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Abstract: Adversarial attacks pose a critical threat to the reliability of machine learning models, potentially undermin-
ing trust in practical applications. As machine learning models find deployment in vital domains like au-
tonomous vehicles, healthcare, and finance, they become susceptible to adversarial examples—crafted inputs
that induce erroneous high-confidence predictions. These attacks fall into two main categories: white-box,
with full knowledge of model architecture, and black-box, with limited or no access to internal details. This
paper introduces a novel approach for targeted adversarial attacks in black-box scenarios. By combining ge-
netic algorithms and gradient-based fine-tuning, our method efficiently explores input space for perturbations
without requiring access to internal model details. Subsequently, gradient-based fine-tuning optimizes these
perturbations, aligning them with the target model’s decision boundary. This dual strategy aims to evolve per-
turbations that effectively mislead target models while minimizing queries, ensuring stealthy attacks. Results
demonstrate the efficacy of GenGradAttack, achieving a remarkable 95.06% Adversarial Success Rate (ASR)
on MNIST with a median query count of 556. In contrast, conventional GenAttack achieved 100% ASR but
required significantly more queries. When applied to InceptionV3 and Ens4AdvInceptionV3 on ImageNet,
GenGradAttack outperformed GenAttack with 100% and 96% ASR, respectively, and fewer median queries.
These results highlight the efficiency and effectiveness of our approach in generating adversarial examples
with reduced query counts, advancing our understanding of adversarial vulnerabilities in practical contexts.

1 INTRODUCTION

Adversarial attacks in machine learning pose a seri-
ous threat to the reliability and security of deployed
systems, especially in critical applications like au-
tonomous vehicles, medical diagnosis, and financial
systems. As machine learning models become inte-
gral to these domains, addressing their susceptibility
to carefully crafted adversarial perturbations is crucial
for safe real-world deployment.

Black-box attacks, simulating realistic conditions
where adversaries lack direct access to internal model
workings, are particularly relevant in cloud-based
APIs or third-party model scenarios. This thesis ex-
plores targeted black-box attacks using a hybrid ap-
proach that combines genetic algorithms (GA) with
gradient-based optimization. This complexity neces-
sitates innovative methodologies to achieve high at-
tack success rates while minimizing visual disrup-
tions, especially for high-dimensional models like
those in ImageNet.
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Our method employs a genetic algorithm in-
spired by evolution principles, guiding the search pro-
cess to produce potent adversarial scenarios through
crossover, mutation, and selection processes. To fur-
ther refine perturbations, we integrate gradient-based
optimization techniques to iteratively update the noise
pattern, addressing challenges in existing methods.
The combination of genetic algorithms and gradient-
based optimization aims to generate potent and in-
conspicuous black-box adversarial perturbations. By
minimizing queries, we create visually impercepti-
ble adversarial samples, enhancing attack potency and
stealth.

In summary, our objectives are:

1. Effectiveness of Genetic Algorithms: Investi-
gate the potency of genetic algorithms in gener-
ating black-box adversarial perturbations, lever-
aging their ability to explore vast search spaces
and discover optimized solutions. Our findings
demonstrate their effectiveness in consistently de-
ceiving target models.

2. Combining Optimization Techniques: Enhance
attack efficiency by combining gradient-based op-
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timization with genetic algorithms. This hybrid
approach achieves faster convergence, higher suc-
cess rates, and query-efficient attacks.

3. Generic and Transferable Attacks: Develop
techniques for generic and transferable attacks,
successfully deceiving various models beyond the
initially targeted one.

4. Query-Efficient Attacks: Minimize target model
queries to increase the challenge of detecting and
defending against adversarial attacks. Our ap-
proach significantly reduces the interactions re-
quired for perturbation, enhancing attack stealth.

2 BACKGROUND

Adversarial Attacks

Szegedy et al. (Szegedy et al., 2013) first exposed
neural network vulnerability to carefully crafted ad-
versarial examples, revealing ”shortcut learning” re-
liance on non-robust features. Techniques like Fast
Gradient Sign Method (FGSM) (Goodfellow et al.,
2014) and Projected Gradient Descent (PGD) (Madry
et al., 2017) expanded attack methods, with recent fo-
cus on pixel-wise prediction tasks (Agnihotri and Ke-
uper, 2023).

Black-Box Attacks

Papernot et al. (Papernot et al., 2017) introduced
transferability in black-box attacks, using substitute
modeling and decision-based querying. Zeroth Order
Optimisation (ZOO) (Chen et al., 2017) relied solely
on the target model’s input-output interface. No-
table approaches include SimBA (Guo et al., 2019),
lightweight attacks on shallow layers (Sun et al.,
2022), query-efficient decision-based patch attacks
(Chen et al., 2023), and deep reinforcement learning
(Kang et al., 2023).

Black-Box Adversarial Attacks Using
Genetic Algorithm

GenAttack (Alzantot et al., 2019) pioneered genetic
algorithms for black-box attacks, followed by POBA-
GA (Chen et al., 2019) and localized scratch attacks
(Jere et al., 2019). Evolution-based methods like MF-
GA (Wu et al., 2021) and attentional mechanisms in
PICA (Wang et al., 2021) improved perturbation opti-
mization. This study fills a gap by combining genetic
algorithms with gradient-based fine-tuning, exploring

their potential for more efficient and effective black-
box attacks.

3 DESIGN

The considered attack framework assumes zero infor-
mation about the network’s architecture, parameters,
or training data. The attacker, having no access to
model features, operates solely through querying the
model as a black-box function:

f : Rd → [0,1]K (1)
Here, d is the number of input features, and K is

the number of classes. The attacker’s objective is a
precisely targeted assault, aiming to discover a per-
turbed instance xadv for an innocuous input instance
x. The perturbed instance aligns with the attacker’s
target prediction t, selected from the label set 1....K,
while minimizing the Lp distance:

arg max
c∈{1..K}

f (xadv)c = t such that ∥x− xadv∥p ≤ δ

(2)
The Lp distance is often chosen as L2 or L∞ norm,

following established methodologies in black-box at-
tacks (Chen et al., 2017), (Papernot et al., 2017).

3.1 Genetic Algorithm and
Gradient-Based Optimization

GenGradAttack builds upon the GenAttack algorithm
(Alzantot et al., 2019) by introducing gradient-based
fine-tuning. This hybrid approach combines natural
selection within a population-based search with pre-
cision from gradient-based optimization.

GenGradAttack iteratively engages a population,
denoted as P, in which candidate solutions evolve
through crossover, mutation, and selection processes.
Crossover integrates genetic information from two
parents to produce offspring, simulating genetic re-
combination. Finite difference approximation esti-
mates gradients when the true gradient is unknown,
common in black-box optimization. Mutation intro-
duces small random changes, promoting population
variety and preventing local optima entrapment. This
approach enhances solution quality, evolving pertur-
bations that mislead the target model while minimiz-
ing queries, and aligning with the attack objective.

Algorithm 1 outlines the operation of GenGradAt-
tack, aiming to generate an adversarial example xadv
from the original example xorig and the attacker’s cho-
sen target label t, with the constraint ∥xorig−xadv∥∞ ≤
δmax.
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Input: Original example xorig, target label t,
maximum L∞ distance δmax,
mutation-range α, mutation
probability ρ, population size N,
sampling temperature τ

for i = 1, . . . ,N in population do
P(i)

0 ← xorig +U(−δmax,δmax);
end
for d = 1,2, . . . ,G generations do

for i = 1, . . . ,N in population do
F(i)

d−1 = ComputeFitness(P(i)
d−1);

end
Find the elite member;
xadv = Pargmax

d−1 (Fd−1);
if argmaxc f (xadv)c = t then

Return: xadv Found successful
attack;

end
P1

d = {xadv};
Compute selection probabilities;

probs = Softmax
(

Fd−1
τ

)
;

for i = 2, . . . ,N in population do
Sample parent1 from Pd−1 according
to probs;

Sample parent2 from Pd−1 according
to probs;

child = Crossover(parent1, parent2);
———————————————–
Finite Difference Approximation for
Gradients;

gradients =
ComputeGradients(childmut);

normalized gradients =
gradients−mean(gradients)

std(gradients)+ε
;

childmut = childmut + learning rate ·
normalized gradients;

Fine-tuning step using
fine tune child;

childmut = fine tune child(childmut);
———————————————–
Apply mutations and clipping;
childmut = child +Bernoulli(ρ) ·
U(−αδmax,αδmax);

childmut = Πδmax(childmut,xorig);
Add mutated child to next generation;

P(i)
d = {childmut};

end
Adaptively update α,ρ parameters;
ρ,α = UpdateParameters(ρ,α);

end
Algorithm 1: Genetic Attack Algorithm with Fine-
tuning using Gradients Approximation.

Fitness Function: The ”ComputeFitness” func-
tion assesses each population member’s quality, in-
corporating the assigned output score for the target
class label and considering the reduction in probabil-
ity for other classes. The fitness function is defined
as:

ComputeFitness(x) = log f (x)t − log
j=k

∑
j=0, j ̸=t

f (x)c.

(3)
Selection: Members of the population are ranked

based on fitness, and Softmax is applied to determine
the selection probability. Random parent pairings are
then chosen, including the elite members using the
elitism technique (Bhandari et al., 1996).

Crossover: Parents engage in a mating pro-
cess, and offspring attributes are selected from either
parent1 or parent2 based on selection probabilities
(p,1− p), with p determined by fitness.

Gradient Approximation: In the black-box set-
ting, gradients are approximated using central finite
difference approximations to construct a loss func-
tion. The central difference approximation is given
by:

f ′(x)≈ f (x+h)− f (x−h)
2h

. (4)

Mutation: A mutation process, guided by a prob-
ability factor ρ, introduces random noise within the
interval (−αδmax,αδmax). The noise is applied to at-
tributes derived from the outcomes of the crossover
operation, ensuring pixel values stay within the allow-
able L∞ distance from the original example xorig.

4 RESULTS

GenGradAttack’s performance is evaluated against
state-of-the-art image classification models, includ-
ing MNIST and ImageNet. We utilize models iden-
tical to ZOO (Chen et al., 2017) and GenAttack
(Alzantot et al., 2019) for each dataset. The MNIST
model achieves 99.5% accuracy, and for ImageNet,
Inception-v3 is used with 79.1% top-1 accuracy and
95.2% top-5 accuracy.

The evaluation compares GenGradAttack, ZOO,
and GenAttack in terms of median queries, attack suc-
cess rate (ASR), and runtime. Notably, the runtime
and query count specifically apply to successful at-
tacks, where a single query assesses the target model’s
output for a given input image.

We utilize the code from the authors of ZOO and
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GenAttack to configure our evaluation12. The exper-
iments extend to a comparison with the C&W white
box attack (Carlini and Wagner, 2017) for better un-
derstanding. Additionally, we analyze the efficacy of
GenGradAttack against ensemble adversarial training
(Tramèr et al., 2020) using models provided by the
authors3.

In MNIST studies, GenGradAttack is limited to
a maximum of 100,000 queries, with hyperparame-
ters set as follows: ρ = 5× 10−2 (mutation proba-
bility), N = 6 (population size), and α = 1.0 (step
size). For ImageNet, given the larger image size, a
maximum of 1,000,000 queries is allowed. We set
δmax = 0.3 for MNIST and δmax = 0.05 for ImageNet,
aligning with ZOO’s mean L∞ distortion in success-
ful instances. This setup ensures meaningful compar-
isons with GenAttack (Alzantot et al., 2019).

5 CRITICAL ASSESSMENT OF
USE CASES

This section provides a comprehensive evaluation of
the presented use cases, focusing on their strengths
and vulnerabilities. Through systematic analysis, we
aim to illuminate the real-world implications of these
use cases, offering a nuanced understanding of their
significance in the broader research domain.

5.1 Use Case 1: Attacking MNIST
Images

In the assessment of different attack methods on the
MNIST dataset with an L∞ perturbation of 0.30, Table
1 summarizes the performance of GenGradAttack.

Table 1: ASR and queries for different attack methods
on the MNIST dataset with L∞ = 0.30 perturbation. The
bold row represents the results obtained using our proposed
method, GenGradAttack.

Dataset Attack Method ASR Queries
MNIST C&W 100% –

(L∞ = 0.30) ZOO 97% 2.1M
GenAttack 94.25% 996

GenGradAttack 95.06% 556

GenGradAttack achieves an Adversarial Success
Rate (ASR) of 95.06%, requiring a median query
count of 556 for success. Comparatively, C&W

1https://github.com/huanzhang12/ZOO-Attack
2https://github.com/nesl/adversarial genattack
3https://github.com/tensorflow/models/tree/archive/

research/adv imagenet models

achieves a 100% ASR (white-box attack), ZOO at-
tains a 97% ASR with 2,118,514 queries, and GenAt-
tack achieves a 94.25% ASR with 996 queries.
GenGradAttack is 3810 times more efficient than
ZOO and 2 times more efficient than GenAttack. This
suggests that GenGradAttack is promising for gener-
ating efficient adversarial examples on MNIST, bal-
ancing effectiveness and query efficiency.

Figure 1 visually presents the adversarial exam-
ples generated using GenGradAttack. The subtle per-
turbations introduced in the images lead to misclas-
sifications, highlighting the effectiveness of GenGra-
dAttack in compromising the model’s classification
accuracy.

Target Label

R
ea

l L
ab

el

Figure 1: MNIST adversarial examples.

5.2 Use Case 2: Attacking ImageNet
Images

Table 2 presents the results of experiments on
Ens4AdvInceptionV3 and InceptionV3 models using
different attack methods. Figure 2 shows some of
the adversarial examples generated using GenGra-
dAttack on the ImageNet dataset against the Incep-
tionV3 model. The presented visual comparison re-
veals a remarkable observation, as there is a seem-
ingly imperceptible divergence between the images
on the left and the images on the right, yet the classi-
fier’s classification decision dramatically contrasts the
inherent nature of the original image.

GenGradAttack demonstrates exceptional
performance, achieving a 96% ASR on
Ens4AdvInceptionV3 and a 100% ASR on In-
ceptionV3. Notably, it requires a median query
count of 12,623 for Ens4AdvInceptionV3 and 7,254
for InceptionV3, showcasing its efficiency. Com-
paratively, ZOO requires 3.5M queries with a 6%
ASR on Ens4AdvInceptionV3 and 2.6M queries
with an 18% ASR on InceptionV3. GenAttack
Basic achieves a 93% ASR with 164K queries on
Ens4AdvInceptionV3
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Table 2: ASR and the number of queries for different attack methods on Ens4AdvInceptionV3 and InceptionV3 on ImageNet
dataset.

Ens4AdvInceptionV3 InceptionV3
Queries ASR Queries ASR

GenGradAttack 12,623 96% 7,254 100%
ZOO 3.5M 6% 2.6M 18%
GenAttack Basic 164K 93% 97,493 100%
GenAttack (with adaptive parame-
ter)

21,329 95% 11,201 100%

C&W - 100% - 100%

Miniature Pinscher Dough

Squirrel Monkey Kit Fox

Spoonbill Horned Viper

Figure 2: ImageNet adversarial example. Left figure: real
label, right figure: target label.

6 DISCUSSION

The discussion below provides a comprehensive anal-
ysis of the obtained results from two distinct use
cases: one involving the MNIST dataset subjected to
L∞ = 0.30 perturbations and the other involving the
InceptionV3 and Ens4AdvInceptionV3 models. The
results highlight the efficacy and performance of var-
ious attack methods, as summarized in Table 1 and
Table 2.

6.1 ImageNet Models Use Case

GenGradAttack showcases remarkable query effi-
ciency, but the visual quality and interpretability of
the generated adversarial examples are crucial consid-
erations. The attack method aims to transform an in-
put image from its original class to a target class, mak-
ing the extent of distortion introduced and the number
of queries vital factors.

In scenarios where the target class is significantly

different from the original class, the resulting adver-
sarial image might exhibit noticeable and disruptive
alterations. Figure 3 illustrates an example where an
image of a ”German Shepherd” was transformed into
an adversarial example classified as a ”Miniature Pin-
scher.” The adversarial image shows minimal geomet-
ric changes, indicating success in achieving a class
transformation with minimal visual distortion.

Miniature PinscherGerman shepherd

Figure 3: ImageNet Adversarial example with a target class
similar to the original class. Left figure: real label, right
figure: target label.

Table 3 presents key metrics for this transforma-
tion process, highlighting the query count, attack du-
ration, and L2 distance. The efficiency of GenGra-
dAttack is evident in the low query count, short at-
tack duration, and subtle alterations in the adversarial
image.

Table 3: Key Metrics for the attack process on similar
classes using ImageNet dataset.

Query
Count

Attack
Duration

Average
L2 Dis-
tance

96.0 366.76
seconds

16.59

On the contrary, figure 4 illustrates an example
where an image of a ”Junco” was transformed into
an adversarial example classified as a ”Home The-
ater.” The adversarial image exhibits noticeable ge-
ometric changes, emphasizing the challenges in con-
verting images between semantically distant classes.

Table 4 presents key metrics for this transforma-
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Home TheaterJunco

Figure 4: ImageNet Adversarial example with a target class
very different from the original class. Left figure: real label,
right figure: target label.

tion process, indicating a higher query count, longer
attack duration, and a larger L2 distance. The in-
creased computational effort and visual alterations
highlight the difficulty in manipulating predictions
across dissimilar classes.

Table 4: Key Metrics for the attack process on different
classes using ImageNet dataset.

Query
Count

Attack
Duration

Average
L2 Dis-
tance

5986 21359.35
seconds

32.64

These examples illustrate the trade-off between
successful class transformation and visual coherency.
GenGradAttack achieves its goal of manipulating
model predictions, but the generated images may ex-
hibit varying levels of visual distortion that impact
real-world interpretability.

6.2 MNIST Dataset Use Case

The MNIST dataset serves as a platform to explore
GenGradAttack’s subtleties, especially in small-sized
images. Results highlight the method’s efficiency in
small domains, with a low query count, demonstrat-
ing its agility in manipulating model predictions for
MNIST digits.

However, challenges arise in scenarios where the
target class is significantly distinct from the source
class. Figure 5 shows an example of transforming the
digit ”3” into a ”7,” resulting in visible alterations and
challenges in achieving a successful class conversion.

73

Figure 5: MNIST Adversarial example with a target class
very different from the original class. Left figure: real label,
right figure: target label.

Table 5 presents key metrics for this transforma-
tion process, emphasizing the increased query count
and attack duration, as well as a larger L2 distance.
These challenges underscore the impact of semantic
gaps between classes, leading to more pronounced vi-
sual discrepancies.

Table 5: Key Metrics for the attack process on different
classes using MNIST dataset.

Query
Count

Attack
Duration

Average
L2 Dis-
tance

42956 359.01
seconds

6.28

In contrast, figure 6 illustrates an example where
the digit ”2” was transformed into a ”3” with subtle
modifications and minimal visual distortion.

32

Figure 6: MNIST Adversarial example with a target class
similar to the original class. Left figure: real label, right
figure: target label.

Table 6 presents key metrics for this transfor-
mation process, showcasing the method’s efficiency
in achieving a seamless conversion between similar
classes.

Table 6: Key Metrics for the attack process on similar
classes using MNIST dataset.

Query
Count

Attack
Duration

Average
L2 Dis-
tance

26 8.10 sec-
onds

2.68

It’s crucial to note that MNIST images are consid-
erably smaller, contributing to quicker computation
times. The examples underline the trade-off between
successful class transformation and visual coherency,
emphasizing the varying interpretability of generated
adversarial images.

6.3 Hyper-Parameter Selection in
Genetic Algorithms

Genetic algorithms are traditionally sensitive to the
choice of hyper-parameter values, such as population
size, mutation rate, and others. In this section, we dis-
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cuss the impact of these choices on query efficiency.

6.3.1 Population Size

The population size plays a crucial role in balancing
exploration and exploitation within the search space.
A larger population size enhances diversity and im-
proves exploration, leading to better search space cov-
erage in fewer iterations. However, this advantage
comes with a trade-off, as evaluating each population
member incurs a query cost. Figure 7 illustrates this
trade-off by showcasing the mean number of queries
and iterations until success across various population
sizes on a dataset of 20 images. Based on this exper-
iment, we advocate for a relatively small population
size of six, striking a balance between convergence
speed and the total number of queries expended.

Figure 7: Effect of population size selection on both the
speed of convergence and the number of queries.

6.3.2 Mutation Rate

The mutation rate, denoted as ρ, significantly influ-
ences algorithm performance. Experimentally, we
explored different mutation rate strategies and found
that a fixed mutation rate outperformed other ap-
proaches. The fixed mutation rate effectively balances
exploration and exploitation, contributing to the algo-
rithm’s overall success without the need for adaptive
adjustments.

7 CONCLUSIONS

In this study, we introduced GenGradAttack, a pi-
oneering approach that seamlessly integrates genetic
algorithms and gradient-based optimization for black-
box adversarial attacks. Our results showcase the im-
pressive efficacy of GenGradAttack, achieving no-
table Adversarial Success Rates (ASR) with reduced
query counts. Notably, on the MNIST dataset, we at-
tained a 95.06% ASR with a median query count of
556, outperforming conventional GenAttack.

The success of GenGradAttack stems from its
ability to evolve perturbations that effectively mis-

lead the target model, demonstrating the potency of
genetic algorithms in generating adversarial perturba-
tions. Moreover, the combination of gradient-based
optimization with genetic algorithms leads to faster
convergence, higher ASRs, and query-efficient at-
tacks.

While our achievements are significant, this re-
search lays the groundwork for future exploration.
Further analysis, including extensive experimentation
and the incorporation of adaptive learning rate strate-
gies, holds the potential to enhance the attack’s ef-
fectiveness. Delving into factors influencing transfer-
ability could yield more universally effective adver-
sarial perturbations.

In summary, our research advances the landscape
of adversarial black-box attacks, providing a robust
tool for evaluating the vulnerabilities of machine-
learning models. We anticipate that this work will in-
spire continued exploration in the dynamic realm of
adversarial attacks and defenses.
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