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Abstract: Chronic pain is a complex and personal condition that imposes a substantial burden on both individuals and 
society. Potentially, wearable technology could enable continuous monitoring of pain in real-world settings, 
offering insights into the complex relationship between physiological states and chronic pain. In this pilot 
study, we evaluated the practicability of collecting physiological data, from ten individuals with chronic pain 
and ten healthy controls, using wearable wristbands and digital pain diaries for one week in their everyday 
lives. Additionally, we trained various machine learning classifiers to classify pain levels and evaluated which 
feature modalities, e.g., heart rate-derived features, yielded the highest balanced accuracy. Our results 
demonstrated satisfactory data quantity, with wristband data being available for patients and controls 
approximately 92% to 82% of the time, and data quality, with high-quality physiology ranging from 80% to 
72% for the respective groups. The median balanced accuracies in distinguishing pain intensity classes ranged 
between 0.27 and 0.40. Furthermore, we found that individual modalities did not outperform the combined 
modalities. Nonetheless, further research with larger sample sizes is necessary to elucidate these relationships 
and improve pain management strategies for individuals with chronic pain. 

1 INTRODUCTION 

Pain is defined by the International Association for 
the Study of Pain (IASP) as “An unpleasant sensory 
and emotional experience associated with, or 
resembling that associated with, actual or potential 
tissue damage.” Chronic pain is pain that persists or 
reoccurs for minimally three months and affects about 
20% of the global population (IASP, 2018). It is 
characterized by pronounced emotional distress, e.g., 
anxiety, and a decline in functional ability (ICD-11, 
2023). Furthermore, chronic pain is associated with 
significant productivity loss and increased healthcare 
costs (Mayer et al., 2019).  

Pain can be assessed by using verbal self-report, 
questionnaire-based self-report, or physiological 
signal monitoring (Fernandez Rojas et al., 2023). 
Among these approaches, verbal self-report is the 
gold standard in clinical assessment due to its 
simplicity and speed, although it relies on the 
patient’s memory. To mitigate recall bias, 
questionnaire-based self-reports like pain diaries or 

ecological momentary assessment (EMA) enable 
prolonged pain tracking (Gendreau et al., 2003). 
However, a trade-off exists between comprehending 
pain dynamics and the effort needed to complete the 
questionnaire. Alternatively, pain could be monitored 
by physiological signals. This approach assumes that 
acute pain triggers a physiological stress response, 
characterized by an increase in sympathetic autono-
mous nervous system (ANS) activation and a decrease 
in parasympathetic ANS activation. Consequently, 
observable changes such as increased heart rate (HR), 
increased skin conductivity (SC), elevated blood 
pressure, and muscle tension occur (Koenig and 
Thayer, 2016). Some of these physiological 
parameters, like SC and HR, can be monitored using 
wearable sensors (Storm, 2008; Loggia et al., 2011). 
However, it is important to note that these physiolo-
gical signals are not exclusive to pain but also correlate 
with other types of arousal (Schmidt et al., 2019). 

Existing research has indicated that patients with 
chronic pain often exhibit a dysregulation of the ANS, 
characterized by increased tonic sympathetic activity 
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and/or decreased parasympathetic tone (Koenig et al., 
2016). Nevertheless, the robustness of this evidence 
varies depending on the specific type of chronic pain 
(Wyns et al., 2023). Furthermore, there is evidence 
for a blunted physiological stress response after active 
psychosocial, mental, or physical stress induction in 
patients with chronic pain (Nilsen et al., 2007; Van 
Middendorp et al., 2013; Coppens et al., 2018), which 
indicates reduced autonomic flexibility and 
adaptability (Reyes del Paso et al., 2021). The extent 
of the blunting varies depending on the type of 
chronic pain and is most pronounced in chronic 
widespread pain, while other types exhibit moderate or 
even absent blunting. Moreover, the exact 
physiological and biological mechanisms between the 
stress response and pain remain unknown (Wyns et al., 
2023). 

The monitoring of acute pain using physiological 
signals has already been researched. For example, 
thermal heat pain (Jang et al., 2012; Gruss et al., 2015; 
Lopez-Martinez and Picard, 2018; Thiam et al., 2019; 
Werner et al., 2019; Kong et al., 2021; Gouverneur et 
al., 2023), electrical pain (Jiang et al., 2019; Werner 
et al., 2019; Kong et al., 2021), and pressure pain 
(Jang et al., 2012) have been modeled with random 
forests, support vector machines, neural networks, 
and deep learning models. These models obtained 
accuracies between 37-61% for 4- or 5-class pain 
classification, 63-83% for 3-class pain classification, 
74-94% for binary pain classification (Gruss et al., 
2015; Walter et al., 2015; Lopez-Martinez and Picard, 
2018; Jiang et al., 2019; Thiam et al., 2019; Werner 
et al., 2019; Kong et al., 2021; Gouverneur et al., 
2023), and an R² between 0.24-0.46 for regression 
(Lopez-Martinez and Picard, 2018; Kong et al., 2021) 
in a healthy population and controlled settings.  

There are, to the best of our knowledge, no 
previous studies that looked at daily-life pain 
modeling based on wristband-captured physiological 
data in patients with chronic pain as the primary 
complaint. However, pain intensity has been 
previously classified with 72.9% accuracy using 
about 4 hours of physiological data, captured with the 
Microsoft band 2, in 20 patients with sickle cell 
anemia during a visit to the hospital. More 
specifically, pain was questioned via an application 
and additionally evaluated by an experienced nurse 
(Johnson et al., 2019). More recently, Stojancic et al. 
(2023) obtained an accuracy of 84.5% for classifying 
pain in patients with sickle cell anemia during a vaso-
occlusive crisis with a random forest model based on 
physiological data captured with an Apple watch of 
about 2 hours. Finally, Moscato et al. (2022) 
monitored pain in 21 patients with cancer with an 

Empatica E4 wristband during virtual reality sessions 
for four days in their daily lives and obtained an 
accuracy of 73% for pain classification. 

The objectives of the present study were two-fold. 
First, this study aimed to evaluate the practicability, 
i.e., the quantity and quality, of recording 
physiological signals with a wearable wristband, in 
conjunction with a digital pain diary, within the daily 
lives of patients with chronic pain. Given the 
heightened sensitization and notable fatigue 
frequently experienced by these patients, evaluating 
the practicality of this approach was important. 
Secondly, we wanted to explore the classification of 
acute pain intensity using wearable technology and 
evaluate the relevance of the different feature 
modalities as wearable sensors could provide a 
convenient, non-invasive, and cost-efficient method 
to monitor pain in daily life.  

2 METHODS 

2.1 Data Collection 

This observational pilot study collected physiological 
and pain diary data of ten patients with chronic pain 
and ten healthy controls for 7 consecutive days from 
September 2021 until November 2022. Patients were 
recruited at the Psychiatry department of the 
University Hospital of Leuven and included in their 
second week of the functional disorders and somatic 
mental disorders treatment program. Healthy controls 
were recruited using flyers. The study criteria 
required participants to be aged between 18 and 65 
years, and patients required a diagnosis of chronic 
pain. Healthy controls were excluded if they had any 
functional, somatic, or psychiatric disorders, or if 
they were taking medications that specifically 
targeted the nervous system. Patients were excluded 
if they were taking sympathomimetic drugs, 
benzodiazepines, or if they had endocrinological or 
neurological disorders known to influence the 
physiological stress response. Initially, 23 
participants were recruited. However, one patient 
dropped out because they stopped treatment at the 
hospital. Furthermore, two healthy controls dropped 
out due to technical issues with the Empatica E4 
(Empatica, Milano, Italy). The trial was approved by 
the Ethical Committee of the UZ Leuven (S65126). 

The study consisted of an intake session, in which 
the informed consent was signed, eligibility criteria 
were checked, demographic information was 
collected, multiple questionnaires were completed, 
and participants were briefed regarding the 
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ambulatory monitoring. Specifically, participants 
completed the Positive Negative Affect Scale 
(PANAS), the Patient Health Questionnaire (PHQ) 
containing the PHQ somatic symptom severity scale 
(PHQ-15), the PHQ depressive symptom severity 
scale (PHQ-9), and the Generalized Anxiety Disorder 
scale (GAD-7), the Pain Sensitivity Questionnaire 
(PSQ), the International Physical Activity 
Questionnaire (IPAQ), the Pittsburgh Sleep Quality 
Index (PSQI), and the 4-dimensional symptom 
questionnaire (4DSQ) (Buysse et al., 1989; Craig et 
al., 2003; Engelen et al., 2006; Terluin et al., 2008; 
Donker et al., 2011; De Vroege et al., 2012; Van 
Steenbergen-Weijenburg et al., 2015; Van Boekel et 
al., 2020). The total scores of the questionnaires were 
used to characterize the study population and detect 
potential confounders. During the 7 days of 
ambulatory monitoring, participants continuously 
wore the Empatica E4 wristband on their non-
dominant wrist, with exceptions for showering, 
charging the wristband, or synchronizing the data. 
The Empatica E4 monitors photoplethysmography 
(PPG) at 64 Hz, electrodermal activity (EDA) at 4 Hz, 
skin temperature at 1 Hz, three-axis accelerometery 
(ACC) at 32 Hz, and the HR from the PPG signal at 
1 Hz. Additionally, the participants received a pain 
diary prompt every hour between 8 a.m. and 10 p.m. 
on their smartphones via m-Path (Mestdagh et al., 
2022). The diary involved reporting momentary and 
hourly pain and stress levels on an 11-point numeric 
rating scale (NRS) scale, their activity level (1: lying, 
2: sitting, 3: standing, 4: walking, 5: cycling, 6: 
running), and the location of their pain (open 
question) if applicable. During the briefing, the 
participants were instructed to complete the diary 
promptly. However, to prevent disruption of therapy 
sessions for the patients, participants were given an 
hour to complete the diary (Schultchen et al., 2019). 

2.2 Pre-Processing 

Data preprocessing and feature extraction procedures 
were conducted to ensure the quality of the collected 
data. First, non-wear windows, in which the device 
was on but was not worn, were identified and 
removed. Non-wear detection occurred in rolling 
two-second windows with a one-second step and was 
empirically based on a combination of stationary 
ACC (maximum difference lower than 0.1 g), low 
EDA (median lower than 0.1 µS), and changing skin 
temperature (mean absolute difference larger than 
0.003°C).  Subsequently, segments containing at least 
5 minutes of consecutive non-wear sub windows were 
removed to minimize the occurrence of false positives. 

Next, the EDA signal was processed as 
ambulatory EDA accommodates various types of 
artifacts. Therefore, EDA was filtered using a 3rd-
order Savitzky-Golay (savgol) filter applied in 1-
second windows (Thammasan et al., 2020). 
Additionally, for flat segments, which were 
empirically defined as 5-second windows where 80% 
of data points exhibited a difference smaller than 0.01 
μS with their adjacent data points, a 2nd-order savgol 
filter was applied to prevent overfitting in these 
specific regions. Then, EDA quality was assessed in 
rolling 5-second windows with a 1-second step, 
employing an EDA-quality indicator developed 
through transfer learning based on Gashi et al. (2020) 
(Pattyn et al., 2023). EDA was afterward decomposed 
into the phasic, driver, and tonic components using 
Ledapy (Filetti, 2020) in 5-minute high-quality 
windows, defined as having an average quality higher 
than 80%. Before decomposition, low-quality 
segments in high-quality windows were removed and 
reconstructed by linear interpolation based on Pattyn 
et al. (2023b). Additionally, SC responses were 
detected in both the EDA and the phasic component, 
using the response detector within EDAexplorer 
(Taylor et al., 2015) with the minimal amplitude 
threshold set to 0.02 µS.  

Finally, a quality indicator for the PPG-derived 
HR signal was computed as the PPG signal is also 
susceptible to motion artifacts. The quality indicator 
is based on the agreement of two internally retrained 
and validated HR estimation algorithms: one in the  
 

Table 1: Overview of the extracted features per data 
modality. 

Signal Features 

HR from PPG Mean, median, std, IQR, min, max, 
range, mean slope per minute, coverage

EDA Mean, median, std, IQR, min, max, 
range, mean slope per minute, 
coverage, responses per minute, 
response amplitude, response width. 

Phasic Mean, median, std, IQR, min, max, 
range, responses per minute, response 
amplitude, response width 

Tonic, driver Mean, median, std, IQR, min, max, 
range 

Skin 
temperature 

Std, mean slope per minute, quality 

ACC 
ACC magnitude

Mean, std, median, range 
 

Pain diary Momentary pain, momentary stress, 
hourly pain, hourly stress 

Demographic 
information 

Age, gender, BMI 
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time domain (Fedjajevs et al., 2021) and one in the 
frequency domain (Temko, 2017). Before HR 
estimation, the PPG signal was filtered with a finite 
impulse response low-pass filter. The threshold for 
high quality was empirically set to an average SQI of 
at least 50%. The ACC magnitude was calculated as 
the square root of the sum of the squared signals from 
the x, y, and z-axes and its standard deviation was 
considered as an activity index (Smets et al., 2018). 

2.3 Feature Extraction 

To investigate if momentary pain is related to 
momentary physiology, we centered and scaled the 
signals within each participant, removed low-quality 
EDA and HR data in 5-second windows, and 
extracted features from the signals captured 10 
minutes before the pain diary prompts (Table 1) (Can 
et al., 2019; Schultchen et al., 2019). Prompts 
containing less than 50% high-quality data were 
excluded from the analysis to improve the data’s 
reliability and enhance the model’s accuracy in 
capturing meaningful patterns related to pain. The 
EDA, tonic, and phasic features, with a right-skewed 
distribution, were logarithmically transformed and 
added to the feature dataset. 

2.4 Data Analysis 

Data were statistically modeled using R (R-4.2.0). To 
assess differences between data collection-related 
variables between patients and healthy controls, we 
first used a Shapiro-Wilk test to check for a Gaussian 
distribution. If the Shapiro-Wilk test was significant 
(p-value<0.05), the median, interquartile range 
(IQR), and Wilcoxon signed rank test output (W) 
were reported. Otherwise, the mean, standard 
deviation (SD), and t-test output (t) were reported. 

Moreover, using the physiological and pain diary 
features as input, we explored the classification of 
pain by training a Random Forest (RF), XGBoost 
(XGB), Supported Vector Machine classification 
(SVM), k-nearest neighbors (kNN), and logistic 
classification model as these classifiers have been 
proven to be effective in previous research (Lopez-
Martinez and Picard, 2018; Gouverneur et al., 2023). 
Before modeling, we reclassified pain into four 
intensity classes: no pain (NRS: 0), mild pain (NRS: 
1-3), moderate pain (NRS: 4-6), and high pain (NRS: 
7-10) to improve class balance (Table 2) (Johnson et 
al., 2019; Treede et al., 2019). Furthermore, we 
removed features that had a positive or negative 
correlation higher than 0.95 with other features before 
training the classifiers and standardized the remaining 

features (Gruss et al., 2015). All classifiers were 
trained using the scikit-learn library in Python 3.8.10. 
Within the training phase, the model hyperparameters 
(Table 3) were optimized using 5-fold cross-
validation. To test the trained classifiers, we opted for 
leave-one-subject-out cross-validation and evaluated 
the classifier’s performance on the test data using 
both accuracy and balanced accuracy. The test scores 
were summarized independently for the tested patient 
and the healthy control group, as well as for both 
groups combined. 

Table 2: The class distribution within the patient, healthy 
control, and both groups. 

Number of 
data points 

No 
pain 

Mild 
pain 

Moderate 
pain 

Severe 
pain 

Total 

Patients 29 168 285 184 666 
Healthy 
controls 

402 78 3 0 483 

Total 431 246 288 184 1149 

Table 3: Chosen hyperparameter ranges per classifier. 

Model Hyperparameters 

RF criterion: gini, entropy – min_samples_split: 
2, 4, 8 – n_estimators: 20, 50, 100, 200 

XGB learning_rate: 0.1, 0.01, 0.05 – max_depth: 
2, 4, 8 – n_estimators: 20, 50, 100, 200 

SVM kernel: linear, rbf, sigmoid – C: 0.1, 1, 10, 
100, 1000 – gamma: 1, 0.1, 0.001, 0.0001 

kNN n_neighbors: 3, 5, 7, 9, 11 
Logistic 
regression 

C: 0.1, 1, 10, 100, 1000 – penalty: l1, l2, 
elasticnet 

Finally, we evaluated the different feature 
modalities, i.e., HR, EDA, ACC, skin temperature-
derived features, and all modalities combined, and 
evaluated the balanced accuracy for pain 
classification (Werner et al., 2019). Therefore, we 
retrained the best-performing classifier in terms of 
balanced accuracy separately for the patient and the 
healthy control group, as we wanted to investigate if 
different feature modalities would be relevant for 
both groups. 

3 RESULTS 

3.1 Data Collection 

Table 4 gives an overview of the demographics, pain 
diary, and total questionnaire scores per group. 
Groups significantly differed in age and all pain diary 
items except the activity item. The median reported  
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Table 4: Demographic, pain diary, and questionnaire scores per group: mean (M), median (Mdn), standard deviation (SD), 
interquartile range (IQR), Wilcoxon signed rank (W), and t-test statistic (t), Chi-square test statistic (χ2). 

Parameter Patients Healthy controls Test-statistic p-value 

Demographic items 

Age - Mdn(IQR) 48 (16) 27 (9)  W= 17.5 0.015 
BMI - M(SD) 27 (6) 24 (4) t = -1.3134 0.207 
Gender - %women 80% 70% χ2 = 0 1 
Pain diary items 
Momentary pain - Mdn(IQR) 5 (3) 0 (0)  W = 0 <0.001 
Hourly pain - Mdn(IQR) 5 (3) 0 (0)  W = 0 <0.001 
Momentary stress - Mdn(IQR) 3 (3) 0 (1)  W = 7.5 0.001 
Hourly stress - Mdn(IQR) 4 (3) 0 (1)  W = 6.5 <0.001 
Pain locations - Mdn(IQR) 5 (3) 0 (1)  W = 1 <0.001 
Momentary activity - Mdn(IQR) 3 (1) 3 (1) W = 55 0.681 
Questionnaires 
PSQI score - M(SD) 12 (4) 5 (3)  t = -4.3765 <0.001 
PHQ-15 - M(SD) 16 (3) 5 (4)  t = -7.137 <0.001 
PHQ-9- Mdn(IQR) 19 (3) 2 (3) W = 0 <0.001 
GAD-7 - M(SD) 12 (2) 3 (2) t = -10.119 <0.001 
PSQ score - M(SD) 5 (2) 3 (1)  t = -3.2976 0.007 
IPAQ categorya - Mdn(IQR) 1 (1)a 3 (1)  W = 87 0.003 
PA score - M(SD) 10 (6) 37 (6)  t = 6.3488 <0.001 
NA score - M(SD) 31 (7) 14 (2)  t = -7.9753 <0.001 
4DSQ distress - M(SD) 20 (4) 6 (3)  t = -14.638 <0.001 
4DSQ fear - Mdn(IQR) 10 (1) 0 (8)  W = 0.5 <0.001 
4DSQ depression - Mdn(IQR) 11 (5) 0 (0)  W = 0 <0.001 
4DSQ somatization - M(SD) 27 (4) 5 (3)  t = -9.1972 <0.001 

aIPAQ category - 1: low, 2: medium, 3: high physical activity 

momentary and hourly pain score was 5 (IQR: 3) for 
the patients and 0 (IQR: 0) for the healthy controls 
(HC). Furthermore, patients also reported higher 
median momentary and hourly stress scores than the 
healthy controls. All the total questionnaire scores 
were significantly different between the two groups.  

Table 5 shows that patients and healthy controls 
collected a median of 155 hours (92.2%) and 137 
hours (81.5%), respectively, with healthy controls 
exhibiting higher within-group variation. In both 
groups, about 87% of the collected data contained 
high-quality HR and about 85% high-quality EDA. 
The median fraction of high-quality data during the 
day, i.e., between 7-22h, was 68% (IQR: 23%) and 
during the night, i.e., between 22-7h was 90% (IQR: 
22%).  

Table 5 also shows the median fraction of 
completed pain diaries, the median fraction of 
completed pain diaries containing physiology data, 
and the median fraction of completed pain diaries 
containing high-quality HR, EDA, and combined HR 
and EDA data per group. None of the fractions were 
significantly different between the two groups. 

Although the healthy controls had an average 
comparable fraction of initially filled-in pain diary 
prompts (78% against 80%), they had a lower average 
fraction of pain diaries in which high-quality 
physiology was available (48% against 62%). In total, 
there were 1164 labeled datapoints of which 675 
datapoints originated from the patient group.  

3.2 Pain Classification 

Figure 1 shows the distribution of accuracy and 
balanced accuracy over all the sequentially tested 
participants and for each classifier. The kNN 
classifier had the highest median accuracy of 0.42 
(IQR: 0.49) and the RF classifier resulted in the 
highest median balanced accuracy of 0.40 (IQR: 
0.21). Furthermore, all classifiers, except XGBoost, 
seemed to generalize better for the healthy controls 
than for the patients in terms of accuracy. Finally, all 
classifiers showed a significant variation in 
performance, which can likely be explained by inter-
participant variation and heterogeneity.  

HEALTHINF 2024 - 17th International Conference on Health Informatics

334



 

Figure 1: Distribution of accuracy and balanced accuracy on the test data for each of the classifiers summarized for all 
participants, all patients (P), and all healthy controls (HC). 

Figure 2 shows the accuracies and balanced 
accuracy scores for each feature modality and their 
combination using a RF classifier trained 
separatelyon patients and healthy controls. Notably, a 
striking difference in median accuracy and balanced 
accuracy was observed within the healthy control 
group, likely due to substantial class imbalance 
(Table 2). Among patients, only small variations in 
model performance were observed across different 
modalities, with the combined modalities yielding the 
highest median and the EDA modality demonstrating 
the highest maximum and minimum balanced 
accuracy. Furthermore, EDA emerged as the highest-
performing single modality in terms of median 
balanced accuracy. In the healthy controls, even 
smaller differences were observed, as the combined, 
EDA, ACC, and HR modalities all demonstrated 
equally high median balanced accuracies.  

4 DISCUSSION 

The obtained average pain-diary compliance of 80% 
for patients and 78% for healthy controls is slightly 
lower than in previous studies, which reported 85-
86.6% for patients with chronic pain (Gendreau et al., 
2003; Garcia-Palacios et al., 2014; May et al., 2018; 
Ono et al., 2019). A possible explanation for this 
could be the relatively high number of pain diary 
prompts per day (May et al., 2018). Furthermore, the 
healthy controls exhibited a larger percentage of data 
loss, either due to the absence of physiological data 
or the presence of lower-quality physiological data, 
compared to the patients (30% against 18%). This 
discrepancy could be attributed to several factors. 
First, the healthy controls wore the wristband less 

frequently as indicated in Table 5. Second, they 
showed increased activity levels, indicated by a 
median higher ACC magnitude standard deviation 
(not reported) and by a higher IPAQ category at 
baseline (Table 4). In contrast, both groups indicated 
the same level of momentary activity (Table 4). 
Possibly, participants isolated themselves while 
responding to the diary prompts, which could explain 
the similar reporting of momentary activity. 

Table 5: Median and IQR of the collected wristband data 
per participant with non-wear and quality, and the fraction 
of collected pain diary data with and without concurrent 
physiology all relative to the scheduled questionnaires. 

Signal Patients Healthy 
controls 

Test-
statistic 

p-value

Wristband data in hours (h) 

155 h (30) 137 h (52) W = 28  0.105 

Non-wear wristband data in hours (h) 

 0.11 h (0.4) 0.04 h (0.5) W = 49.5 1 

Wristband data high-quality fraction 

HR 87,2% (14.8) 86,9% (14.9) W = 41 0.529 

EDA  86,0% (19.1) 85,1% (17.9) t = -0.3435 0.735 

Combined 80,4% (22.2) 71,5% (14.8) W = 40 0.481 

Pain diary compliance 

 80% (22%) 78% (4%) W=50 1 

Pain diary and physiology compliance 

 67% (22%) 58% (24%) t = -1.154 0.264 

Pain diary with high-quality physiology compliance 

HR 66% (24%) 48% (34%) t = -1.5242 0.146 

EDA 63% (22%) 49% (39%) t = -1.4743 0.158 

Combined 62% (23%) 48% (39%) t = -1.4988 0.153 
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Figure 2: Distribution of accuracy and balanced accuracy on the test data per feature modality when fitting a RF classifier 
trained per group: patients (P), and healthy controls (HC). 

To classify momentary pain using physiological 
data captured in daily life in the combined chronic 
pain and healthy control population, we have fitted 
several machine learning models. Generally, the 
performance of the models was mediocre, in which 
the kNN classifier resulted in the highest accuracy of 
0.42 and the RF classifier in the highest balanced 
accuracy of 0.40. These performances are comparable 
to prior research modeling acute pain in controlled 
conditions (Gruss et al., 2015; Thiam et al., 2019; 
Kong et al., 2021) but lower than in previous research 
modeling pain in sickle cell disease patients in semi-
controlled conditions (Johnson et al., 2019; Stojancic 
et al., 2023). Several factors contribute to these 
moderate performances. First, as this study is a pilot 
study, we obtained a relatively small dataset. Second, 
the models were trained using physiological signals 
captured in daily life, which are influenced by many 
processes besides pain such as arousal, movement, or 
environmental factors, e.g., humidity level. Third, 
discriminating between closely related pain classes 
has been reported in previous research as challenging 
(Thiam et al., 2019; Werner et al. 2019). Finally, we 
hypothesize that patients may exhibit a blunted stress 
physiological response, potentially reducing the 
signal-to-noise ratio in the physiological data and 
making accurate pain classification more challenging 
(Wyns et al., 2023). Notably, observed variations in 
individual performance, consistent with previous 
research (Jiang et al., 2019; Gouverneur et al., 2020), 
underscore the significance of further examination of 
the relationship between physiology and pain at the 
individual or subgroup level, e.g., stratified by 
demographics (e.g., income) or psychiatric profiles, 
within future research. 

Furthermore, the assessment of median balanced 
accuracies across subjects, considering each 
individual and the combined feature modalities, 
revealed only small differences. In healthy controls, 
the combined modalities demonstrated comparable 
informativeness to the single modalities of EDA, 
ACC, and HR. In contrast, among patients, EDA 
emerged as the highest-performing single modality, 
albeit with a lower performance than the combined 
modality. These observations align with previous lab-
based research on multiclass pain models (Werner et 
al., 2019) but not on binary pain models, in which the 
EDA modality outperformed the combined 
modalities (Lopez-Martinez et al. 2018; Thiam et al. 
2019) and are consistent with the idea that EDA is less 
person-specific than other modalities, e.g., HR. 
However, more investigation on ambulatory collected 
physiology from larger datasets is needed, as 
interindividual EDA differences have also been 
reported (Hernandez et al., 2011). 

This pilot study is subject to several limitations. 
First, the use of a pain diary with a fixed sampling 
scheme may have influenced the participant’s 
behavior, as the prompt timing could have been 
predictable (Myin-Germeys and Kuppens, 2022). 
Additionally, we did not account for the presence of 
psychiatric comorbidities, which can potentially 
impact the pain and the physiological measurements 
(Gerrits et al., 2015; Schiweck et al., 2019). Future 
research should further evaluate and explore the 
monitoring of pain using physiological features in a 
larger population and collect physiological data both 
in controlled and ambulatory conditions with the 
same device. 
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5 CONCLUSION 

This pilot study demonstrated the practicability of 
collecting physiological data from patients with 
chronic pain and healthy controls using a wearable 
wristband and digital pain diary in their daily lives. 
The developed machine learning models for pain 
classification based on the physiological signals 
exhibited moderate performance. Furthermore, our 
observations indicated that individual feature 
modalities did not outperform the combined feature 
modalities. Ultimately, the integration of wearable 
technology and physiological monitoring holds 
promise for enhancing our understanding of chronic 
pain, enabling personalized pain management 
strategies, and improving the quality of life for 
individuals living with chronic pain. Therefore, 
further studies with larger sample sizes are necessary. 
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