefficient 
increases over time between the groups, suggesting 
that over time, females are being recommended a 
more diverse set of items compared to males. 

4.3.2 Dynamic-𝜟𝑮𝑨𝑷 

When applying dynamic-𝛥𝐺𝐴𝑃, results (see Figure 2) 
reveal extreme values in the initial iterations. This is 
expected as user profiles are directly being compared 
with recommendations provided in the first iteration. 
It is also observed that initial values of dynamic-𝛥𝐺𝐴𝑃 are negative, suggesting that the initial group-
recommendations were less popular than the average 
user profiles of the respective group. This turbulent 
starting phase is attributed to the "cold start" problem 
within RecSys (Volkovs et al.,  2017), where users 
with relatively limited observed interactions in their 
user profiles exert a significant influence on the 
average popularity of their user group.  

Except for itemKNN, the algorithms appear to 
converge to a negative dynamic-𝛥𝐺𝐴𝑃  value. This 
convergence to a negative value is because, SVD, 
NMF and userKNN are prone to over recommending 
popular items, which leads to an increase in the 
average item popularity in the user profiles for the 
initial iterations. After this initial phase these 
algorithms are left with a pool of less popular items 
to recommend. Hence, the average item popularity of 
the recommended items after the initial phase is lower 
than the average item popularity in the user profiles, 
leading to the convergence of dynamic-𝛥𝐺𝐴𝑃  to a 
negative value. On the contrary, itemKNN is based 
on recommending items with similar features. 
Therefore, over time it recommends similar items to 
the user profiles. This leads to the average popularity 
of the recommended items to be similar to the average 
item popularity in the user profiles resulting in 
dynamic-𝛥𝐺𝐴𝑃 converging towards zero. 

Lastly, with regards to the sensitive user groups, 
minor variations in dynamic-𝛥𝐺𝐴𝑃  is observed for 
MovieLens dataset, however, for Yelp dataset this 
variation is negligible. Similar to within-group-Gini 
coefficient, this difference in the two datasets is due 
to larger preferential differences between males and 
females in movies than in their choice of restaurants. 

 
Figure 2: Results of dynamic-ΔGAP for male and female 
over a feedback loop per RecSys model. 

4.3.3 Between-Group GAP 

Between-group 𝐺𝐴𝑃  is demonstrated using six 
hypothetical scenarios using ∆𝐺𝐴𝑃  in a 
dynamic setting for male and female user groups. 
Thereby, it is validated that over-recommendation of 
popular items is more unfair than the over-
recommendation of non-popular items. 

To illustrate this, six hypothetical scenarios are 
presented in Table 3. In each scenario we first define 
the difference of the item popularity within 
recommendations compared to item popularity of 
user profiles. To illustrate, an “ItemPopularity” of 
+50% represents recommendations being 50% more 
popular than their user profiles (e.g., 𝐺𝐴𝑃 = 0.4 
results in 𝐺𝐴𝑃 = 0.6); an “ItemPopularity” of -50% 
represents recommendations being 50% less popular 
than their user profiles. 
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Table 3: Values of 𝐵𝑒𝑡𝑤𝑒𝑒𝑛−𝑔𝑟𝑜𝑢𝑝 𝐺𝐴𝑃 for different scenarios of over-recommending popular or non-popular items for 
user groups 𝑔 and ℎ. 𝐈𝐭𝐞𝐦𝐏𝐨𝐩𝐮𝐥𝐚𝐫𝐢𝐭𝐲(𝐠) 𝐈𝐭𝐞𝐦𝐏𝐨𝐩𝐮𝐥𝐚𝐫𝐢𝐭𝐲(𝐡) ∆𝐆𝐀𝐏𝐫𝐞𝐯𝐢𝐬𝐞𝐝(𝐠) ∆𝐆𝐀𝐏𝐫𝐞𝐯𝐢𝐬𝐞𝐝(𝐡) 𝐁𝐞𝐭𝐰𝐞𝐞𝐧𝐆𝐫𝐨𝐮𝐩 𝐆𝐀𝐏(𝐠, 𝐡) 

1 + 50% + 50% 0.67 0.66 0.00 
2 0% - 50% 1.00 1.33 0.28 
3 0% + 50% 1.00 0.67 0.40 
4 - 20% + 10% 1.13 0.93 0.19 
5 - 10% + 20% 0.07 0.87 0.21 
6 - 50% + 50% 1.33 0.67 0.67 

 

Scenario 1 represents a perfect situation where 
both groups g and h are treated equally with both 
receiving recommendations that are 50% more 
popular than their profiles. Scenarios 2 and 3 
demonstrate how over-recommending popular items 
is considered more unfair than over-recommending 
unpopular items. In scenario 2, group g receives a 
perfect recommendation and group h is recommended 
items that are 50% less popular than their user 
profiles, resulting in a 𝐵𝑒𝑡𝑤𝑒𝑒𝑛𝐺𝑟𝑜𝑢𝑝 𝐺𝐴𝑃  of 
0.2857. In scenario 3, group g also receives a perfect 
recommendation, but group h is recommended items 
that are 50% more popular than their user profiles 
instead, resulting in a 𝐵𝑒𝑡𝑤𝑒𝑒𝑛𝐺𝑟𝑜𝑢𝑝 𝐺𝐴𝑃  of 0.4. 
Even though in both scenarios one group receives 
recommendations that are 50% off their user profiles, 
it illustrates that over-recommending popular items is 
considered more unfair. Scenarios 4 and 5 illustrate 
the same but with both groups receiving unfair 
recommendations and for smaller differences 
between groups.  

The results of 𝐵𝑒𝑡𝑤𝑒𝑒𝑛𝐺𝑟𝑜𝑢𝑝 𝐺𝐴𝑃  for the 
MovieLens and Yelp datasets are presented in Figures 
3a and 3b, respectively. For the Yelp dataset, 
consistent and relatively low values of the metric is 
observed over time, indicating that all the four models 
exhibit relatively low degree of unfairness towards 
both males and females for the Yelp dataset. 
However, the MovieLens dataset shows an increasing 
trend in between-group unfairness, in particular for 
userKNN and NMF models (see Figure 3a). These 
models exhibit a distinct and noticeable pattern of 
growing disparities in treatment between males and 
females, resulting in a 𝐵𝑒𝑡𝑤𝑒𝑒𝑛𝐺𝑟𝑜𝑢𝑝 𝐺𝐴𝑃 value of 
0.1. Referring to Table 3, a value of 0.1 indicates 
group g receives perfect recommendations when 
compared to their profiles (0% item popularity), 
while group h receives recommendations that are 
14.3% more popular than their profiles.   

These findings highlight the metric's potential in 
capturing and highlighting the emergence of unequal 
treatment between sensitive user groups. 
Furthermore, the metric demonstrates ability to 

differentiate between the fairness-performance of the 
four algorithms used in this study.  

 
Figure 3: Results of between-group GAP for male and 
female over a feedback loop per RecSys model. 

4.3.4 Cosine Similarity 

The proposed metric for popularity bias, cosine 
similarity, measures the degree of similarity between 
the frequency of recommended items among two user 
groups. Values close to 1 represent a RecSys model 
recommending items with similar frequencies 
between user groups. Whereas values towards 0 
represent the model recommending different items 
between groups. 
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Figure 4: Results of cosine similarity for male and female 
over a feedback loop per RecSys model. 

Figure 4 presents the results for the MovieLens 
and Yelp datasets. It is observed that the SVD, NMF, 
and userKNN models have cosine similarity close to 
1, indicating a high and stable degree of similarity in 
recommendations between males and females over 
time. Conversely, the results for itemKNN suggest 
that the similarity of recommendations between 
males and females decreases over time. The results of 
itemKNN illustrate the importance of evaluating 
RecSys in a dynamic setting, as the similarity in the 
first iteration (i.e., a static setting) is significantly 
higher than in later iterations. The results presented 
demonstrate that the Yelp dataset presents more 
stable results than the MovieLens dataset, providing 
insights into the varying impact of different datasets 
on the performance of RecSys models. 

It is important to note that this Group-cosine 
similarity has limitations due to potential differences 
in preferences between groups, rendering it 
insufficient as a standalone fairness metric. 
Consequently, future research should consider 
comparing the sorted normalised item popularity 

distributions between groups. This will enable 
evaluation of item popularity distributions among 
groups and can potentially reveal if one user group is 
presented with a more diverse set of items, offering 
valuable insights into the extent of recommendation 
diversity. 

5 DISCUSSION & CONCLUSION 

Popularity bias in RecSys leads to inequality in 
treatment between users or user groups due to over-
recommendation of popular items. This bias arises 
from the disproportionate favouring of popular items 
leading to limited recommendation diversity and the 
potential exclusion of relevant but less popular items 
to certain users or groups. Therefore, it is important 
to quantify and track such biases in RecSys. 

The commonly used metrics to measure 
popularity bias in RecSys are Gini coefficient, Delta 
group average popularity (∆𝐺𝐴𝑃), and Generalized 
entropy index ( 𝐺𝐸𝐼 ). Gini coefficient has been 
deployed in more real-life dynamic setting which 
quantifies inequality in the distribution of item 
popularity scores over time (Chong & Abeliuk, 2019; 
Zhu et al., 2021). However, this metric has only been 
used at a global level thus undermining the 
emergence of popularity bias between sensitive user 
groups. 𝛥𝐺𝐴𝑃 , which measures the difference 
between the average item popularity in user group-
recommendations and the average item popularity in 
user group-profiles has only been used in literature in 
static setting (Abdollahpouri et al., 2019). Biases in 
RecSys generally creeps in over-time asymmetrically 
in user groups, therefore it is important to extend the 
application of 𝛥𝐺𝐴𝑃 not only to dynamic setting but 
also to the context of different sensitive user groups. 𝐺𝐸𝐼 has been used to measure popularity bias both at 
group levels and in dynamic setting, however, Gini 
coefficient and 𝛥𝐺𝐴𝑃 are more commonly used due 
to their interpretability.  

To consider the time evolution of popularity bias 
and its asymmetrical effects on different user groups, 
four new metrics have been proposed, namely, 
Within-group-Gini coefficient, Dynamic- 𝛥𝐺𝐴𝑃 , 
Between-group 𝐺𝐴𝑃 , and Group-cosine similarity. 
Within-group-Gini coefficient evaluates the equality 
in the distribution of item popularities thus measuring 
how diverse recommendations are over time between 
sensitive user groups. Additionally, a new 
methodology to compute  𝛥𝐺𝐴𝑃,  Dynamic-𝛥𝐺𝐴𝑃, 
has been proposed where recommendations provided 
to the user are based on unobserved interactions in 
contrast to the original proposal of Abdollahpouri et 
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al. (2019) and Kowald et al. (2020), in which users 
are recommended items from the testing data which 
they have already interacted with. The metric 𝐵𝑒𝑡𝑤𝑒𝑒𝑛𝐺𝑟𝑜𝑢𝑝 𝐺𝐴𝑃  measures popularity bias 
resulting from the over-recommendation of popular 
or non-popular items. The metric Group-cosine 
similarity aims to assess the frequency of item 
recommendations among different user groups, 
specifically examining whether both groups are 
recommended the same items in equal proportions 
and can provide additional insights into the level of 
between-group popularity bias in Recsys. 

The proposed metrics have been demonstrated 
using two commonly used datasets in academic 
research on RecSys, namely the MovieLens 1M 
dataset and the Yelp dataset with males and females 
as sensitive user groups. It is worthwhile to note that 
for a comprehensive understanding of time-evolution 
of popularity bias for different sensitive user groups 
in RecSys, it is advisable to use a combination of the 
metrics proposed in this paper. For example, as 
demonstrated in section 4, 𝐵𝑒𝑡𝑤𝑒𝑒𝑛𝐺𝑟𝑜𝑢𝑝 𝐺𝐴𝑃 
metric highlighted a growing disparity in treatment 
between males and females in the MovieLens dataset, 
whereas, Within-group-Gini coefficient metric 
revealed distinct trends in recommendation diversity 
among different RecSys models. It is also observed 
that the metric 𝐵𝑒𝑡𝑤𝑒𝑒𝑛𝐺𝑟𝑜𝑢𝑝 𝐺𝐴𝑃  demonstrates 
ability to differentiate between the fairness-
performance of the four algorithms used in this study. 

6 FUTURE WORK 

Future work involves implementing and evaluating 
the proposed metrics of popularity bias for more 
advanced deep-learning based RecSys systems to 
capture the complexity of industry-used models. 
Furthermore, additional approaches of the proposed 
metrics will be explored for their robust application, 
such as comparing sorted normalised item popularity 
distributions between different user groups to 
compute cosine similarity and finding an optimal 
method for incorporating 𝐺𝐴𝑃  in the calculation of 
Dynamic-𝛥𝐺𝐴𝑃 as discussed in section 5. 
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