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Abstract: Anticipation surrounds the use of real-world data for data analysis in medicine and healthcare, yet handling
sensitive data demands ethical review and safety management, presenting bottlenecks in the swift progression
of research. Consequently, numerous techniques have emerged for generating synthetic data, which preserves
the features of the original data. Nonetheless, the quality of such synthetic data, particularly in the context of
real-world data, has yet to be sufficiently examined. In this paper, we conduct experiments with a Diagonosis
Procedure Combination (DPC) dataset to evaluate the quality of synthetic data generated by statistics-based,
graphical model-based, and deep neural network-based methods. Further, we implement differential privacy
for theoretical privacy protection and assess the resultant degradation of data quality. The findings indicate
that a statistics-based method called Gaussian Copula and a graphical-model-based method called AIM yield
high-quality synthetic data regarding statistical similarity and machine learning model performance. The paper
also summarizes issues pertinent to the practical application of synthetic data derived from the experimental
results.

1 INTRODUCTION

Real-world data collected from healthcare settings
has attracted attention for propelling new clinical re-
search due to its non-invasive nature for patients and
its potential to constitute big data, thereby reducing
bias. Including personal information in the data ne-
cessitates a substantial investment of person-hours for
ethical review procedures and data protection, thereby
impeding the prompt progression of medical research.
Anonymization techniques, which reduce the risk of
identifying individuals, are crucial in providing data
to third parties without patient consent and stream-
lining the research approval process. Unlike secure
computation (Cramer et al., 2015; Shan et al., 2018),
which facilitates data analysis in encrypted form,
these techniques afford analysts the advantages of
viewing anonymized data that possess similar prop-
erties to the original in a format equivalent to ac-
tual data and conducting analyses in an exploratory
manner. However, conventional anonymization meth-
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Figure 1: Overview of synthetic data generation.

ods, such as k-anonymity (Sweeney, 2002), encounter
an issue where the quality of the anonymized data
significantly diminishes as the data becomes high-
dimensional (Aggarwal, 2005).

The technology of synthetic data generation has
been recognized for its ability to produce new data
while preserving the original statistical properties of
high-dimensional data (Hernandez et al., 2022; Tao
et al., 2021; Sklar, 1959; Zhang et al., 2017; McKenna
et al., 2022; McKenna et al., 2019; Xu et al., 2019).
Specifically, this technology enables the expedited
analysis of synthetic data in a relatively unrestricted
environment, potentially abbreviating the approval
process. Upon securing useful results, researchers
can directly apply them to the original data, deriv-
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ing final results and potentially mitigating research
costs (El Emam, 2020). Nevertheless, to the best
of our knowledge, few studies have concurrently de-
ployed various synthetic data generation techniques to
authentic medical data (Barth-Jones, 2012; Culnane
et al., 2017). Moreover, few studies have simultane-
ously applied various synthetic data generation tech-
niques to real medical data, and insufficient knowl-
edge has been accumulated on the differences among
the techniques and the quality of the generated syn-
thetic data.

In this paper, we generate synthetic data by
using statistics-based, graphical-model-based, and
deep-neural-network-based approaches and evaluate
the quality of the resultant synthetic data. Uti-
lizing the Diagnosis Procedure Combination (DPC)
dataset from Ehime University Hospital as the origi-
nal dataset, we evaluate generated synthetic data from
three critical perspectives: distribution distances, ma-
chine learning model performances, and differences
in correlation matrices. Furthermore, we incorpo-
rate differential privacy (DP) (Dwork, 2006) into each
synthetic data generation method, serving as a theo-
retical privacy framework.

Consequent to the experimental results, we ob-
tained the following conclusions:

• The incorporation of DP enhances privacy protec-
tion while concurrently diminishing the quality of
synthetic data

• The magnitude of quality degradation is contin-
gent upon the synthesis method employed. Gaus-
sian Copula (Li et al., 2014) and AIM (McKenna
et al., 2022) sustained comparatively superior
quality even after applying DP.

2 RELATED WORK

2.1 Synthetic Data Generation

Numerous methods have been proposed for generat-
ing synthetic data, especially concerning tabular for-
matted data, while ensuring DP. Synthetic data gen-
eration approaches for tabular datasets can be catego-
rized into three types. The first type is founded on
basic statistics (Li et al., 2014; Asghar et al., 2020).
The second type leverages graphical models (Zhang
et al., 2017; Zhang et al., 2021; McKenna et al., 2022;
McKenna et al., 2019). Tabular formatted data can
be regarded as features extracted by humans. Since
the graphical models learn relationships among at-
tributes, they produce high-quality synthetic data (Tao
et al., 2021). The third is the deep-neural-network-

based method (Xu et al., 2019; Fang et al., 2022;
Zhao et al., 2022; Chen et al., 2018; Lee et al., 2022;
Kotelnikov et al., 2022; Liew et al., 2022). In this
research, we evaluate one statistics-based method,
three graphical-model-based methods, and one deep-
neural-network-based method, utilizing a real medi-
cal dataset for the assessment.

2.2 Synthetic Data Generation for
Medical Data

Researchers have directed substantial interest toward
using synthetic data generation in the medical field,
mainly focusing on image data (Guibas et al., 2017;
Tajbakhsh et al., 2020). In these applications, prac-
titioners employ synthetic data for data augmenta-
tion and privacy protection. However, the predomi-
nant methods, which are image-specific, present dif-
ficulties when applied to tabular data and do not ac-
count for DP. Although Hernandez et al. investigated
a tabular healthcare dataset (Hernandez et al., 2022),
their research concentrates exclusively on deep neural
network-based synthetic data generation without con-
sidering DP. Our research evaluates several synthetic
data generation techniques in conjunction with DP.

3 METHODOLOGY

Our experiment comprises three components:
datasets, synthetic data generation algorithms, and
evaluation methods. The experiment aims to evaluate
the differences among synthesis algorithms and ana-
lyze DP’s influence. An overview of the experiment
is as follows:

• Apply a synthesis algorithm F : D → D to the
original dataset Dorig. The generated synthetic
dataset F(Dorig) = Dsyn is the same size as the
original dataset Dorig.

• By using an evaluation method E : D ×D → R,
compare Dsyn with Dorig.

3.1 Notations

In this paper, we focus on the tabular format
datasets. A tabular dataset consists of several at-
tributes A1, . . . ,Ad . We can express a record as an el-
ement x ∈ A := A1 ×·· ·×Ad . If a dataset D contains
N records, we can regard D ∈ AN and set a universe
of datasets as D = AN . We set a probabilistic simplex
∆d := {x ∈ Rd | ∑

d
i=1 xi = 1,xi ≥ 0}.
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Table 1: Names and types of attributes of DPC dataset. (n)
means that the number of the attribute values is n.

Name Type
1 Gender categorical (2)
2 Type of admission categorical (7)
3 Emergency admission categorical (2)
4 Length of Stay numerical
5 Height numerical
6 Weight numerical
7 Smoking categorical (2)
8 Pregnancy categorical (2)
9 Independent eating categorical (4)

10 Independence in Activities categorical (4)of Daily Living
11 Independent Mobility categorical (5)
12 Major diagnostic category categorical (18)
13 Surgery categorical (9)
14 Subclassification categorical (10)
15 Secondary disease categorical (3)

3.2 Dataset

This research uses a DPC dataset from Ehime Uni-
versity Hospital. This dataset has been extracted from
the data warehouse, which encompasses DPC data
from 2010 to 2013, to analyze the impact of 15 at-
tributes on length of hospital stay: gender, type of ad-
mission, emergency admission, length of stay, height,
weight, smoking, pregnancy, independent eating, in-
dependence in activities of daily living, independent
mobility, major diagnostic category, surgery, subclas-
sification, and secondary disease. Table 1 delineates
the information for each category. All categorical data
are encoded into one-hot vectors. Records containing
missing values were excluded from the dataset, and
the number of records became 9,666.

3.3 Synthesis Algorithm

In this research, we implement five synthesis algo-
rithms, as listed in Table 2. Generally, a synthesis
algorithm F : D → D is decomposed into two steps,
as shown in Fig.1. The first step is to extract gener-
ative parameters Fext : D → Rp. Generative parame-
ters are compressed information needed for the gener-
ation, such as basic statistics or trained machine learn-
ing model parameters. The second step is to generate
synthetic data from the extracted generative parame-
ters Fgen : Rp → D .

Moreover, we use DP, which is known as the gold
standard of the privacy protection framework (Dwork,
2006; Dwork et al., 2014). We add intentional noise
to the generative parameter θ = Fext(D) to satisfy DP.
The formal definition is as follows.

Definition 3.1 (Differential privacy (Dwork, 2006;
Dwork et al., 2014)). A randomized function M :
D → Y satisfies (ε,δ)-DP ((ε,δ)-DP) if for any
neighboring D,D′ ∈ D and S ⊂ Y

Pr[M (D) ∈ S]≤ eε Pr[M (D′) ∈ S]+δ.

In particular, M satisfies ε-DP if it satisfies (ε,0)-DP.

If ε is smaller, it means that the output is more se-
cure. We also interpret the case we do not add any in-
tentional noise as ε = ∞. The stronger the protection,
the worse the quality of outputs. δ can be regarded
as a permissible error. This research investigates the
case ε = ∞,8,4,2,1 and δ = 10−5.

3.3.1 Statistics-Based Methods

We evaluate the Gaussian Copula-based synthetic
data generation as a statistics-based method (Sklar,
1959; Li et al., 2014). The Gaussian Copula’s genera-
tive parameters are the original dataset’s mean vector
µ, the correlation matrix S, and the marginal distribu-
tion H1, . . . ,Hd . For the DP version, we use the im-
plementation by Li et al. (Li et al., 2014). We denote
this method by GCopula.

3.3.2 Graphical-Model-Based Methods

We evaluate PrivBayes (Zhang et al., 2017), MWEM-
PGM (McKenna et al., 2019), and AIM (McKenna
et al., 2022) as graphical-model-based methods.
PrivBayes trains important relations between at-
tributes and expresses the relation as a directed
acyclic graph. When generating data, attribute values
are sampled in accordance with the graph. AIM and
MWEM-PGM are similar methods that learn condi-
tional probability tables to satisfy DP and sample data
from them. These methods are denoted by Bayes,
MWEM, and AIM.

3.3.3 Deep-Neural-Network-Based Methods

We evaluate Conditional Tabular Gan, CTGAN (Xu
et al., 2019), as a deep-neural-network-based method.
The differentially private version of CTGAN is imple-
mented by smart-noise1. In this method, we train deep
neural networks with DP-SGD (Abadi et al., 2016).
This method is denoted by CTGAN.

3.4 Evaluation Methods (Quality of
Synthetic Data)

In this research, we evaluate the quality of the syn-
thetic dataset Dsyn, which is the same size as the orig-

1https://docs.smartnoise.org/synth/index.html
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Table 2: Synthesis algorithms in our experiment.

Synthesis algorithm Description Generative parameter
Gaussian Copula (Li et al., 2014) GCopula Statistics
PrivBayes (Zhang et al., 2017) Bayes Directed acyclic graph, conditional probability
MWEM-PGM (McKenna et al., 2019) MWEM Total joint distribution
AIM (McKenna et al., 2022) AIM Total joint distribution
CTGAN (Xu et al., 2019) CTGAN Model parameter of deep neural network

inal dataset Dorig, from three perspectives: distribu-
tion distances, machine learning model performances,
and differences in correlations. Distribution distance
is a broad measure, and machine learning model per-
formance is a narrow measure (Drechsler and Reiter,
2009; Dankar et al., 2022). We also evaluate the ab-
solute difference in correlations to compare relations
explicitly. Let E : D ×D → R be an evaluation func-
tion.

3.4.1 Evaluation by Distribution Distances

The first evaluation is by statistical distribution dis-
tances Edist : D × D → R between Dorig and Dsyn.
For each attribute, we evaluate the statistical distance
of 1-way marginals. For the statistical distances, we
use L1 distance, L2 distance, Hellinger distance, and
Wasserstein distance. The definitions are as follows.

Definition 3.2 (Lp norm). For x,y ∈ ∆d , the Lp norm
is defined as

||x− y||p := (
d

∑
i=1

|xi − yi|p)
1
p .

We use the case when p = 1 or p = 2.

In a previous work, Hellinger distance was re-
garded as the best utility metric to rank synthetic data
generation algorithms (El Emam et al., 2022).

Definition 3.3 (Hellinger distance). For x,y ∈ ∆d , the
Hellinger distance is defined as

Hel(x,y) :=

(
d

∑
i=1

√
xi −

√
yi

)2

.

Definition 3.4 (Wasserstein distance). For x,y ∈ ∆d ,
the Wasserstein distance or the Earth-Mover dis-
tance is defined as

Was(x,y) := inf
γ∼Γ(x,y)

E(a,b)∼γ[|a−b|],

where Γ(x,y) is the set of all couplings of x and y. A
coupling γ is a joint probability measure on Rd ×Rd

whose marginals are x and y on the first and second
factors, respectively.

3.4.2 Evaluation by the Difference of Machine
Learning Model Performances

The second evaluation is the differences in machine
learning model performances. Since DPC datasets
are often used to predict the length of hospital stays,
we train a regression model to predict length of stay
(fourth attribute in Table 1) with LightGBM, which
is a simple but high-performing machine learning
model. We compare machine learning models trained
by Dsyn with Dorig.

The accuracy of models is evaluated by using the
root-mean-square error (RMSE). For a trained model
f , the error is defined by

RMSE( f ,D) =

√
1
n

n

∑
i=1

(yi − f (xi))2,

where D = {(xi,yi)}i=1,...,n. We evaluate RMSE of a
trained model with a synthetic dataset Dsyn. Thus, the
evaluation function Eml : D × D → R is defined as
Eml(Dorig,Dsyn) = RMSE( fsyn,Dorig), where fsyn is a
trained model with Dsyn.

3.4.3 Evaluation by the Difference of
Correlation Matrices

The third evaluation is the difference in correlation
matrices. The correlation matrix is defined as follows:

Definition 3.5 (Correlation matrix). For data samples
x1, . . . ,xm ∈ Rd , set its mean vector as µ ∈ Rd . Then,
a matrix R ∈ Rd×d whose (i, j)-th component is

Ri j =
∑

d
k=1(x

k
i −µi)(xk

j −µ j)√
∑

d
k=1(x

k
i −µi)2

√
∑

d
k=1(x

k
j −µ j)2

is called the correlation matrix.

We calculate the correlation matrices of Dorig and
Dsyn. We evaluate only numerical attributes and com-
pute the absolute error of each component. Thus, the
evaluation function Ecor : D ×D → Rn×n is defined
as (Ecor(Dorig,Dsyn))i, j = |Rorig

i j −Rsyn
i j |, where n is the

number of numerical attributes.
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Figure 2: Result of categorical attributes distance. L1 dis-
tance, L2 distance, Hellinger distance, and Wasserstein dis-
tance from the top.

4 RESULTS

We generated synthetic data five times under the same
conditions and calculated the average of the evalua-
tion values. In this section, we report the results.

4.1 Distribution Distance Results

Figures 2 and 3 display the evaluation results by dis-
tribution distances, separating the graphs of categor-
ical and numerical attributes due to differing scales.
The results of all attributes are shown in Appendix.
Values represent the means of all categorical or nu-
merical attributes, respectively. Notably, the distance
is regarded as a loss.

First, the losses for ε = ∞, representing a non-
differentially private case, are small. Also, the losses
significantly increase as the values of ε decrease, en-
hancing the robustness of the protection by DP.

CTGAN and differentially private Bayes exhibit
more substantial losses when synthesizing algorithms
are compared, while GCopula, MWEM, and AIM demon-
strate lesser losses.

4.2 Machine Learning Model
Performance Results

Fig. 4 illustrates the results of machine learning model
performances, with the red line expressing RMSE for
the original dataset. Non-differentially private results
for each synthesis algorithm (ε = ∞) align closely

Figure 3: Result of numerical attributes distance. L1 dis-
tance, L2 distance, Hellinger distance, and Wasserstein dis-
tance from the top.

with the original. The quality of the synthetic data
discernibly declines as ε increases. Specifically, the
results from differentially private Bayes and CTGAN
are inferior, while those of GCopula and AIM remain
proximate to the original results, even when differen-
tially private.

4.3 Difference in Correlations Results

Fig. 5 presents the results in cases where ε = ∞, the
absolute losses of GCopula and Bayes are small. Ad-
ditionally, losses become more significant as ε in-
creases, resulting in differentially private CTGAN being
the worst.

5 DISCUSSION

5.1 Quality of Synthetic Data

The three evaluation methods reveal that the losses
associated with non-differentially private synthesis
remain sufficiently small, while DP diminishes the
quality of synthetic data. In differentially private
cases, the magnitude of the losses varies among syn-
thesis methods. This indicates the potential for en-
hancing the quality of synthetic data by strategi-
cally devising DP. Notably, the recently proposed
AIM achieves noteworthy experimental results consis-
tently. AIM manifests negligible deterioration in the
quality of the synthetic data when implementing DP.
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Figure 4: Results of machine learning model performances: RMSEs of a trained LightGBM regression model.

Figure 5: Results of differences in correlations

5.2 Evaluation Methods

This study employs L1 distance, L2 distance,
Hellinger distance, and Wasserstein distance as eval-
uative metrics, which are widely utilized in studies
measuring the quality of synthetic data and prove
highly useful when assessing the ”relative” quality
thereof. These metrics indicate that AIM exhibits no-
tably superior results to other methods.

Conversely, to facilitate absolute evaluations with
qualitative significance, it is necessary to assume re-
alistic use cases for evaluations by machine learning
performance and ascribe meaning to the magnitude of
errors.

5.3 Towards Practical Use

Discussion has yet to emerge regarding whether us-
ing synthetic data for personal data is subject to the
agenda of Ethics Review Committees. Conversely,
Guo et al. have reported that they did not require
an ethical review because the synthetic data contained

no information that could lead to the identification of
individual patients (Guo et al., 2020). It has been
posited that, should synthetic data gain recognition
as a viable option for privacy considerations, obtain-
ing approval from ethics committees may become un-
necessary (Azizi et al., 2021). In a case wherein an
organization inadvertently disclosed the personal in-
formation of numerous individuals online while test-
ing a cloud solution, the Norwegian Data Protection
Authority (Datatilsynet) highlighted that testing could
have been conducted by processing synthetic data or
using less personal data 2. This ruling also implies
that synthetic data may be recognized as having the
potential to exclude information that leads to personal
identification.

Furthermore, DP can potentially enhance the se-
curity of such synthetic data. Therefore, DP is antici-
pated to minimize discussions concerning anonymous
processing and expedite the progression of research.
Nonetheless, studies have examined attacks that de-
duce the original data from synthetic data (Stadler
et al., 2022), necessitating further research to ensure
its security.

6 CONCLUSION

In this research, employing the a Diagnosis Procedure
Combination (DPC) dataset, we experimentally eval-
uated synthetic data generation techniques’ effective-
ness using statistic-based, machine-learning model-
based, and deep neural network-based methods. The
investigation clarified the differences in performance
among the methods, attributing them to variations in
the amount of source data and the degree of accuracy
degradation when implementing differential privacy.
Further, we discussed issues that must be addressed
to apply synthetic data generation techniques more ef-
fectively.

2https://www.dataguidance.com/news/norway-datatil
synet-fines-nif-nok-12m-disclosing
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APPENDIX

Results of All Attributes

The results of distribution distances for each attribute
are shown in Fig. 6, 7, 8 and 9.

Figure 6: The values of L1 distance of each attribute.

Figure 7: The values of L2 distance of each attribute.

Figure 8: The values of Hel. distance of each attribute.

Figure 9: The values of Was. distance of each attribute.
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