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Abstract: Learning multiple sequentially arriving tasks without forgetting previous knowledge, known as Continual
Learning (CL), remains a long-standing challenge for neural networks. Most existing CL methods rely on
data replay. However, they are not applicable when past data is unavailable or is not allowed to be syntheti-
cally generated. To address this challenge, we propose Sparification and Expansion-based Continual Learning
(SECL). SECL avoids forgetting of previous tasks by ensuring the stability of the CNN via a stability regu-
larization term, which prevents filters detected as important for past tasks to deviate too much when learning
a new task. On top of that, SECL makes the network plastic via a plasticity regularization term that leverage
the over-parameterization of CNNs to efficiently sparsify the network and tunes unimportant filters making
them relevant for future tasks. Also, SECL enhances the plasticity of the network through a simple but effec-
tive heuristic mechanism that automatically decides when and where (at which layers) to expand the network.
Experiments on popular CL vision benchmarks show that SECL leads to significant improvements over state-
of-the-art method in terms of overall CL performance, as measured by classification accuracy as well as in
terms of avoiding catastrophic forgetting.

1 INTRODUCTION

In recent years, convolutional neural networks
(CNNs) trained on massive amounts of data have
achieved impressive results in diverse domains, such
as medical imaging (Hering et al., 2022), object de-
tection (Sharma et al., 2022) or face recognition
(Schofield et al., 2023), often surpassing human ca-
pabilities. However, they typically rely on the strong
assumptions that (i) all data are available at the same
time and (ii) the data are independently and identi-
cally distributed (IID). These assumptions are vio-
lated in many practical applications that either deal
with non-stationary data distributions or involve sce-
narios where data is not available at the same time
but is generated sequentially. For example, a robot
trained in a factory with a set of standard object recog-
nition capabilities and deployed in a home or building
may need to adapt to new areas and even solve new
location-specific object recognition tasks. Another
example is data privacy, where previous data must of-
ten be deleted after a certain period of time to protect
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user privacy, resulting in data from previous tasks not
being available anymore when learning new tasks.

In such scenarios, if there is a domain shift be-
tween tasks and the model learner cannot access all
tasks data at once, therefore focusing its learning ex-
clusively on the data of the current task, a drop in
performance occurs on the old tasks, a phenomenon
referred to as catastrophic forgetting (Hayes et al.,
2020). Overcoming catastrophic forgetting while lim-
iting computational cost and memory requirements is
the focus of Continual learning (CL), also known as
lifelong- or sequential learning.

At the heart of catastrophic forgetting is the
stability-plasticity dilemma (Grossberg, 1987), where
a model balances between integrating new knowledge
(plasticity) and preserving previously acquired ones
(stability). If the model is naively trained on each
new task without any measures against forgetting, it
will be plastic but not stable, meaning that it can learn
fast, but also forgets quickly. On the other hand, if
too much attention is paid on stabilizing the previ-
ously learned knowledge, it will lack plasticity, i.e.,
sufficient capacity to learn new tasks. Lose of balance
between stability and plasticity would deteriorate the
performance of the continual learner model.
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Previous work has addressed the stability aspect
by identifying weights that were important in learn-
ing old tasks and either freezing them or constraining
them not to change significantly (Kirkpatrick et al.,
2017; Smith et al., 2023). Plasticity, on the other
hand, is typically handled by expanding the network
so that the additional capacity can focus on assimi-
lating new knowledge (Ostapenko et al., 2019; Gur-
buz and Dovrolis, 2022). However, many expansion-
based CL methods introduce new filters/neurons with-
out optimizing the use of existing capacity (Yoon
et al., 2017; Yan et al., 2021).

In this paper, we tackle the problem from a novel
angle that leverages sparsification to seek a better bal-
ance between stability and plasticity. Specifically, we
propose to sparingly use the available network ca-
pacity before considering network expansion. Taking
into account that neural networks are overparameter-
ized, so that there is often more capacity than needed
to learn a given task (Sankararaman et al., 2020), our
Sparification and Expansion-based Continual Learn-
ing (SECL) method aims to regularize the parameters
update so that the sparsity of the weights is reinforced
during learning.

After learning a task t, we identify two categories
of filters: (i) those that were crucial for learning that
task, which we constrain to remain stable via a sta-
bility regularizer, and (ii) those that remained unused
due to sparsification, which we reinitialize to learn fu-
ture tasks. For scenarios with a limited number of
tasks, such a sparsification strategy can effectively ad-
dress the stability-plasticity dilemma. However, when
faced with a continually increasing number of tasks,
this approach becomes less effective as the network
capacity eventually saturates after assimilating a spe-
cific number of tasks.

Consequently, there are two initial situations in the
training process of a new task t: (i) the capacity limit
has not yet been reached, the available filters can be
used to learn this task, (ii) the capacity limit has been
reached, further learning inevitably leads to forget-
ting, hence the capacity must be expanded. CL ap-
proaches based on network expansion often grow the
network every time a new task arrives (Rusu et al.,
2016; Yan et al., 2021), whereas our method incor-
porates a strong heuristic to decide when to expand
the network. Moreover, typical CL expansion meth-
ods often add new filters either at every layer or only
at higher (classification) layers. In contrast, our ap-
proach allows us to add capacity only where it is
needed.

For the remainder of the paper, we will outline
four main contributions of our SECL methods:

• SECL uses sparsity to improve CL. Instead of the

common practice of using a dense architecture,
we reinforce a sparse network architecture during
the learning of each task, which ensures the plas-
ticity of the network with respect to future tasks.

• Unlike dense architectures, sparse architectures
allow us to rewire connections. This reactivates
unused filters, allowing new knowledge to be en-
coded.

• SECL preserves previously acquired knowledge
by penalizing deviations in key parameters for
past tasks.

• Finally, SECL provides a strong heuristic for de-
ciding when and where to expand a continual
learning network.

2 RELATED WORK

Continual learning has received considerable atten-
tion in recent years. In this section, we pro-
vide a brief survey of current state of the art ap-
proaches to address CL. These approaches are typi-
cally categorized in 3 mains groups: expansion-based
methods, regularization-based methods, and memory-
based methods. We will elaborate more on the first
group since the work presented in this paper fall into
this category. For an exhaustive survey, see (Parisi
et al., 2019; Zhou et al., 2023).

Expansion-Based Methods. This first group deals
with continual learning by dynamically increasing the
capacity of the network to reduce interference be-
tween new tasks and old ones (Hung et al., 2019;
Yan et al., 2021; Douillard et al., 2022; Wang et al.,
2022a). The key idea is to dedicate different sub-
sets of the final network to each task. One notable
work is Progress & Compress (P&C) (Schwarz et al.,
2018), which extends the network architecture for
new tasks and freezes the parameters learned for old
tasks. Thus, new capacities are added to learn new
tasks while previous knowledge is preserved by the
frozen weights. Similarly, Dynamically Expandable
Representation (DER) (Yan et al., 2021) freeze the
previously learned representation and augment it with
additional feature dimensions from a new learnable
feature extractor. Both approaches, however, focus on
the stability of the network, thereby largely neglect-
ing its plasticity for learning new tasks. Our work
addresses this shortcoming via the introduced plas-
ticity regularizer. Another notable difference in our
approach is that prior methods typically work at a pa-
rameter level (individual parameter of a convolution
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filter for example), whereas ours works on a group of
parameters (the entire filter).

Others expansion-based approaches promote a
sparse architecture similar to ours, but have some lim-
itations. For instance, CPG (Hung et al., 2019) iter-
atively removes a small portion of the weights and
retrains the remaining weights to restore the original
performance. The procedure terminates when a pre-
defined accuracy target is reached, for which the dif-
ficulty of the task must be known in advance. SparCL
(Wang et al., 2022b) uses a task-aware dynamic mask-
ing strategy to keep only important weights for both
the current and past tasks, with special consideration
during task transitions. However, the method assumes
a rehearsal buffer to be available throughout the con-
tinual learning process. SNCL (Yan et al., 2022) em-
ploys variational Bayesian sparsity priors on the ac-
tivations of the neurons in all layers to only activate
and select sparse neurons for learning current and past
tasks at any stage. However, they use a full experi-
ence replay to provides effective supervision in learn-
ing the sparse activations of the neurons in different
layers.

Regularization-Based Methods. This second
group preserves prior knowledge by imposing penal-
ties on significant deviations of parameters deemed
crucial for earlier tasks (Maschler et al., 2021; Liu
and Liu, 2022; Bonicelli et al., 2023; Smith et al.,
2023). Thus, a key component is how to measure the
importance of each network parameter in learning a
given task. Notably, to determine weight importance,
HAT (Serra et al., 2018) learns hard attention masks,
MAS (Aljundi et al., 2018) evaluates the sensitivity of
model outputs to inputs in an unsupervised manner,
and PIGWM (Zhou et al., 2021) uses a full Hessian
matrix.

Memory-Based Methods. The final group stores
training examples for each old task (Rolnick et al.,
2019; Douillard et al., 2022; Yoon et al., 2021; Cac-
cia et al., 2022) or generates pseudo-examples of the
old tasks (Lesort et al., 2019; Douillard et al., 2020;
Sokar et al., 2021; Zeng et al., 2023). These stored or
generated examples are afterwards used jointly when
learning new tasks.

Methods in this last category are the oldest tech-
nique to deal with continual learning. However, con-
cerns about data protection and privacy (storing or re-
generating old task data) have led continual learning
research focus on regularized- and expansion-based
methods. The framework proposed in this paper inte-
grates these two techniques into a robust CL approach
capable of handling an infinite stream of tasks.

3 METHOD

Before describing our approach, we briefly introduce
the formalism and notation used throughout the paper.

3.1 Notation

We consider T sequentially arriving and previously
unknown, image classification tasks of supervised
learning

{
T 1, · · · ,T T

}
. Each task T t consists of a

set of classes to be learned together and has a training
set Dt

train = {(xt
s,y

t
s)}mt

s=1, where xt
s is an input sample,

yt
s is its class label, and mt is the number of train-

ing samples. Similarly, the validation and test data
sets are denoted as Dt

valid and Dt
test , respectively. We

further denote l ∈ {0, · · · ,L} as a layer of the net-
work and Fl as the number of its filters. Furthermore,
fl,i (i ∈ {1, · · · ,Fl}) denotes the i-th filter in layer l,
θl,i its parameters and Ωl,i its importance. Addition-
ally, we denote the activation of filter fl,i by a fl,i(xs),
where xs is the input that generates this activation. Fi-
nally, θt = {θt

l}1≤l≤L with θt
l = {θt

l,i}1≤i≤Fl denotes
the network parameters at task t.

3.2 Preventing Forgetting

Filter Importance Ω
t−1
l,i at Learning T t−1. To

tackle the catastrophic forgetting challenge described
in Section 1, we use a strategy similar to Kirkpatrick
et al. (Kirkpatrick et al., 2017), which consists of
preventing weights that have been identified as im-
portant for past tasks from deviating too much when
learning new tasks. However, while Kirkpatrick et al.
use an approximation of the Fisher information ma-
trix (which is computationally expensive and requires
storing and manipulating large matrices) to measure
weight importance, we use the post-activation aver-
aged over all training samples. Moreover, while they
((Kirkpatrick et al., 2017)) operate on an individual
parameter level, our method works on a group of pa-
rameters, i.e. the entire filter.

Specifically, we quantify the importance Ω
t−1
l,i of

a filter i in layer l at learning task t −1 as the average
standard deviation of its post-activation value over all
training samples at task t −1.

The standard deviation σ
t−1
fl,i

of a filter’s post-

activation a fl,i across all mt−1 training samples can be
computed as:

σ
t−1
fl,i

=

√√√√ 1
mt−1

mt−1

∑
s=1

(
a fl,i(xs)− â fl,i

)2
, (1)

where a fl,i(xs) is the ReLU activation value of filter
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Spasification Expansion

Figure 1: Overview of SECL. On the left, All neurons are unimportant at first. SECL trains on Task T 1 with the sparsity
regularizer as per Eq. 4, identifying neurons crucial for T 1. In the center, during Task T 2, the network trains with both
sparsity and stability regularizers to preserve knowledge from the first task; neurons important for T 1 are highlighted in blue.
On the right, by the time task T 3 arrives, almost all neurons have been marked as important for prior tasks, necessitating
the addition of new capacity (depicted in yellow) to accommodate T 3. At this stage, the network is further trained with the
sparsity regularizer in order to use the additional capacity sparingly.

fl,i for the training sample xs ∈ Dt−1
train and â fl,i is the

average activation.
The intuition behind this method of quantifying

filter importance is based on the observation that one
of the reasons for the popularity of the ReLU activa-
tion functions is that it induces sparsity in activations.
Hence, it is reasonable to assume that if the output
activation value of the filter is low, then the feature
detected by that filter (and thus the filter itself) is not
important for learning the current task.

Filter Importance Ω
t−1
l,i at Learning T 1 up to T t−1.

When learning a task T t−1 with t > 2, we need to
account for the importance of each filter for past
tasks

{
T 1, · · · ,T t−2

}
, to ensure stable performance

on those tasks while adapting to new ones. Therefore,
we update the importance of a filter fl,i in learning T 1

to T t−1 as follows:

Ω
t−1
l,i = γ Ω

t−2
l,i +Ω

t−1
l,i , (2)

where Ω
t−2
l,i is the importance of fl,i in learning T 1

up to T t−2, Ω
t−1
l,i is the importance of fl,i in learning

T t−1 and γ is a parameter weighting the importance
of fl,i before and after learning T t−1.

Loss Function at Learning T t . When learning a
new task T t with t > 1, we can restrict filters that were
important in learning past tasks

{
T 1, · · · ,T t−1

}
from

changing too much, so that performance on those pre-
vious tasks is maintained. Remember that at this stage
the importance of each filter in learning task T 1 up to
T t−1 is given by Ω

t−1
l,i as defined in equation 2.

The training objective in learning task t can then
be formulated as:

Lt
CL(θ

t) = Lt
CE(θ

t)+λs

L

∑
l=1

Fl

∑
i=1

Ω
t−1
l,i ∥θ

t
l,i −θ

t−1
l,i ∥2

2 ,

(3)
where, Lt

CL is the continual learner loss during train-
ing at T t , Lt

CE is the cross-entropy loss and λs sets the
influence of the stability penalty.

Equaton 3 ensures the stability of the network on
previous tasks. The next challenge is to equip the net-
work with a sparsification scheme that ensures opti-
mal use of its capacity during the learning of each
task.

3.3 Network Sparsification

Sparsity Regularizer at Learning T t . Even if a
network has enough capacity to learn a given task,
care must be taken to use it sparingly. Therefore, in-
stead of directly expanding the network as traditional
expansion-based CL methods do, our approach em-
ploys a sparsification mechanism to first use the ca-
pacity of the network in a sustainable manner.

Our sparification mechanism is inspired by model
pruning and compression techniques. This appealing
area of research aims to reduce the size of a model
by removing redundant or less important parameters.
Methods to achieve this generally consist of equip-
ping the objective function with a sparsity regularizer
acting on the network parameters. The most popu-
lar choice for such a regularizer is the group spar-
sity regularizer introduced by Yuan et al. (Yuan and
Lin, 2006), which promotes feature sharing. Feature
sharing is desired in the front layers of a CNN, which
act as feature extractors. However, at deeper layers,
which aim to differentiate between classes, it is more
useful to use a sparsity regularizer that promotes fea-
ture discrimination. Such a regularizer has been pro-
posed in the concepts of sparse group lasso or exclu-
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sive sparsity in (Zhou et al., 2010). We use both the
ideas of group sparsity and exclusive sparsity in our
model, which allows us to write the sparsity regular-
izer (which we also denote as plasticity regularizer)
as follows:

R(θt) =
L

∑
l=1

Fl

∑
i=1

ζl∥θ
t
l,i∥2

2︸ ︷︷ ︸
Group sparsity

+
L

∑
l=1

Fl

∑
i=1

(1−ζl)

2
∥θ

t
l,i∥1 ,︸ ︷︷ ︸

Exclusive sparsity
(4)

where ζl = 1− l
L−1 sets the influence of both terms,

giving more influence to group sparsity in front lay-
ers, while exclusive sparsity dominates in deeper lay-
ers.

Updated Loss Function at Learning T t . At this
stage, our method summarizes as follows: during the
first task (t = 1), the network is trained with the spar-
sity regularizer only (Eq. 4). Next, we compute the
importance Ωt=1

l,i of each filter in learning T t=1. By
binarizing Ωt=1

l,i based on a threshold, we can divide
the parameter set θ into two parts, namely the parame-
ters that were important for learning T t=1, denoted by
θ+, and the superfluous parameters that were not im-
portant, denoted by θ−. When training further tasks
T t with t > 1, Eq. 3 and Eq. 4 can be combined to si-
multaneously (i) prevent forgetting past tasks (by con-
straining θ+ not to change too much) and (ii) induce
sparsity (over θ−) such that only a minimal capacity
of θ− is used to learn T t .

The final training objective taking into account
θ+, θ− and combining the stability regularizer (sec-
ond part of Eq. 3) and the plasticity regularizer (Eq.
4) can then be framed as

Lt
CL(θ

t) = Lt
CE(θ

t)+λs

L

∑
l=1

Fl

∑
i=1

∀θl,i∈θ
t−1
+

Ω
t−1
l,i ∥θ

t
l,i −θ

t−1
l,i ∥2

2

+λp

L

∑
l=1

Fl

∑
i=1

∀θl,i∈θ
t−1
−

ζl∥θ
t
l,i∥2

2

+λp

L

∑
l=1

Fl

∑
i=1

∀θl,i∈θ
t−1
−

(1−ζl)

2
∥θ

t
l,i∥1 , (5)

where λs and λp control the amount of stability
and plasticity (sparsity) regularization applied to the
model.

In order to minimize this training objective
(Eq. 5), we follow a proximal gradient descent ap-
proach (Parikh and Boyd, 2014). In our context, prox-
imal gradient descent (PGD) can be regarded as iter-
atively taking a gradient step with respect to Lt

CE(θ
t)

only, and then, from the resulting solution, applying
the proximal operator of the stability and sparsity reg-
ularizer. In this setup, we apply the proximal operator
at the end of each epoch and run the algorithm for a
fixed number of epochs.

Algorithm 1 describes our learning process for
sparification and catastrophic forgetting prevention.

Algorithm 1: Sparsity and Preventing Forgetting.

Input: D = (D1, · · · ,DT )
Output: θT

for t = 1, · · · ,T do
if t = 1 then

Train the network parameters θt=1 using
Eq. 4;

else
Compute importance Ω

t−1
l,i of each filter

in learing
{

T 1, · · · ,T t−1
}

using Eq. 2;
Train the network parameters θt using

Eq. 5, following a PGD optimization
as proposed in (Parikh and Boyd,
2014) ;

end
end

3.4 Network Expansion

Even with a sparsification scheme as presented in the
previous section, there may still come a point where
network expansion becomes inevitable. This is par-
ticularly true if (i) the number of learning tasks is in-
finitely large, or (ii) there is a significant variability
in task complexity, depending on the initial capacity
of the network. In both scenarios, our method intro-
duces additional filters into the network to capture the
features needed to represent the new task. However,
extending a network in a continual learning setting
presents specific challenges. We categorized these
challenges into three main groups, namely “scalabil-
ity”, “heuristics”, and “dealing with additional param-
eters”. The remainder of this section discusses each
of these challenges in detail.

Scalability. The expansion of network capacity nat-
urally leads to escalated training and storage costs.
Many expansion-based continual learning methods
(Yan et al., 2021), freeze the parameters related to old
tasks to maintain performance, while adapting only
the newly added parameters to the new task. This
results in a model architecture whose complexity is
proportional to the number of tasks, thus resulting in
a highly redundant structure. To mitigate this signifi-
cant drawback, we applied the sparsity-inducing reg-
ularization, as described in equation 4, to the filters
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Figure 2: Evolution of important filters during the CIFAR-
10/100 continual learning experiment: The plot shows the
cumulative number of filters identified as important after the
completion of each task.

introduced during expansion. Another feature of our
method is the strategic addition of filters, specifically
targeting layers where the number of unimportant fil-
ters falls below a predefined threshold. These two key
characteristics allow a sustainable utilization of both
the initial and the added capacity of the network, thus
significantly improving the scalability of our method.

Heuristics. A major challenge in expansion-based
continual learning approaches is to decide when to ex-
pand the network. At task t, if the previously learned
parameter θt−1 is able to effectively describe the new
task, then network expansion, i.e., expansion of the
parameter space, may not be necessary. On the other
hand, if the previously learned features are not able to
effectively describe the new task, then introducing ad-
ditional filters becomes essential to accommodate the
features needed to learn the new task. In view of this,
there is a need for a robust heuristic capable to trigger
network expansion when there is insufficient free ca-
pacity, or available filters, to assimilate the new task
effectively.

Some works has proposed such heuristics to guide
network expansion (Zhou et al., 2012; Yoon et al.,
2017; Hung et al., 2019). However, their efficiency
is often hampered by the fact that they require re-
peated passes through an iterative training process
(Zhou et al., 2012), or by the introduction of hard
requirements such as a threshold on either the loss
(Yoon et al., 2017) or the accuracy (Hung et al., 2019),
beyond which the network is expanded, which in both
cases require knowing the task difficulty in advance.
In constrast, we propose a simple yet effective heuris-
tic to guide the network expansion. Our heuristic
is based on a component of the objective function,
namely the filters’ importance vector Ωt and thus does
not require any additional assumptions about the task
itself.

Specifically, when a predetermined percentage of
the network’s total filters are marked as important, we

...

...
layer lInput

layer layer l +1
Output
layer

Figure 3: Schematic overview of the network expansion
module: unimportant neurons are shown in white, impor-
tant neurons in blue, and newly added neurons in yellow.

inspect the number of important filters within each
layer. Additional filters are then introduced into lay-
ers where the available capacity is deemed to be in-
sufficient. This allows our method to dynamically de-
termine when to expand the network, and precisely
how many filters should be added to each layer. Fig-
ure 2 provides a comprehensive view of the evolution
of the filter importance vector {Ωt}T

t=1 for the cifar-
10/100 experiment. As evident from the figure, the
more tasks are learned, the more filters are used and
flagged as important.

Dealing with Additional Parameters. Another
crucial aspect in network expansion is the handling
of added filters or connections (in the context of a
dense network). We will demonstrate our approach
on a dense network (see Figure 3), where a “connec-
tion” represents a 2D kernel in a 3D convolution filter.

Consider the case where two consecutive layers,
labeled l and l + 1 are expanded by adding two and
one neurons, respectively, as depicted in Figure 3. In
this figure, the yellow-filled neurons symbolize the
newly added neurons, while the yellow-dashed neu-
ron represents the output neuron specifically added
for the current task. This expansion process yields
three distinct sets of parameter matrices:

• Matrix θexpand,1 = [θin
l−1,l ;θin

l,l+1] representing the
incoming connections between each newly added
neuron and the existing neurons in the layer be-
low it. These connections are indicated in green
in Figure 3.

• Matrix θexpand,2 = [θin,out
l,l+1 ] outlining the intercon-

nections among the newly added neurons them-
selves, which are shown in blue in Figure 3.

• Matrix θexpand,3 = [θout
l,l+1;θout

l+1,l+2] designating
the outgoing connections from each added neuron
to the existing neurons in the layer above it. These
connections are highlighted in red in Figure 3.

Each of these matrices plays a distinct role in integrat-
ing the newly added neurons into the existing network
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architecture. Specifically, θexpand,1 (green connec-
tions) and θexpand,2 (blue connections) can be trained
without any restrictions. However, care must be taken
when dealing with θexpand,3 (red connections), other-
wise, the information flowing to important neurons in
layers l +1 and l +2 may change during the learning
of the current task, resulting to catastrophic forgetting
of previous knowledge.

To avoid this, we introduced an additional reg-
ularization term ∑

θ
expand,3
+

∥θt
l,i||22 into the objective

function. This term serves to strongly constrain the
magnitude of θexpand,3 (red connections) specifically
on neurons deemed important, thereby minimizing
any potential interference with the retention of pre-
viously acquired knowledge. This strategy provides a
balanced approach that allows for network expansion
while maintaining the integrity of prior learning.

Accordingly, the learning objective changes when
training with the network extension towards:

Lt
CL(θ

t) = Lt
CE(θ

t)+λs

L

∑
l=1

Fl

∑
i=1

∀θl,i∈θ
t−1
+

Ω
t−1
l,i ∥θ

t
l,i −θ

t−1
l,i ∥2

2

+λp

L

∑
l=1

Fl

∑
i=1

∀θl,i∈θ
t−1
−

ζl∥θ
t
l,i∥2

2

+λp

L

∑
l=1

Fl

∑
i=1

∀θl,i∈θ
t−1
−

(1−ζl)

2
∥θ

t
l,i∥1

+λe

L

∑
l=1

Fl

∑
i=1

∀θl,i∈θ
expand,3
+

∥θ
t
l,i∥2

2 , (6)

where λe is a hyperparameter that regulates the ex-
tent of expansion regularization. The optimization of
this modified learning objective is carried out using
a proximal gradient descent approach, already men-
tioned in Section 3.3. For an in-depth view of the
proximal gradient descent method see (Parikh and
Boyd, 2014).

Algorithm 2 presents the overall SECL frame-
work.

4 EXPERIMENTS

Following, we present the empirical evaluation results
comparing our work with various state-of-the-art con-
tinual learning baselines under different experimental
settings. All experiments are performed using the py-
torch library, and all results are averaged over five dif-
ferent random seeds.

Algorithm 2: Sparsification and Expansion-based CL
(SECL) Algorithm.

Input: Model parameters θ,
Task Dataset D = (D1, · · · ,DT ),
Threshold τ

Output: θT : Model parameters after training
on the last task T T

for t = 1, · · · ,T do
if t = 1 then

Train the network parameters θt=1 using
the sparsity regularizer only (Eq. 4);

else
Compute importance Ω

t−1
l,i of each filter

in learning tasks up to T t−1 (Eq. 2) ;
if number of important filters < τ then

Train the network with stability and
plasticity regularizers (Eq. 5)

else
θt = Expansion(θt) ▷ Expand the

network as described in
Section 3.4 ;

Train network with stability,
plasticity and expansion
regularizers (Eq. 6)

end
end

end

Continual Learning Scenario. Our experiments
follow the standard continual learning scenario where
a model is sequentially presented diverse tasks with
unknown data distribution. We consider the situation
where the model has access to Dt

train and Dt
valid only

during the training period of task t. Afterwards, these
data become unavailable, while Dt

test is used to evalu-
ate the model’s performance on T t after learning T t ′

with t ′ > t.

Benchmark Datasets. We conduct experiments
on three image classification datasets that are
popular continual learning benchmarks: CIFAR-
10/100 (Krizhevsky et al., 2009), FaceScrub (Ng and
Winkler, 2014), and ImageNet-501, which we gen-
erated as a subset of the ImageNet dataset. It con-
tains 50 classes, which are grouped into two consec-
utive classes to form 25 tasks. Each class contains
1800/200 32×32 color training/test images.

For FaceSrub, which is a widely used dataset
in face recognition, we select the first 100 people
with the highest number of occurrences to form 100
classes, which we divide into 20 tasks with 5 classes
each. In the case of CIFAR-10/100, the first task con-
sists of all classes of CIFAR-10, while CIFAR-100 is

1Our ImageNet-50 dataset can be downloaded here.
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(a) CIFAR-10/100. (b) FaceSrub. (c) ImageNet-50.

Figure 4: Assessment of catastrophic forgetting by measuring performance retention on the initial task. The results show, for
each dataset, how the classification accuracy of the first task changes as subsequent tasks are learned. Overall, SECL shows
the strongest resistance to catastrophic forgetting.

divided into 10 tasks, which serve as the remaining
CL tasks, resulting in 11 tasks in this experiment.

Baselines. We compare our method to five state-of-
the-art continual learning approaches including ref-
erence methods as well as recent, competitive ones:
EWC (Kirkpatrick et al., 2017), MER (Riemer et al.,
2018), DER (Yan et al., 2021), Dytox (Douillard
et al., 2022), and FOSTER (Wang et al., 2022a). We
perform grid search to fairly select the best hyperpa-
rameters for each approach.

Network. For FaceSrub and CIFAR-10/100, we use
a CNN consisting of two blocks of 3×3 convolutions
with 32,64 and 128 filters respectively (448 filters in
total), followed by ReLU and 2× 2 max-pooling. In
the ImageNet-50 experiments, we use a CNN similar
to (Vinyals et al., 2016), consisting of two blocks of
3× 3 convolution with 64 filters, followed by ReLU
and a 2×2 max-pooling. For all experiments we use
a multi-headed network.

4.1 Is SECL Able to not
Catastrophically Forget?

In a first experiment, we investigate the ability of our
method to deal with the problem of catastrophic for-
getting. A common measure of forgetting is to assess
how the accuracy of a given task varies as the remain-
ing tasks are learned (Mirzadeh et al., 2020). Here we
choose the initial task and examine how its accuracy
varies during the CL experiment. Since FaceSrub and
ImageNet-50 contain a large number of tasks: 20 and
25 tasks respectively, i.e. 19 and 24 remaining tasks
after the initial task, this setting is more relevant for
both datasets. Nevertheless, we also show the results
for CIFAR-10/100.

As can be seen in Figure 4, after sequential train-
ing on all tasks, SECL is the most stable and least for-
getful on the ability to perform the initial task, show-

ing little to no forgetting. We attribute this result to
the adaptive stability regularizer (presented in Section
3.2), which prevents important parameters from being
altered from task to task. DER (Yan et al., 2021) and
FOSTER (Wang et al., 2022a) tends to be strong com-
petitors to our method, especially on medium-sized
datasets such as CIFAR-10/100, also archiving high
levels of performance retention.

Interesting, SECL’s retention capability slightly
diminishes on FaceScrub and ImageNet compared
to CIFAR-10/100. This underlines the fact that as
the number of tasks in a continual learning experi-
ment increases, it becomes more difficult to mitigate
catastrophic forgetting. However, even with this mi-
nor setback in performance retention on these harder
datasets, SECL consistently outperforms its com-
petitors, demonstrating its robustness in overcoming
catastrophic forgetting.

4.2 Is SECL a Competitive CL
Approach in Terms of Accuracy?

In a second experiment, we assess the effectiveness of
our method in terms of classification accuracy during
the continual learning experiments. To evaluate the
classification accuracy, we use the all-important aver-
age accuracy metric (Lopez-Paz and Ranzato, 2017),
which is common practice in the literature.

Specifically, the classification accuracy at T t ,
is the average accuracy obtained during testing on
D1

test , · · · ,Dt
test and is defined as:

At =
1
t

t

∑
t ′=1

at,t ′ (7)

where at,t ′ denotes the model’s accuracy on Dt ′
test after

training on task t.
Figure 5 shows, for different datasets, how the av-

erage accuracy evolves across tasks during the con-
tinual learning experiments. The results indicate that
SECL demonstrates strong performance in terms of
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(a) CIFAR-10/100. (b) FaceSrub. (c) ImageNet-50.

Figure 5: Evolution of the average test classification accuracy during the continual learning experiments on three datasets.
SECL achieves significantly higher performance than the competing baselines.

(a) CIFAR-10/100. (b) FaceSrub. (c) ImageNet-50.

Figure 6: Evolution of the average accuracy on a much smaller network, which tends to reach its maximum capacity quickly.
The effects of our network expansion strategy can be clearly seen in the later tasks in each dataset.

average accuracy compared to other baselines on all
benchmarks. Interestingly, FOSTER (Wang et al.,
2022a) achieves the best performance on the first 14
tasks on FaceSrub, before being clearly outperformed
by our method on later tasks. This can be explained
by the network expansion implemented in our ap-
proach, which gets triggered once the network’s ca-
pacity nears its limit.

In-depth Analysis of Network Expansion Effects.
In a third experiment, we closely examined the in-
fluence of the network expansion module on model
accuracy. For this purpose, we reduce the size of the
CNN to two 3×3 convolution blocks with 32 of filters
each, followed by ReLU, a 2× 2 max-pooling and a
dense layer with 64 neurons. Given its limited size,
we anticipated that the network would quickly reach
its capacity limits, offering a transparent view of the
network expansion’s effects.

Figure 6 displays the evolution of the average clas-
sification accuracy for our approach alongside the
FOSTER and DER baselines, both of which have
demonstrated notable performance in prior experi-
ments. As can be observed, the network capacity
tends to saturate at the 9-th, 15-th and 17-th task
for Cifar-10/100, FaceScrub and Imagenet-50 respec-
tively. When these saturation points are reached, our
expansion strategy comes into play, allowing the net-
work to adapt and accommodate new tasks without

overwhelming its capacity. At the same time, the
network is further refined through our sparsification
mechanism. This ensures that the newly added fil-
ters are used sparingly, optimizing their benefits and
maintaining efficient performance across tasks.

An empirical conclusion that can be drawn from
Figures 4, 5 and 6 is that SECL achieves strong over-
all continual learning results thanks to the way it
addresses catastrophic forgetting and the learning of
several new tasks through the stability-plasticity regu-
larizers as well as the network expansion mechanisms
built into the model learning procedure.

4.3 Ablation Study

We conducted an ablation study to investigate the con-
tributions of each component in our SECL frame-
work, particularly on the more challenging datasets,
namely FaceScrub and ImageNet-50. In particular,
we are interested in how (1) the stability regularizer
governed by λs, (2) the plasticity regularizer governed
by λp, and (3) the expansion regularizer governed by
λe, contribute to the base model. We implement vari-
ants of SECL with different combinations of these
components, each of which is either activated (

√
)

or removed (×). Furthermore, we also implement
variants of SECL where two out of the three com-
ponents were simultaneously deactivated to measure
their combined impact on the model’s performance.
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Table 1: Average accuracy (A) and average forgetting (F) of
SECL variants on FaceScrub and ImageNet-50 after learn-
ing the last task T T .

λs λp λe
FaceScrub ImageNet-50

A(%) F A(%) F
√ √ √

91.5 0.007 87.75 0.008
√ √ × 88.2 0.081 75.1 0.175

× √ √
43.9 0.721 40.3 0.744

√ × √
68.93 0.044 64.7 0.078

× × √
36.3 0.728 34.8 0.742

√ × × 39.2 0.12 37.6 0.194

× √ × 38.2 0.731 37.93 0.771

The outcomes of this ablation study are summa-
rized in Table 1, where we use two key metrics for
evaluation: “A”, which represents the average classi-
fication accuracy at T T as defined in section 4.2, and
“F”, which denotes the average forgetting, defined as
the average decrease in performance on each task be-
tween the peak accuracy and the accuracy after all
tasks have been learned (Mirzadeh et al., 2020).

The results for these two metrics, shown in Ta-
ble 1, demonstrate the effectiveness of each compo-
nent not only in improving the average classification
accuracy, but also in minimizing the level of forget-
ting across tasks. It is clear from these results that the
interplay between the stability, plasticity, and expan-
sion regularizers is critical to achieving the superior
performance observed in our SECL framework.

5 CONCLUSION

In this work, we present SECL, a novel method for
continual learning scenarios based on endowing a
CNN’s training objective with three key measures, re-
spectively to stabilize the network on past tasks, to
sparsify it to make it plastic for future tasks, and to
extend it to learn more tasks once its capacity satu-
rates. The experiments show that SECL outperforms
baseline methods on standard continual learning im-
age classification benchmarks, as well as on our cus-
tom imagenet benchmark of a longer continual learn-
ing scenario that spans 25 tasks.
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