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Abstract: Input transformation techniques have been proposed to defend against adversarial example attacks in image-
classification systems. However, recent works have shown that, although input transformations and augmen-
tations to adversarial samples can prevent unsophisticated adversarial example attacks, adaptive attackers can
modify their optimization functions to subvert these defenses. Previous research, especially BaRT (Raff et al.,
2019), has suggested building a strong defense by stochastically combining a large number of even individually
weak defenses into a single barrage of randomized transformations, which subsequently increases the cost of
searching the input space to levels that are not easily computationally feasible for adaptive attacks. While this
research took approaches to randomly select input transformations that have different transformation effects
to form a strong defense, a thorough evaluation of using well-known state-of-the-art attacks with extensive
combinations has not been performed. Therefore, it is still unclear whether employing a large barrage of
randomly combined input transformations ensures a robust defense. To answer these questions, we evaluated
BaRT work by using a large number (33) of input transformation techniques. Contrary to BaRT’s recommen-
dation of using five randomly combined input transformations, our findings indicate that this approach does
not consistently provide robust defense against strong attacks like the PGD attack. As an improvement, we
identify different combinations that only use three strong input transformations but can still provide a resilient
defense.

1 INTRODUCTION

Machine learning (ML) models, including deep neu-
ral networks (DNN), have been successfully applied
to a wide range of computer vision tasks (Zhang et al.,
2018; Ding et al., 2021; Tang et al., 2020; Ding et al.,
2023a; Zang et al., 2022; Ma et al., 2023; Liu et al.,
2020). Given the ubiquity of machine learning appli-
cations, the security aspects of machine learning mod-
els have become increasingly important (Tang et al.,
2024). However, studies have shown that attackers
can use adversarial examples, the samples of input
data slightly modified using an optimization proce-
dure, to cause the misclassification of machine learn-
ing models (Szegedy et al., 2013). This raises serious
concerns about the security of machine learning mod-
els in many real-world applications (Ding, 2022).

Developing strong defenses against adversarial
examples has been an important topic. While many
other techniques exist, a current focus is on model-
agnostic techniques, aiming to remove the adversarial
input perturbations from the input through different

(a) Original. (b) One input
transformation.

(c) Two input
transformations.

Figure 1: An sample image (a) from ImageNet that shows
the semantic value of the image will drop when more input
transformation techniques are applied to the image (b & c).

techniques of transforming the input (we call it in-
put transformation in this paper) (Guo et al., 2017).
Researchers have not only explored the robustness of
different single input transformation techniques, but
also proposed to use the ensemble of input transfor-
mations that can provide a stronger defense. Raff et
al. (Raff et al., 2019) showed that a computationally
stronger defense can be built by stochastically com-
bining a large number of individually input transfor-
mation defenses to form a series of input transfor-
mation ensembles, even defeating some adaptive at-
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tacks by increasing the computational cost of success-
ful adversarial examples to infeasible levels. How-
ever, this method has several drawbacks. First, it
trades off an increased inference run-time for clas-
sification accuracy as each additional transformation
is added to the ensemble. Second, it provides no
guarantee that the current transformation combina-
tion is effective against a strong attack such as EoT
attacks (Sitawarin et al., 2022). Third, as shown in
Figure 1, the semantic value of an image dramatically
changes when multiple input transformations are used
upon the image. We have also seen the research ef-
forts that aim to improve the model robustness us-
ing adversarial training (Tang et al., 2022). How-
ever, adversarial training is not computationally ef-
ficient on large and complex datasets, and the model
robustness is not effective for larger image perturba-
tions (Shafahi et al., 2020). Using input transforma-
tion ensembles against adversarial examples remains
an effective method to enterprise users, because it can
easily be introduced into a Machine Learning as a
Service (MLaaS) pipeline without large architectural
changes (Ding et al., 2023b).

To assess the effectiveness of diverse input trans-
formation ensembles in enhancing defense capabil-
ities while minimizing computational expenses and
preserving image semantics, we collected 33 input
transformation techniques published recently. Sub-
sequently, we conducted a comprehensive evaluation
of these ensembles, following the methodology out-
lined in BaRT, pinpointing those ensembles that de-
liver robust defense at a reduced number of transfor-
mations. The attacks we used to assess input trans-
formations and their ensembles include both state-
of-the-art white-box attacks and adaptive attacks de-
signed to evade input transformation techniques.

Overall, our contributions are as follows:

• We rigorously assessed the effectiveness and ro-
bustness of 33 input transformation techniques
proposed in recent studies. This evaluation in-
volves testing their performance against various
adversarial examples generated through white-
box and adaptive attacks on CIFAR-10 and Im-
ageNet image datasets.

• We designed and implemented an automated
framework to empirically evaluate BaRT’s ap-
proach, which advocates for building a robust de-
fense strategy by using a barrage of randomly
combined input transformation techniques.

• We analyzed the effectiveness of each combina-
tion of transformations and advanced the work by
providing insights and recommendations for con-
structing a computationally efficient but strong

defense against adversarial examples. Our contri-
bution is using three strong input transformation
ensembles.

The rest of the paper is organized as follows. Sec-
tion 2 provides background knowledge and related
work. Section 3 outlines the implementation of code
and the experimental setup used to evaluate input
transformations against adversarial examples. In Sec-
tion 4, we present our analysis of experimental results
and engage in a discussion on how we established a
computationally efficient but strong defense by iden-
tifying ensembles comprising three robust input trans-
formations. Section 5 concludes the paper.

2 BACKGROUND KNOWLEDGE
AND RELATED WORK

This section provides the background knowledge and
related work of adversarial examples and input trans-
formations.

2.1 Adversarial Examples

Adversarial examples are inputs algorithmically gen-
erated by attackers’ applying small but intentionally
worst-case perturbations to examples from an image
dataset, so that a machine learning model can mis-
classify the perturbed images. Existing adversarial
attacks can be categorized into white-box and black-
box attacks. While, in a white-box attack, an adver-
sary has full knowledge of the target model, including
the model architecture and parameters, in a black-box
attack, the adversary can only resort to query accesses
to generate adversarial samples. In addition, a white-
box attack is considered an adaptive attack if the at-
tacker is aware of the defense methods and adapts the
attack accordingly (He et al., 2017).

Adversarial examples can be targeted and untar-
geted. While The targeted attacks are the attacks
misguiding the model to a particular class other than
the true class, the untargeted attacks are the attacks
misguiding the model to predict any of the incorrect
classes. Besides, there are four distance metrics, L0,
L1, L2, or L∞, denoting how close an adversarial ex-
ample needs to be to the original image so that it can
keep its semantic value to “fool” a human observer.

2.2 Existing Methods for Generating
Adversarial Examples

(Szegedy et al., 2013) discovered that machine learn-
ing models are vulnerable to adversarial examples,
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other researchers have extensively studied the ap-
proaches to generating adversarial examples. Good-
fellow et al. proposed a Fast Gradient Sign Method
(FGSM), a typical one-step attack algorithm to inject
noise into a benign image to cause input misclassi-
fication. (Kurakin et al., 2018) extended FGSM to
a multi-step attack algorithm named as Basic Itera-
tive Method (BIM) by applying FGSM multiple times
with a small step size and clipping pixel values of
the intermediate results after each step. As a vari-
ant of BIM, (Madry et al., 2017) proposed to con-
strain the adversarial perturbations by projecting the
adversarial sample learned from each iteration into
the L∞ε-neighbood of a benign sample. All three at-
tacks, FGSM, BIM and PGD, are untargeted attacks.
To achieve a specific targeted adversarial goal, (Pa-
pernot et al., 2016) proposed using Jacobian Saliency
Map Approach (JSMA) to compute a direct mapping
from the input to the output. This approach uses L0
form and is a targeted attack. Using L0, L2 and L∞

norms, Carlini and Wagner introduced three gradient
descent based targeted attacks that have more effec-
tive adversarial success rates than previously known
adversarial attacks (Carlini and Wagner, 2017b). All
the above attacks are white-box attacks, which rely
on detailed model information including the gradient
of the loss with regard to the input. To have an at-
tack that is applicable to real-world black-box mod-
els, Brendel et al. proposed a computationally expen-
sive decision-based adversarial attack (Brendel et al.,
2017), in which the algorithm starts from an adver-
sarial example xadv, and then performs random walks
toward the boundary between the adversarial and non-
adversarial images such that the distance L is mini-
mized.

2.3 Input Transformation Techniques
and Related Work

Defense against adversarial attacks is broadly clas-
sified into proactive (e.g., adversarial training, addi-
tional regularization) and reactive (e.g., input trans-
formation, gradient masking) methods. While proac-
tive defenses enhance DNN model robustness, reac-
tive defenses identify adversarial examples in model
inputs (Wang et al., 2020). As a reactive defense
method, input transformations exploit the observa-
tion that small transformations to adversarial attack
inputs can often recover the desired classification. Be-
cause they are relatively easy to be introduced into
machine learning pipelines without large architectural
changes, input transformations are appealing as a so-
lution to adversarial examples.

Researchers proposed different input transforma-

tion techniques against adversarial examples. Feature
squeezing, including color bit depth reduction and
spatial smoothing, was suggested by Xu et al. (Xu
et al., 2017) to detect adversarial examples. Xie
et al. (Xie et al., 2017) used random padding that
pads zeros around the input images to defend against
adversarial examples. (Prakash et al., 2018) com-
bined two novel techniques, including pixel deflec-
tion that randomly replaces some pixels with selected
pixels from a small neighborhood and adaptive soft-
thresholding that smooths adversarially-perturbed im-
ages, to reduce the effects of attacks. (Luo and Pfister,
2018) constructed a Variational Autoencoder(VAE)
that maps a high-dimensional feature vector to a
lower-dimensional latent vector and then incorporates
randomness before mapping it back to the original
feature space to defeat adversarial examples.

Many of these defenses have subsequently been
broken by adaptive attacks in the white-box threat
models. These methods include incorporating the
input transformation defense into the adversary’s
search procedure (Carlini and Wagner, 2017a) or ap-
proximating the obfuscated gradients that have been
masked to make it hard for the adversary to gen-
erate an adversarial example (Athalye et al., 2018).
Even for those defenses used in conjunction with each
other, (He et al., 2017) argued that two combined de-
fenses still have a large search space to find an ad-
versarial example that fits the adaptive constraints. To
enhance the robustness of defenses, Raff et al. showed
it is possible to construct a “computationally” strong
defense if the number of single input transformation
defenses is large and the combination is created in a
randomized fashion (RT defense) (Raff et al., 2019).
However, this method comes at a cost of an increased
runtime and dramatically changes the image’s seman-
tic value as the number of the combined input trans-
formations is suggested larger than 4. Also, Sitawarin
et al. (Sitawarin et al., 2022) argued that the adap-
tive attack, Backward Pass Differentiable Approxima-
tion (BPDA), used to test the RT defense in Raff’s
work (Raff et al., 2019) is not sufficiently strong.
Thus, the RT defense composed of 5 input transfor-
mations, as suggested in (Raff et al., 2019) does not
necessarily provide a good defense against a strong
start-of-the-art attack.

3 EXPERIMENTAL SETUP

In this section, we describe our experimental setup
for evaluating the BaRT’s approach of using random
input transformation ensembles to construct a strong
defense.
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Table 1: The 33 Input Transformations in 9 Groups.

Group Input Transformation Abbreviation in Our Experiements (Section 4)
Color precision reduction Color reduction color reduction

Noise injection JPEG, Gaussian, Poisson, jpeg, noise gaussian, noise poisson,
Speckle, Salt, Pepper and Salt, Pepper noise speckle, noise salt, noise sp, noise pepper

Swirl Swirl swirl
Fast Fourier Transform FFT Perturbation fft
(FFT) perturbation
Zoom Random zoom, Random padding, Seam Carving expansion rescale, padding, seam
Color space HSV, XYZ, LAB, YUV hsv, xyz, lab, yuv

Contrast Histogram equalization, equalize,
Adaptive histogram equalization, Contrast stretching adap equalize, contrast stretch

Grey scale Grey scale mix, Grey scale partial mix, grey mix, grey partial,
2/3 grey scale mix, One channel partial grey greyscale, onechannel

Denoising
JPEG compression, Gaussian blur, Median filter, jpeg bart, gaussian blur, medianfilter,
Mean filter, Mean bilateral filter, Chambolle denoising, mean filter, mean bi filter, chambolle,
Wavelet denoising, No-local means denoising, Wiener filter wavelet ran, nonlocal mean ran, wiener filter

Table 2: Strong and Weak Input Transformations for FGSM and Carlini/Wagner on CIFAR-10.

Attack Defense Effectivess 4 Selected Transformations

FGSM Strong wiener filter, mean filter, medianfilter, chambolle
Weak color reduction, lab, mean bi filter, yuv

Carlini/Wagner Strong chambolle, mean filter, medianfilter, padding
Weak color reduction, lab, yuv, nonlocal mean ran denoising

3.1 Adversarial Attacks

We chose a variety of adversarial example attacks to
generate adversarial examples. They are Fast Gra-
dient Sign Method (FGSM) (untargted, L∞), Pro-
jected Gradient Descent (PGD) (untargeted, L∞),
Carlini/Wagner Attacks (targeted, L0, L2, L∞), and
BPDA, which include not only the common baseline
attacks, but also the benchmark attacks such as the
BPDA attack used in BaRT.

3.2 A Large Collection of Input
Transformation Techniques

Our objective is to assess the effectiveness of BaRT’s
approach (Raff et al., 2019), and develop efficient yet
robust input transformation ensembles tailored for en-
terprise users. To achieve this, we have gathered and
implemented 33 input transformations, encompass-
ing all techniques employed in BaRT. These trans-
formations were categorized into nine groups, as de-
tailed in Table 1, using (1) reducing the bit depth
of each color pixel, (2) introducing noise, (3) rotat-
ing pixels, (4) perturbing images, (5) resizing and
padding, (6) adding random constant values, (7) en-
hancing contrast, (8) transforming RGB-colored im-
ages to grayscale, and (9) eliminating semantically ir-
relevant regions in images, to defend against adver-
sarial examples.

3.3 Program Implementation and
Experimental Environment

Dataset and Model. We chose to use CIFAR-10 and
ImageNet, and pre-train deep neural network (DNN)
model architectures, Carlini for CIFAR-10 and Incep-
tionV3 for ImageNet, to evaluate the effectiveness of
each input transformation ensemble against the ad-
versarial examples. The mean confidence of the two
DNN models in predictions on legitimate examples
are 77.96% and 76.276% respectively.
Adversarial Example Generation Methods.
We leveraged the code from cleverhans, Madry
Lab (PGD-Attack, ), Carlini nn robust attacks (Ro-
bustML, ) to implement the attack approaches
described in 3.1. Specifically, we implemented white
box attacks FGSM with ε = 0.01, 0.05, 0.1, PGD
L∞, Carlini/Wagner L0,L2,L∞ with target = next, and
BPDA.
Input Transformation Implementation. We imple-
mented all input transformation methods by using
Python and standard imports including numpy and
skimage from Python libraries. All transformation
functions take an array of size 32×32×3 for CIFAR-
10 images and size 299× 299× 3 for ImageNet im-
ages as input.
Detection Method. We adopted the detection method
mentioned in (Xu et al., 2017) to evaluate the effec-
tiveness of input transformations and their ensembles
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against the adversarial examples. The key idea is to
compare the pre-trained ML model’s prediction on an
original input example with its prediction on the trans-
formed input example. If the transformed input pro-
duces a substantially different output from the origi-
nal input, the system classifies the input image as an
adversarial example.
Experiment Environment. We conducted our ex-
periments on a NVIDIA DGX-1 server featuring 8
P100 GPU accelerators, dual socket Intel Xeon CPUs
(512GB DDR4-2133 RAM), and four 100Gb Infini-
Band network interface cards.

4 COMPUTATIONALLY
EFFICIENT BUT STRONG
DEFENSE CONSTRUCTION

In this section, we show a thorough analysis of the de-
tection rates obtained from our experiments, and dis-
cuss how we utilize the analysis results to construct a
computationally efficient defense.

4.1 Initial Observation of the
Experiment Results

As the first step of our experiment, we evaluated the
detection rates of the following input transformations
and their ensembles against both pre-trained models
as mentioned in 3.3.

1. Each of the 33 input transformation techniques.

2. The ensembles of any two of the 33 input trans-
formations.

3. The ensembles of any five of the 33 input transfor-
mations. Each of them is randomly chosen from
five different groups.

We have executed the program on numerous oc-
casions, accumulating a substantial dataset that com-
prised 48,000 detection rates. Our analysis shows:

1. The same input transformation technique provides
different detection rates against different attacks.

2. A small number of transformations, such as adap-
tive histogram equalization, are stronger than
many other transformations, which provide strong
defenses against most attacks.

3. Most ensembles of input transformations provide
stronger defenses as the number of input transfor-
mations increases. However, it is not always true
that an ensemble composed of more input trans-
formations (a longer ensemble) certainly provides

a stronger defense than ensembles composed of
fewer input transformations (a shorter ensem-
ble). Many shorter ensembles provide stronger
defenses than some longer ensembles.

4. PGD attack is a stronger attack than BPDA that
was used as a strong attack in the BaRT paper.
In our testing, where we subjected input trans-
formation ensembles to PGD L∞ attack on a pre-
trained Inception V3 model, 9% of them exhibited
a detection rate of 0, while 32% had a detection
rate below 50%. Notably, certain ensembles with
such low detection rates were constructed using
five or more transformations (i.e. JPEG compres-
sion, FFT Perturbation, YUV, Gaussian, Color
Reduction). This underscores that employ an in-
put transformation ensemble, as outlined in BaRT,
does not inherently ensure a robust defense.

4.2 A Further Analysis of the Input
Transformation Ensembles

We further refined our experiment to delve into con-
structing a defense that is both computationally effi-
cient and robust.

In this phase, we employed two types of attacks–
FGSM ( ε = 0.01, 0.05, 0.1) and Carlini/Wagner (L∞

with target = next)– on the pre-trained Carlini model
for defense analysis. Initially, each of the 33 input
transformations underwent 100 iterations against the
two attacks. The four strongest and weakest defenses
(detailed in Table 2) were selected from the results.
Subsequently, we combined these defenses in various
ways—pairing strong with strong, weak with weak,
strong with weak, three strong, and two strong with
one weak—and tested them against the two attacks.
Our key findings include: (1) Ensembles outperform
individual transformations in detection rates; (2) Two
strong ensembles surpass both two weak ensembles
and mixed strong-weak ensembles; (3) The order of
strong and weak transformations in an ensemble af-
fects the detection rate minimally; (4) Ensembles with
three strong transformations exhibit the strongest de-
fenses; (5) Once an ensemble is sufficiently strong,
adding another strong or weak transformation yields
marginal improvement in detection rates.

Our analysis is presented with sample results in
Table 3, 4, 5 and Figure 2 and 3. Table 3 dis-
plays detection rates for random combinations of any
two of the four strong defenses. Table 4 shows de-
tection rates for random combinations of any two of
the four weak defenses. Table 5 illustrates the de-
tection rates for combinations of one weak and one
strong defense. By comparing the ”Lowest,” ”Aver-
age,” and ”Highest” rows in these tables, it’s evident
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Table 3: Detection Rates of Combining Two High Detection Rate Input Transformations against FGSM Attack on Carlini.

chambolle
mean filter

chambolle
medianfilter

chambolle
wiener filter

mean filter
medianfilter

mean filter
wiener filter

medianfilter
wiener filter

Lowest 0.9189 0.9189 1.0000 0.9394 1.0000 1.0000
Average 0.9531 0.9477 1.0000 0.9857 1.0000 1.0000
Highest 0.9697 0.9697 1.0000 1.0000 1.0000 1.0000

Table 4: Detection Rates of Combining Two Low Detection Rate Input Transformations against FGSM Attack on Carlini.

color reduction
lab

color reduction
mean bi filter

color reduction
yuv

lab
mean bi filter

lab
yuv

mean bi filter
yuv

Lowest 0.2703 0.2414 0.3448 0.3333 0.3448 0.3333
Average 0.3036 0.3502 0.3873 0.3899 0.3795 0.4208
Highest 0.3243 0.4324 0.4595 0.4483 0.4483 0.5135

Table 5: Detection Rates of Combining One Low and One High Detection Rate Input Transformations against FGSM Attack
on Carlini Model.

color reduction
chambolle

color reduction
mean filter

color reduction
medianfilter

color reduction
wiener filter

lab
chambolle

lab
mean filter

lab
medianfilter

lab
wiener filter

Lowest 0.8788 0.9394 0.9091 0.9394 0.6970 0.9394 0.9091 0.9310
Average 0.9195 0.9567 0.9386 0.9446 0.8399 0.9628 0.9325 0.9377
Highest 0.9394 0.9697 0.9697 0.9655 0.9394 0.9697 0.9697 0.9394

Table 6: Computational Cost for Input Transformation Samples.

Model Dataset Attack Input Transformation
Color
Reduction

JPEG
Compression Swirl Ensemble of

the left three
Carlini CIFAR10 FGSM with ε= 0.1 0.00070116s 0.00161086s 0.00140541s 0.00371743s
Carlini CIFAR10 PGD 0.00073265s 0.00168865s 0.001410549s 0.00383185s
Inception V3 ImageNet PGD 0.01312977s 0.07952243s 0.045536399s 0.13818860s

that the two strong input transformation ensembles
in Table 3 offer stronger defenses than those in Ta-
ble 4 (two weak ensembles) and Table 5 (mixed weak
and strong ensembles). Figure 2 depicts sample de-
tection rates for combinations of two strong and one
weak input transformation, and Figure 3 shows sam-
ple detection rates for combinations of three strong
input transformations (to include more results, in ad-
dition to using the four strong input transformations
in Table 2, we added one more strong input trans-
formation,“rescale”, and used box plots to show the
detection rates). Notably, Figure 2 reveals that com-
binations of two strong and one weak input transfor-
mation techniques have higher detection rates than
corresponding subsets of two strong ones in Table 3.
However, they exhibit weaker defenses than the three
strong input transformation ensembles shown in Fig-
ure 3.

To construct computationally efficient input trans-
formation ensembles, we assessed the computational
cost (i.e., run time) of each input transformation and
their ensembles. Table 6 highlights that the compu-
tational expense for the same input transformations,
when used against attacks in the ImageNet dataset, is

significantly higher compared to those in the CIFAR-
10 dataset. Additionally, the computational time of
an ensemble rises with the number of input trans-
formations. Our analysis indicates the computational
time is primarily influenced by image size, the trained
model, and the number of the input transformations.
Specifically, applying an input transformation tech-
nique to an ImageNet image takes longer than ap-
plying it to a CIFAR-10 image. Furthermore, a more
extensive input transformation ensemble on the same
image incurs higher computational costs, given the
sequential execution of each transformation function.
Importantly, the computational time for each transfor-
mation among our 33 collected techniques, applied to
the same dataset and pre-trained model, exhibits min-
imal variation.

4.3 Sample Computational Efficient but
Strong Defense

Based on the preceding analysis, we draw the con-
clusion that ensembles consisting of three strong im-
age input transformations effectively balance compu-
tational efficiency with robust defense. To verify this
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Figure 2: Detection Rates of Three Combined Input Transformations with Two High and One Low Detection Rates against
FGSM Attack on Carlini Model.

mean_filter
medianfilter

chambolle

mean_filter
medianfilter
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mean_filter
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Figure 3: Detection Rates of Three Combined Input Transformations with High Detection Rates against FGSM Attack on
Carlini Model.

conclusion, we conducted additional experiments,
initially testing all three input transformation ensem-
bles derived from the five selected strong transforma-
tions (including ”rescale” and the other four listed
in Table 2) against various FGSM, Carli/Wagner,
and PGD attacks on the pre-trained Carlini model.
Among the 70 results, only 5 instances involving three
ensembles demonstrated detection rates between 96%
and 98%, while all others achieved a 100% detec-
tion rate. We replicated these experiments on Im-
ageNet with pre-trained Inception V3 and ResNet-
50 models, obtaining similar results. This reaffirms
that ensembles comprising three strong input trans-
formations provide robust defenses (nearly 100% de-
tection rate) against state-of-the-art adversarial exam-
ples. In contrast to using ensembles of five random
input transformations as proposed in the BaRT paper,
which may not consistently achieve high detection
rates (some falling below 50%, as discussed in sec-
tion 4.1) and involves longer computational time, our
method ensures a strong defense with reduced com-
putational cost and enhanced semantic value.

5 CONCLUSION

In this work, we assess the effectiveness of using input
transformation ensembles to defend against state-of-
the-art adversarial attacks. To comprehensively eval-

uate the widely held belief that an extensive barrage
of input transformations ensures robust defense, we
collected 33 input transformation techniques covering
nearly all known methods. We systematically tested
these techniques in various ensembles against state-
of-the-art attacks—FGSM, PGD, Carlin/Wagner, and
BPDA—considered the strongest benchmark attack,
on both CIFAR-10 and ImageNet datasets. Our find-
ings reveal two key insights: (1) PGD emerges as
the strongest attack among state-of-the-art adversar-
ial examples; (2) a large ensemble, as proposed in
BaRT (five transformations), does not guarantee ro-
bust defense. Instead, our experiments demonstrate
that three strong input transformation ensembles of-
fer a computationally efficient yet strong defense.
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