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Human activity recognition using sensor data can be approached as a problem of classifying time series data.
Deep learning models allow for great progress in this domain, but there are still some areas for improvement.
In addition, the environmental impact of deep learning is a problem that must be addressed in today’s machine
learning studies.

In this research, we propose to automate deep learning model design for human activity recognition by using
an existing training-free Neural Architecture Search method. By this way, we decrease the time consumed by
classical NAS approaches (GPU based) by a factor of 470, and the energy consumed by a factor of 170.
Finally, We propose a new criterion to estimate the relevance of a deep learning model based on a balance
between both performance and computational cost. This criterion allows to reduce the size of neural architec-
tures by preserving its capacity to recognize human activities.

1 INTRODUCTION

Many techniques today use a deep learning approach
applied to video or temporal data to recognize human
activities. An activity is characterized by a spatial and
temporal evolution of data, therefore one problem is
managing this spatio-temporal evolution with a deep
learning architecture.

Some solutions involve using recurrent architec-
tures, such as LSTM, which are able to process se-
quences (Ordéiiez and Roggen, 2016), or using con-
volutional neural networks to process the data (Li
et al., 2018). Other approaches consist of encod-
ing the time into an image and then use traditional
image recognition architectures on this image (Liu
et al., 2017b; Laraba et al., 2017; Ludl et al., 2019;
Mokhtari et al., 2022b; Mokhtari et al., 2023). What-
ever the approach, another challenge is to find the best
architecture and encoding to optimize the recognition
rate.

Furthermore, the number of possibilities to de-
sign the architecture is so great that a new challenge
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is to find it with algorithms named Neural Architec-
ture Search (NAS) (Elsken et al., 2019; Wistuba et al.,
2019). They usually test a lot of architectures and run
for several days on a GPU before finding a good one.
However, today, it is also important to take into ac-
count the cost of computational power as it is linked
to energy costs and environmental concerns.
(Strubell et al., 2019) showed that Al (training and
use of deep neural networks) has a significant impact
on the environment through its energy consumption
and carbon emission. According to (Schwartz et al.,
2019), we should evaluate Al on the basis of its ef-
ficiency, alongside accuracy and related metrics. For
a certain amount of accuracy, it is better to use the
smallest architecture and to find it with less tests.
The aim of the work presented in this article is to
find the most appropriate deep learning model for on-
line recognition of human activity based on 3D skele-
ton data, while addressing the various problems listed
above. To this end, two proposals are combined:

1. We applied a metaheuristic named "Improved Fire
Fly Algorithm" to avoid the training of networks
during a Neural Architecture Search, in order to
design our deep learning model. By this way, we
decrease the time consumed by classical NAS ap-
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proaches (GPU based) by a factor of 470,
and the energy consumed by a factor of 170.

2. We finally propose a new criterion to estimate the
relevance of a deep learning model based on a
balance between both performance and computa-
tional cost. This criterion allows to reduce the size
of neural architectures by preserving its capacity
to recognize human activities.

These propositions are in line with current envi-
ronmental concerns of humanity. We reduce the ar-
chitecture search time by a factor of 476 compared
to baseline techniques, and a factor of 114 compared
to (Wang et al., 2023) proposition. We also reduce
energy consumption and carbon footprint by a fac-
tor of 14 compared to (Wang et al., 2023) proposi-
tion. This article details the different algorithms and
presents various results that show the relevance of our
proposition. Moreover, our proposition could be ex-
tended to a lot of applications of deep learning.

The remainder of the document is organized as
follows: Section 2 introduces a synthesis of the var-
ious works carried out in the of field skeleton data
representation, Neural Architecture Search, and neu-
ral network efficiency. In Section 3 we detail our pro-
posed method for building our deep learning model,
and our proposed method for evaluating neural net-
work efficiency. Section 4, shows the data set that
used for the experimental part of the work, addressed
in Section 5. Finally, we discuss the results of this
work as well as the possible developments to improve
the proposed metric in Section 6.

2 RELATED WORKS

In this section we will review existing work related
to our proposition to perform online human activity
recognition in an efficient way.

2.1 Skeleton Based Human Activity
Recognition

According to (Wang et al., 2019), Human Activity
Recognition (HAR) falls into two categories: sensor-
based (e.g., accelerometers) and video-based (e.g., 3D
skeleton data from a Kinect). Successful HAR re-
quires encoding data while handling spatial and tem-
poral dependencies. In this study, we utilize skeletons
obtained from an RGB-D camera, but this approach is
applicable to various types of spatio-temporal data.
To encode skeletal data, some prior research, such
as (Yan et al., 2018; Delamare et al., 2021) and (Chen
et al., 2022) proposed to use graphs. This approach
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effectively addresses both spatial and temporal depen-
dencies, as each node connects with its spatial neigh-
bors (in accordance with skeletal structure) and its
temporal counterparts (representing the previous and
subsequent states of the joint). Typically, this rep-
resentation is paired with Graph Convolutional Net-
works (GCN) (Yan et al., 2018; Delamare et al., 2021;
Chen et al., 2022).

Conversely, several studies have employed images
to represent skeletal data (Ludl et al., 2019; Laraba
et al., 2017; Mokhtari et al., 2022b; Mokhtari et al.,
2023). In this approach, each joint is encoded as a
pixel within an image. To achieve this, the coordi-
nates (X, Y, Z) of a joint are first normalized and then
used to calculate the values for the (R, G, B) color
channels. Figure 1 provides an illustration of skeletal
data encoding using the Encoded Human Pose Image
(EHPI) method introduced by (Ludl et al., 2019).
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Figure 1: From skeletal joints to an Encoded Human Pose
Image (EHPI) (Ludl et al., 2019).

In a related study, (Mokhtari et al., 2022b) intro-
duced the Spatio-Temporal Image Encoding (STIE)
technique to represent a sequence of human skele-
ton data as an image. To enhance the performance of
Convolutional Neural Networks (CNNs) and address
both spatial and temporal dependencies effectively,
they proposed a method of reordering the skeleton
data based on the human body’s structure. This re-
ordering allocates specific areas of the image to each
body part, such as the legs (see figure 2). They also
proposed to use the VGG16 model introduced in (Si-
monyan and Zisserman, 2014), this model was first
trained on the ImageNet Dataset, then frozen and used
as a feature extractor. As a result, the model achieved
an accuracy of 86.81% on the Online Action Detec-
tion (OAD) dataset (Li et al., 2016).

In an effort to enhance the Spatio-Temporal Image
Encoding (STIE) approach, (Mokhtari et al., 2023)
introduced the concept of motion energy, originally
presented by Liu et al. (Liu et al., 2017b). This con-
cept emphasizes the impact of motion on generating
color images by assigning weights to skeleton joints
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Figure 2: Writing encoded using the STIE (Mokhtari et al.,
2022b).

based on their motion. To create a more comprehen-
sive and detailed representation of human actions, the
motion energy image is integrated with STIE, result-
ing in a comprehensive view of the action (as illus-
trated in Figure 3). Additionally, the authors retrained
the VGG16 model using the Online Action Detection
(OAD) dataset. Consequently, this approach achieved
an outstanding accuracy rate of 95.22%, establishing
a new benchmark for the dataset.
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Figure 3: Writing encoded using the ESTIE (Mokhtari
et al., 2022b).

Real-time human action recognition faces a sig-
nificant challenge in identifying the start and end of
actions within a continuous data stream. To address
this challenge, prior research has suggested utilizing
a sliding window approach, which allows the model
to be trained on the continuous stream of data. This
method has been proposed as a solution to effectively
handle this issue in real-time HAR (Liu et al., 2019;
Weng et al., 2017; Delamare et al., 2021; Mokhtari
et al., 2022b; Mokhtari et al., 2023).

In this work, we are interested to find the most
appropriate deep learning model to the OAD dataset,
by using ESTIE proposed by (Mokhtari et al., 2023)
to encode the skeletal data.

2.2 Neural Architecture Search

One of the challenges in Deep Learning is to design
the architecture of the network automatically due to
the large number of hyperparameters that can be used
and the many possible configurations of the network
that these hyperparameters allow.

For this purpose, several works have been inter-
ested in the use of metaheuristics. For example, (Sun
et al., 2020) used a Genetic Algorithm to automat-
ically design a convolutional neural network by us-
ing the trained network accuracy as a fitness function.
(Carvalho et al., 2010) proposed a fitness function
based on both train and test errors that was used with
VNS, SA, GEO and GA algorithms. (Strumberger
etal., 2019) preferred to use a FireFly algorithm to de-
sign their CNN, where the used fitness function was
based on the error computed on the test set. These
studies showed that metaheuristics are suitable for
neural architecture search, since they are well known
for solving combinatorial problems, such as finding a
good neural network organisation among several pos-
sibilities offered by the search space. However, they
can also be slow due to the need to train each archi-
tecture to evaluate its quality. (Wang et al., 2023) pro-
posed a multi-objective evolutionary algorithm NAS,
by setting weighted fl-score, floating-point opera-
tions per second (FLOPs) and the number of param-
eters as objectives, to speed up search by a factor of
4.17. It is therefore useful to be able to evaluate the
quality of an architecture without training it, to save
time and computational resources.

(Mellor et al., 2021) proposed a method to eval-
uate a neural network without previous training by
identifying a binary indicator (0 for inactive unit, and
1 for active unit), focusing only on the rectified lin-
ear units (ReLU) of an untrained network (randomly
initialized weights). The intuition behind their ap-
proach is that the more similar the binary codes as-
sociated with two inputs are, the more challenging
it is for the network to learn how to discriminate
these inputs. A mini-batch of data X = [x1,x2,...,x,]
is mapped through a neural network (composed of
ReLU and several other units type) to get binary codes
C =cy,c¢p,...cn|, where each ¢; (obtained from ReLU
outputs only) refers to the binary code of x;. To evalu-
ate the neural network, (Mellor et al., 2021) compute
the log of the determinant of a matrix Kh, where each
component is calculated using the Hamming distance
(Eq (1)). The higher the score, the better the network.

Kili, j] = Na — Hamming_distance(ci,cj) (1)

where N, is the number of rectified linear units
(ReLU).
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(Mokhtari et al., 2022a) proposed another way to
evaluate a neural network without training. Based
on the work of (Mellor et al., 2021), they proposed
to use binary codes for calculating an intra-class dis-
tance (ICD) for evaluating the ability of an untrained
neural network to distinguish data. They propose that
the ICD would be more interesting to assess this dis-
persion of representation, since it is used to assess the
quality of clustering, where the objective is to pro-
duce distinct clusters. This ICD metric was used as
the fitness function of an improved version of the fire-
fly algorithm (IFA) which uses genetic operators (se-
lection, crossover and mutation) to be more robust to
local optimum. Algorithm 1 illustrates this propo-
sition. Note that the choice of the optimal solution
from the "candidates" list is determined based on the
models’ performance after training. As the ICD met-
ric serves as an approximation of model quality rather
than an exact measurement, maintaining a candidate
list enhances the likelihood of identifying a promising
architecture (Mokhtari et al., 2022a).

Algorithm 1: Improved FireFly Algorithm.

Randomly generate the population
Define MaxChances
chances = MaxChances
candidates = [ |
LocalBest = NULL
while not Stopping criteria do
Running an iteration of FireFly
Best, = current population’s best solution
if LocalBest = NULL then
| LocalBest = Best,

else
if fitness(Best,) > fitness(Best;_1)
then
| LocalBest = Best,
else
| chances - -
end
end

if chances = 0 then
add LocalBest to candidates

LocalBest = NULL

Perform an iteration of the Genetic
Algorithm

chances = MaxChances

end

end
Determining the best solution from the
candidates list

This method outperform existing NAS without
training techniques, and obtained results that are close
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to those obtained by the NAS with training. Con-
sequently, in this work, we focus on the use of the
Improved Firefly Algorithm proposed by (Mokhtari
et al., 2022a), to build a model dedicated to human
activity recognition.

2.3 Neural Network Efficiency

There has been a lot of discussion and debate recently
about our energy consumption and the impact it has
on the environment.

Recent studies reported by (Strubell et al., 2019)
have shown that performing a neural architecture
search (including training) for a big transformer emits
about 626,155 Ibs of CO,, which is five times more
than a car in its lifetime (126,000 1bs).

According to (Schwartz et al., 2019), the amount
of computation needed for deep learning research has
been growing rapidly, with a doubling rate of every
few months. This has resulted in a significant increase
in computation, estimated to be 300,000 times higher
in 2018 than it was in 2012. This leads the author
to propose the evaluation of the neural network effi-
ciency through several indices such as carbon emis-
sion, electricity consumption or floating point opera-
tions (FPO). (Schwartz et al., 2019) proposed to use
the following formula (Eq. 2) to estimate the cost of
obtaining a result (R) using according to the cost of
executing (E) the model on a single example, the size
of the dataset (D) and the number of hyperparameters
(H).

cost(R)=ExDxH 2)

This proposed metric illustrates three quantities
that are important factors in the cost of generating a
result, but it ignores other factors such as the number
of training epochs.

In this work, we propose to use a new metric
(that goes beyond the proposition of (Schwartz et al.,
2019)) to evaluate a deep neural network according to
its performance and efficiency including its training.

3 PROPOSED METHOD

In this section, we will outline our proposals to find
the most appropriate deep learning model for online
human activity recognition based on skeletons. To do
that, we propose to apply the Improved FireFly Algo-
rithm proposed by (Mokhtari et al., 2022a) to build
a model dedicated to the Online Action Detection
dataset. This dataset will be first encoded using the
Enhanced Spatio-Temporal Image Encoding (ESTIE)
proposed by (Mokhtari et al., 2023).
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We also outline our proposal to evaluate a model
according to its performance and efficiency by using
a benefit cost ratio (BCR). This metric will be used to
compare our model to the state-of-the-art methods.

3.1 Deep Learning Model

We use the Improved FireFly Algorithm for which
the fitness function of each architecture is evaluated
without training according to the work of (Mokhtari
et al., 2022a). This method explores the NAS-Bench-
101 search space which is of 423,624 neural networks
(CNN) (Ying et al., 2019), using the data from the
OAD dataset presented in Section 4, that will be en-
coded using the ESTIE method.

In the NAS-BENCH-101, all the networks share
the same pattern, which is composed of one or sev-
eral stacks, each one includes one or several cells.
The networks are different in the « module » (cell),
which is represented by directed acyclic graphs (up to
7 vertices and 9 edges). The valid operations at each
vertex are 3x3 convolution, 1x1 convolution, and 3x3
max-pooling (Ying et al., 2019).

Figure 4 shows an example of a network archi-
tecture from the NAS-BENCH-101 composed of 3
stacks, each one including 3 cells.

conv stem

Figure 4: Network architecture in the NAS-BENCH-101
(Ying et al., 2019): Left part is the skeleton shared by all
models, middle part is a stack of cells and the right part is
an example of a cell (module) (Mokhtari et al., 2022a).

We explored various combinations of the number
of stacks and cells, ranging from 1 to 5 for each, a
total of 25 network pattern organizations.

3.2 Performance and Efficiency
Evaluation

To take into account the training cost of the networks,
we propose to modify the formula of Schwartz et al.
(Schwartz et al., 2019) (Eq. 2) by introducing the
number of epoch used during the training. This train-
ing cost can be estimated as follow:

training_cost = E, x DX H 3)

where E), is the number of epochs, D is the size of
the training dataset and H, the number of parameters.

This training cost can be used to evaluate the ef-
fectiveness of a neural network, in the same way as
the total number of floating point operations (FPO)
required to generate a result.

Since it is already possible to evaluate the perfor-
mance of a deep learning model using metrics like
accuracy or F1-Score, we propose to combine these
performance indices with an estimation of the neural
network efficiency using a benefit cost ratio (BCR) as

follow: p
BCR = — 4
C “)

where P refers to a performance metric which can
be the test accuracy, the F1-Score, etc., and the C
refers to the network efficiency estimation through the
training cost (Eq. 3) or the FPO.

The use of such a metric can allow us to evaluate
a neural network in terms of its performance and effi-
ciency, in order to choose a model that performs well
but does not consume too much energy.

4 THE OAD DATASET

The proposed method is evaluated on the Online Ac-
tion Detection dataset (OAD) collected from a Kinect
v2, including 25 joints because it provides unseg-
mented online sequences of skeleton data (Li et al.,
2016). It includes 59 long sequences and 10 actions,
including drinking, eating, writing, opening a cup-
board, washing hands, opening a microwave, sweep-
ing, gargling, throwing trash, and wiping. The train-
ing is done on 30 sequences, and tested on 20 se-
quences. The remaining 9 sequences are ignored in
our work, since they are used for the evaluation of the
running speed (Li et al., 2016).

Several studies like (Mokhtari et al., 2023;
Mokhtari et al., 2022b) and (Delamare et al., 2021)
proposed to use a sliding window 40 frames, to seg-
ment this dataset, to allow real-time recognition with-
out having to identify the start or end of the action.

S RESULTS AND DISCUSSION

In this part of the work, we present our experimen-
tal results, obtained on the OAD dataset. On the
one hand, a comparison between the different results
obtained from the neural architecture search using
the Improved Firefly Algorithm (IFA) for the OAD
dataset is done. Then, the best model obtained from
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the IFA will be compared to the state-of-the-art mod-
els according to the accuracy metric. Finally, we com-
pare our model to the best known model from the
state-of-the-art according to our proposed BCR that
takes into account the efficiency of the models.

5.1 Neural Architecture Search

In this part of the experiment, we run the IFA method
on the NAS-BENCH-101 in order to find the most
suitable network for the OAD dataset.

We experimented various combinations of the
number of stacks and cells, ranging from 1 to 5 for
each. On each combination, the IFA runs for 100 gen-
erations, using a population of 20 solutions. All ex-
ecutions were done on a DELL precision 5760, with
an Intel(R) Core(TM) i7-11850H as CPU, and 32Gb
of RAM.

Table 1 summarises the search time in second for
each run, where we can notice that the search time is
ranging from 1328 seconds (22 minutes), to 12991 (3
hours and 36 minutes).

Table 1: Search time in seconds for each run of the Im-
proved Firefly Algorithm on NAS-BENCH-101.

#Cells
#Stacks 1 2 3 4 5
1 1328 | 2875 | 2719 5690 9728

2 2885 | 5993 | 3223 | 11404 | 15481
3 2710 | 7670 | 7062 | 8081 8716
4 2931 | 6685 | 10765 | 12991 | 10059
5 2989 | 5688 | 7130 | 12162 | 10504

Each resulting architecture is trained for 100
epochs on an NVIDIA RTX A3000 Laptop GPU,
for 5 times on the segmented OAD dataset using the
ESTIE method. Table 2 summarizes the mean test ac-
curacy and the standard deviation (std) obtained by
each mode on the OAD dataset, while Table 3 con-
tains the best test accuracy (on a test set not used for
the learning phase) for each network.

According to the results presented in Table 2, we
notice that the best mean accuracy is obtained by a
network architecture composed of 5 stacks, where
each one includes only one cell, with a mean accu-
racy of 93.58% and a standard deviation of 0.5. Fol-
lowed by the model a smaller architecture, composed
of 2 stacks and one cell by stack only, with 93.24% as
mean accuracy and 0.45 as standard deviation.

Table 3 confirms the previous observation, by
showing that the best model, reaching 94.47% of test
accuracy is composed of 5 stacks, each one includ-
ing only one cell, followed by the one composed of 2
stacks and one cell by stack, reaching 93.77%. It can
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also be seen from the two tables that the performance
of the models decreases when the network is larger
than 5 stacks and one cell.

For the rest of the experiment, we choose to keep
both well performing models, since the first one (5
stacks, 1 cell) is getting the best accuracy, and the sec-
ond one (2 stacks, 1 cell) offers an interesting result
while being more than 2 time smaller. We will refer to
the model composed of 5 stacks and 1 cell as IFAs |
and the one composed of 2 stacks and 1 cell as [FA; ;.

5.1.1 Search Time Improvement

The design of IFA; ; required to explore at least 2020
models: 20 by epoch over 100 epochs, in addition
to the first population composed of 20 architectures.
Evaluating a model using the training-free approach
costs only 1 second, for this reason our IFA explo-
ration took 2885 seconds (48 minutes) to generate this
model (IFA, ). In the case of classical NAS (that
involves training the model to evaluate it), we esti-
mate the required time to perform the same task to
be 147 days 7 hours 15 minutes, considering a train-
ing over 100 epochs on the Intel(R) Core(TM) i7-
11850H which lasts around 6300 seconds (1h45m).
Furthermore, we estimate the required time to per-
form this exploration to be 15 days 21 hours and 48
minutes, considering a training over 100 epochs on
the NVIDIA RTX A3000 Laptop GPU which lasts
around 680 seconds (11m20s).

These estimations confirm that using NAS with
a training-free evaluation is more efficient than clas-
sic NAS which use train-based evaluation over 100
epochs, since the IFA is being more than 4400 times
faster compared to the version on CPU, and 476 times
faster than the GPU version, hence, our proposition
improves (Wang et al., 2023) proposition by a factor
of 114.

5.1.2 Energy Consumption and Carbon
Footprint Improvement

We estimated the carbon footprint resulting from
these explorations, and their energy consumption, us-
ing Green Algorithms Calculator proposed by (Lan-
nelongue et al., 2021). We found out that the IFA
consumes about 298 Wh, while the consumption of
the CPU and GPU versions are estimated to be re-
spectively 15.55 MWh and 50.547 KWh. In terms
of carbon footprint, the IFA produce approximately
15.26g COy,, while the CPU and GPU versions have
a carbon footprint around 797.46 kg CO, and 2.6 kg
CO,,. From the above estimations, we notice that
training-free NAS are less energy consuming and less
polluting by around 52 000 times compared to the
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Improved Firefly Algorithm search on NAS-BENCH-101, for each combinition.

#Cells
#Stack 1 2 3 4 5
1 91.24%=+0.59 | 92.72%=+0.55 | 91.8%=+0.53 | 92.23%+0.87 | 91.43%=+0.33
2 93.24%+0.45 | 93.04%=+0.66 | 91.9%=40.59 | 90.91%=+0.68 | 91.72%=+0.45
3 92.43%=+0.32 | 92.06%+0.83 | 91.94%+0.2 | 90.99%+0.85 | 90.8%+1.16
4 91.74%=+0.43 | 91.88%+0.42 | 91.76%=+0.52 | 93.03%+0.39 | 89.0%=£3.55
5 93.58%+0.5 | 90.9%+0.37 | 89.98%=+0.62 88.3%+3.6 | 90.07%=+0.7

Table 3: Test accuracy on the OAD dataset obtained by the best result of the Improved Firefly Algorithm search on NAS-

BENCH-101, for each combination.

#Cells
#Stack 1 2 3 4 5
1 91.91% | 93.55% | 92.62% | 93.04% | 91.79%
2 93.77% | 93.74% | 92.89% | 91.96% | 92.42%
3 92.92% | 93.58% | 92.31% | 91.84% | 92.16%
4 92.28% | 92.37% | 92.44% | 93.49% | 92.27%
5 94.47% | 91.35% | 90.83% | 91.35% | 90.7%

training NAS (over 100 epochs) based on CPU, and
around 170 times compared to the training NAS based
on GPU.

5.2 Comparison with State-of-Art
Methods

We compared our obtained models (IFA;; and
IFAs 1) to several existing works on the OAD dataset.
Table 4 summarizes the obtained results. We no-
tice that the two models performed well, since they
both outperforms state-of-the-art methods, except the
ESTIE from (Mokhtari et al., 2023), which obtained
95.22% on the OAD dataset by using a VGG16
model, while IFA5 | obtained 94.47%.

Table 4: Comparison with related works on the OAD
dataset according to accuracy.

Method Authors Accuracy
JCR-RNN (Li et al., 2016) 78.8%
ST-LSTM (Liu et al., 2018) 77.5 %

Attention Net (Liu et al., 2017a) 78.3%
FSNet (Liu et al., 2019) 81.3 %
SSNet (Liu et al., 2019) 82.8%

STIE (Mokhtari et al., 2022b)  86.81 %
ESTIE (Mokhtari et al., 2023) 95.22%
IFA; | our proposition 93.77%
1FA5 our proposition 94.47%

5.3 Efficiency Evaluation

In this part of the work, we will compare our ob-
tained result from the IFA, to the VGG16 model from
(Mokhtari et al., 2023).

The VGG16 model contains 18,939,722 parame-
ters, the IFAs | model is composed from 3,385,018
parameters, while the IFA, | is comprises 63,866 pa-
rameters. All of them were trained for 100 epochs, on
the OAD dataset that includes 11935 samples. From
this data, we can compute, for each model, the train-
ing cost (TC) and floating point operations (FPO),
which will be combined with the test accuracy (suf-
fixed acc) to compute the BCR!.,. and BCR/L re-
spectively .

From Table 5 we can notice that the most efficient
model is the IFA, ; according to the training cost and
the FPO score. This model also obtained the best ratio
for both BCR,. and BCR/?°. The less efficient is the
VGG16 model, which is also the worst in terms of
BCRI¢, and BCR/%..

Note that, in terms of performance, the VGG16 is
only 1.45% better than the IFA; |, while being almost
300 larger in terms of size, with nearly 19 millions
parameters against 64 thousands parameters. In addi-
tion, the IFA; | requires only 998KB of storage space,
allowing it to be easily embedded when needed.

Moreover, training the VGG16 on the NVIDIA
RTX A3000 Laptop GPU takes 1915 seconds (2.8
times more than IFA; 1), and according to Green Al-
gorithms Calculator proposed by (Lannelongue et al.,
2021) it consumes around 4.22 kWh of energy and
released about 216.43 g of CO,,, meaning that the
IFA; 1 is 14 times less energy consuming and less pol-
luting compared to VGG16.

This result confirms the observation of (Schwartz
etal., 2019) that there is an urgent need to evaluate the
efficiency of a neural network with the same impor-
tance as its performance, because increasing the ac-

363



VISAPP 2024 - 19th International Conference on Computer Vision Theory and Applications

Table 5: Efficiency comparaison between VGG16, IFA; | and IFA5 ;.

Model | Test Accuracy | Training Cost | BCR!.. | Floating Point Operations BCR/?’
VGG16 95.22% 2.26e+13 4.21e-12 2.52e+09 3.79¢e-08
IFA; 93.77% 7.62e+10 1.23e-09 9.95e+07 9.42e-07
IFAs5 | 94.47% 4.04e+12 2.34e-11 2.30e+08 4.10e-07
curacy by 1.45% with a 300 times larger network that REFERENCES

consumes 14 times more energy is not such a good
deal.

6 CONCLUSION

In this research, we apply the Improved Firefly Algo-
rithm, a training-free neural architecture search tech-
nique, to automate the model design and find the most
suitable neural network for the chosen dataset. This
method produced interesting results for on the Online
Action Data (OAD) dataset in 48 minutes on a sin-
gle CPU, improving the baseline NAS (using train-
ing over 100 epochs) by a factor of 476 (GPU based)
and a factor of 4400 (CPU based), while improving
(Wang et al., 2023) proposition by a factor of 114.
this method is also 170 times less power consuming
and polluting than training-based NAS using GPU.

While achieving high performance, it is important
to take into account the efficiency of neural networks,
which are growing exponentially. With this in con-
sideration, we propose the benefit cost ratio (BCR), a
metric to evaluate the quality of a neural network in
terms of its performance, but also its cost.

Experimentation on the Online Action Detection
dataset showed that using the IFA provides a little
lower performing model (93.77% of accuracy 95.22%
from the state-of-the-art) but allows reducing the
computation cost in terms of time by a factor of 2.8,
and 14 times in terms of energy consumption and
pollution, by producing a neural network that is 300
times smaller than the VGG16 model.

As a future work, we consider using the BCR as
the fitness of the Improved FireFly algortihm, to bring
the aspect of efficiency into the architecture search.
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