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Abstract: This study explores the characteristics of data clumps, a specific type of code smells, in software projects.
Code smells are characteristics in source code which indicate a deeper problem. Data clumps are identical
groups of variables in different part of the code. The lack of datasets for data clumps can make it difficult to
identify and manage these sets in software projects. We developed a tool to parse source code projects into
an abstract syntax tree, facilitating detailed analysis of data clumps. Our findings reveal a notable presence of
data clumps forming clusters, complicating manual refactoring. In this paper, we propose a unified reporting
format for data clump detection and provide a granular dataset for data clumps. Additionally, we outline a
detection methodology that can be applied across different programming languages and frameworks. We also
provide a first look into the lifecycle and evolution of data clumps, showing that data clumps either remain in
projects or accumulate over time. This work provides a foundation for further research aimed at enhancing
software quality through identifying and refactoring data clumps, offering a starting point for discussions and
improvements in this domain.

1 INTRODUCTION

Generally, software quality degrades over time, a phe-
nomenon known as software aging (Parnas, 1994),
driven by software’s increasing complexity (Lehman
and Belady, 1985). Throughout the lifecycle of a soft-
ware project, various challenges may arise. One of the
most significant issues is the high maintenance cost
of such projects (Brown et al., 1998). Additionally,
compromises in software quality are frequently ac-
cepted as trade-offs between delivering an incomplete
or flawed software product and minimizing the time to
market (Cunningham, 1992). Beyond this, new team
members who are unfamiliar with a project can inad-
vertently introduce design flaws, further compromis-
ing software quality.

Symptoms of bad design and implementation
manifest at the code level as “code smells” (Fowler
et al., 1999). These undesirable traits, also known
as anti-patterns (Cunningham, 1992), can be removed
through a process called “refactoring.” Refactoring
involves altering the internal structure of the soft-
ware without changing its external behavior. Vari-
ous approaches to refactoring exist, including semi-
automated or fully automated methods (Baumgartner

et al., 2023; Shahidi et al., 2022; Szőke et al., 2015).
Before initiating the refactoring process, one must

identify the specific code smell to be addressed. Var-
ious types of code smells have been categorized
(Fowler et al., 1999), and their definitions have been
refined over time (Zhang et al., 2008). Addition-
ally, new code smell types have emerged across var-
ious domains, reflecting advancements in program-
ming languages, methodologies, and software archi-
tectures (Delchev and Harun, 2015). As these fields
evolve, some practices become obsolete, prompting
the development of tools using metrics to detect such
code smells (Gronback, 2003; Habra and Lopez Mar-
tin, 2006; Simon et al., 2001; Salehie et al., 2006).

Relevance. Data clumps are a specific kind of code
smell involving groups of variables appearing repeat-
edly in different components of a software project.
These groups may not always appear in the same or-
der or have the same names even though they serve
the same purpose. Consequently, these groups are dif-
ficult to identify and refactor manually. However, as
(Fontana et al., 2015) discusses, the impact of code
smells on software quality varies. In this vein, (Hall
et al., 2014) indicated that data clumps affect soft-
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ware quality, but it is unclear whether this influence
is positive or negative. Additionally, this same study
suggests that there may be different kinds of data
clumps. Data clumps rank among the top 10 code
smells, as indicated by (Lacerda et al., 2020). How-
ever, these data clumps are also specifically recom-
mended for prioritization in refactoring efforts, along
with five other code smells, due to their association
with software faults (Zhang et al., 2011). This process
underscores their significance in the realm of soft-
ware quality and suggests that further investigation
into the ambiguous nature of their influence could be
worthwhile. There is a lack of publicly available data
clumps datasets, as confirmed by (Liu et al., 2021)
and (Zakeri-Nasrabadi et al., 2023). This gap high-
lights the need for more detailed datasets, as indicated
by (Baumgartner et al., 2023). Such a dataset could
be useful for training and validating various tools and
machine learning models.

Goal. The objective of this study is to examine the
software projects to better explain the data clumps in
their lifecycle. Although it is known how to refac-
tor data clumps, refactoring every instance may result
in spending too much time on data clumps that are
not harmful or that could be removed when address-
ing code smells. A better understanding of the life-
cycle of data clumps could help in reducing unneces-
sary refactoring efforts and in identifying which data
clumps should be prioritized for removal, especially
those that are more problematic. This dataset can pro-
vide valuable insights for studies focused on how to
prioritize the removal of data clumps. More specifi-
cally, the study examines the following research ques-
tions:

• RQ1: How should data clumps be counted?

• RQ2: What is an efficient structure for a data
clumps dataset that helps capture the impact of
data clumps on software quality attributes?

• RQ3: What characteristics do data clumps pos-
sess?

• RQ4: How do data clumps manifest and evolve
across the lifecycle of a software project?

Hypothesis for RQ3. We hypothesize that data
clumps tend to form larger clusters across multiple
classes.
Hypothesis for RQ4. Based on the preliminary lit-
erature review and observations, we hypothesize that
data clumps tend to increase in number over the life-
cycle of a software project.

Contribution. This paper makes the following no-
table contributions:

• 1) A publicly available comprehensive dataset en-
abling others to test and train their tools up to code
line level granularity;

• 2) A tool to detect data clumps given an ab-
stract syntax tree and a visualization tool for
a graph-based representation of the coupling of
data clumps;

• 3) A longitudinal case study reporting quantitative
and qualitative evidence on when data clumps are
introduced in software projects; and

• 4) New characteristics of data clumps impacting
the software quality over the lifecycle of software
projects.

Organization. Initially, we provide a brief introduc-
tion to class diagrams and data clumps in Section 2.
Subsequently, in Section 3, we give an overview of re-
lated works and state-of-the-art tools. Next, we elab-
orate on our approach in Section 4. In Section 5, we
draw conclusions from our findings and engage in dis-
cussion, and in Section 6, we address the validity of
the threads. Finally, in Section 7, we summarize the
key conclusions and final impressions.

2 BACKGROUND

This section provides the background for our research
and approach. To explain the lifecycle of data clumps
in software projects, we focus on class diagrams in
Section 2.1 and define data clumps in Section 2.2.

2.1 Class Diagrams

The design of a software system can be achieved
using class diagrams, a diagram type of the Uni-
fied Modeling Language (UML), wherein classes, at-
tributes, methods, and relationships are modeled (Ob-
ject Management Group, 2007). Certain tools, such as
the Visual Paradigm (Visual Paradigm, 2002), enable
this modeling alongside the generation of code based
on the model. A sample segment of a class diagram is
illustrated in Figure 1.

Patient Doctor

name: String
address: Location
team: int
clothes: String

clothes: String
gender: Gender
name: String
address: Location

Figure 1: UML class diagram example.
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An example of a part of a class diagram appears
in Figure 1. In this class diagram, two classes are
depicted: Patient and Doctor. The class “Patient”
has four attributes: clothes, gender, name, and ad-
dress, with no methods defined. The class “Doctor”
involves four attributes: name, address, team, and
clothes, with no methods defined, and all these fields
have their data type delineated. In this illustration,
a redundancy is observable in the attributes clothes,
name, and address. This redundancy could produce
a design issue manifesting as data clumps, a specific
type of code smell.

2.2 Data Clumps

Data clumps can be categorized under the code smell
taxonomy known as “Bloaters,” which are character-
ized by their propensity to inflate the source code un-
necessarily. Data clumps are distinguished by groups
of variables that frequently co-occur but not necessar-
ily in a fixed sequence. In this vein, (Hall et al., 2014),
hypothesized that various subtypes of data clumps ex-
ist.

An initial taxonomy for data clumps was pro-
posed by (Zhang et al., 2008), which bifurcates these
data clumps into field instances and parameter in-
stances. According to this classification, parameter
data clumps occur when at least three parameters
between two methods exhibit identical structural at-
tributes (name, type, and visibility), albeit in a permis-
sible variable order. Conversely, field data clumps ex-
ist when at least three fields between two classes share
identical structural attributes, again allowing for vari-
ations in sequence. Zhang et al. improved their defini-
tion based on their expert interview who states to “ex-
clude methods inherited from parent-classes” when
searching for a data clump. Zhang et al. added an ad-
ditional criterion, when searching for data clumps be-
tween two methods, which states that “[t]hese meth-
ods should not [be] in a same inheritance hierarchy
and [have the] same method signature.” (Zhang et al.,
2008, p. 164). A prototypical example of a parameter
data clump can be schematically observed in Listing
1, where both methods share the parameters x, y, and
z.

Listing 1: Parameters Instance Example of Data Clumps.
1 def c a l c u l a t e d i s t a n c e (
2 x , y , z , speed
3 ) :
4 . . .
5
6 def c a l c u l a t e f a l l t i m e (
7 mass , x , y , z , volume
8 ) :

9 . . .

A more complex manifestation of data clump-
ing occurs when the variables do not necessarily
share identical structural attributes but are semanti-
cally congruent. For instance, in Listing 2, it can be
inferred that the variables lat, lon, and height are se-
mantically related to the parameters x, y, and z from
Listing 1.

Listing 2: Parameters Instance Example of Data Clumps.
1 def c a l c u l a t e g l o b a l d i s t a n c e (
2 l a t , lon , h e i g h t , speed
3 ) :
4 . . .

Data clumps share similarities to other code
smells, such as code duplication and long parameter
lists, and can easily be confused with them. While the
long parameter list focuses solely on the quantity of
parameters, the data clumps emphasize semantic sim-
ilarity and recurrent appearances in disparate sections
of the codebase. For a long parameter list, the analy-
sis is confined to the local class, whereas data clumps
may necessitate a comprehensive examination of all
files within a software project.

3 RELATED WORK

This section examines related works that have closely
investigated datasets for UML and data clumps, either
through tools for detecting and refactoring or associ-
ated with software quality attributes.

In an extensive analysis by (Robles et al., 2017)
of over 12 million projects, they present a compre-
hensive study where approximately 93,000 UML di-
agrams were extracted, notably featuring a single
timestamp. This work underscores the prevalence and
significance of UML diagrams in project documenta-
tion.

Previously, in the work of (Tahmid et al., 2016),
code smell clusters were examined over time, al-
though data clumps were not included. In this in-
vestigation, four main categories for code smells over
time were identified. These groups were as follows:
A: The smell existed in all examined versions, B: The
smell did not appear initially but remained until the
current version, C: The smell existed from the begin-
ning and was removed later, and D: The smell oc-
curred between the first and latest versions and was
removed between these versions. Next, there were
further subcategories of these main categories. These
investigations revealed that 90 % of the smells were
in categories A and B, which, according to their state-
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ment, suggests that these code smells are not trivial to
refactor.

An empirical study to investigate the relationship
between specific code smells and design patterns was
conducted by (Alfadel et al., 2020). They performed
their investigation using 20 design patterns and 13
code smells, and one of these smells was data clumps.
The analysis on 10 different Java open-source systems
revealed that classes with design patterns generally
displayed fewer code smells. Additionally, these re-
searchers detected data clumps using inFusion, which
ceased to exist in 2016, discovering that data clumps
are primarily isolated from design patterns. Although
those researchers focused on the co-occurence of de-
sign patterns and code smells, our work investigates
the lifecycle of code smells.

In a comprehensive tertiary review, Lacerda et al.
(Lacerda et al., 2020) examined the existing literature
on code smells and refactoring. Their review high-
lighted the relationship between code smells, refac-
toring, and various quality attributes. However, they
noted that data clumps have relate to the design smell
of the data class, which Fowler classified as a result of
the refactoring of data clumps (Fowler et al., 1999).

A recent study by Zakeri-Nasrabadi et al. (Zakeri-
Nasrabadi et al., 2023) surveyed 45 datasets used for
detecting code smells. Notably, the study revealed
that six code smells, including data clumps, are not
currently supported by any dataset. This lack of sup-
port highlights the need for datasets that include in-
formation on the impact of these smells on software
quality attributes. Hall et al. (Hall et al., 2014) pub-
lished a data clump dataset, but this link is no longer
accessible, emphasizing the need for more compre-
hensive data clump datasets. Although a dataset for
data clumps exists in the Unified Bug Dataset (Fer-
enc et al., 2020), data clumps were detected only at
the file level and did not offer general information
about quantity or severity, as stated by (Baumgartner
et al., 2023). In this vein, (Hall et al., 2014) developed
the tool CBSD, which can detect data clumps. They
noted certain areas for improvement and discovered
that data clumps were related to fewer errors in two of
the three software projects they analyzed and in one
case to more errors. They said their analysis was lim-
ited to the file level and did not consider the quantity
or significance of data clumps. Additionally, they in-
dicated that the strength of a code smell could also
be important, although they did not investigate this
aspect. This categorical measurement is a common
standard in error prediction, where errors themselves
are also categorical. Such a categorical classification
of code smells, indicating whether they are present
or not, loses information about the number of code

smells present. Thus, there appears to be a lack of
fine-grained datasets in data clumps, which are neces-
sary for a more accurate assessment of whether data
clumps are helpful or harmful.

Liu et al. (Liu et al., 2021) proposed an automatic
method for selecting relevant features from source
code using deep neural networks and mapping them
to predictions. Additionally, they introduced a tech-
nique for generating labeled training data, essential
for the effective functioning of deep neural networks.
Their approach was tested on four well-known code
smells, excluding data clumps. These authors sug-
gested that the effectiveness of their approach could
be further enhanced by making better datasets avail-
able.

One comprehensive empirical study (Tufano et al.,
2015) investigated the timing and reasons behind the
introduction of code smells across 200 open-source
projects. Contrary to popular belief, their findings
suggested that code smells primarily originate during
the creation of software artifacts and not during the
evolutionary phases. However, this study did not in-
clude an examination of data clumps.

To detect data clumps, several tools have been
developed, including CBSD, Stench Blossom, LCSD
(Baumgartner et al., 2023), inCode, and inFusion.
The tools inCode and inFusion have been frequently
cited in related work but have ceased to exist since
2016 and are not available for download anymore1.
CBSD is limited to file-level analysis, as acknowl-
edged by the authors themselves. Furthermore,
CBSD supports comprehensive project scans, can be
executed programmatically, and is also a standalone
tool. Stench Blossom is an integrated development en-
vironment (IDE) plugin that provides a visualization
of code smells, such as data clumps, at the edge of the
IDE editor. The size of the visual petals indicates the
relevance of the specific code smell to the developer.
However, Stench Blossom does not support a full scan
of an entire software project, only per-file scans. Be-
yond this, LCSD not only detects data clumps but also
provides them semi-automatic refactoring. Further-
more, LCSD is an IDE plugin for IntelliJ and can be
executed programmatically.

In other research, (Baumgartner et al., 2023) com-
pared LCSD with Stench Blossom and CBSD. Com-
pared with CBSD, LCSD identified more data clumps,
which were manually inspected and confirmed. This
comparison was based on ArgoUML, in which CBSD
took a median time of approximately 700 seconds,
whereas LCSD took a median time of approximately
33 seconds. When compared with Stench Blossom,
LCSD identified data clumps that Stench Blossom

1https://www.intooitus.com/
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failed to detect. Since Stench Blossom does not sup-
port full project scans, a time-based comparison was
not conducted.

4 APPROACH

In this section, we first refine the definition of data
clumps, explore the counting method necessary for
the subsequent generation of the dataset. Next, we
present our findings regarding the characteristics and
evolution of data clumps.

4.1 Improving Data Clumps Definition

As previously defined by (Zhang et al., 2008), the
two types of data clumps are class fields to class
fields and method parameters to method parameters.
This extension addresses the directional data clump
from method parameters to class fields, which ex-
ist or emerge during refactoring. Hence, we suggest
the following names for data clump types: field-field,
parameter-parameter, and parameter-field.

Furthermore, (Zhang et al., 2008) proposed a re-
fined definition of data clumps as mentioned in Sec-
tion 2.2. This criterion for a data clump definition
leads to challenges, which we will demonstrate in
Listing 3.

Listing 3: Challenging Data Clump Definition.
1 C l a s s A
2 C l a s s B e x t e n d s A wi t h method foo
3 C l a s s C e x t e n d s A wi t h method foo
4 C l a s s D e x t e n d s B wi t h method foo

o v e r r i d i n g foo from B
5 C l a s s E e x t e n d s C wi t h method foo

o v e r r i d i n g foo from C

In Listing 3 we have a family of classes where
Class A is the parent, Class B and Class C are the
children, and Class D and Class E are the grandchil-
dren. Except Class A, they all have a method named
foo which has at least three parameters. According
to Zhang et al.’s definition, if we look at Class D and
Class E, they would form a data clump with between
the methods foo since they are not in the same inheri-
tance, because they originate from different branches
of the inheritance tree. However, this scenario con-
tradicts the expert’s suggestion from Zhang et al’s in-
terview to “exclude methods inherited from parent-
classes” (Zhang et al., 2008, p. 164), as both Class D
and Class E inherited the method foo from their par-
ent classes (Class B and Class C respectively).

This special scenario highlights the limitations in
Zhang et al.’s definition of data clumps, as it fails to

account for inherited methods in certain situations,
leading to a misrepresentation of data clumps in the
inheritance hierarchy. We propose amending the defi-
nition to align more closely with the expert statement
in (Zhang et al., 2008), which states, “exclude meth-
ods inherited from parent classes.” Therefore, we aim
to refine Zhang et al.’s definition to exclude methods
that are overridden (but may be overloaded).

4.2 Data Clumps Counting

In addressing RQ1: (“How should data clumps be
counted?”), we aim to achieve two primary objec-
tives: (1) to establish a counting methodology for
structuring a data clump reporting format and (2) to
facilitate a robust comparison among data clump de-
tection tools.

Other researchers, such as (Hall et al., 2014), have
employed detectors identifying data clumps only at
the file level. This approach was utilized in creating
the Unified Bug Dataset (Ferenc et al., 2020), omit-
ting crucial information regarding the quantity and
severity of data clumps. This limitation was also ac-
knowledged by (Baumgartner et al., 2023).

A more precise counting of data clumps necessi-
tates a shift to the code line level, denoting the exact
location of each data clump. Given the nature of data
clumps that span classes and files, it is necessary to
trace the origin and destination of each data clump
from one class, method, and file to another.

Counting data clumps solely at the file level can
produce incomplete comparisons between detectors.
For instance, two detectors might appear to identify
the same data clumps at the file level, yet one might
detect a field data clump while the other identifies a
parameter data clump.

Although subsets of data clumps are technically
valid, we propose counting only the largest set to
avoid redundancy and to follow the refactoring guide-
lines suggested by Fowler (Fowler et al., 1999).
Counting subsets of data clumps could potentially
mislead code-reviewers by indicating numerous data
clumps between the same locations, which may be
beneficial only when exploring diverse refactoring
options.

Furthermore, the definition of data clumps given
by (Zhang et al., 2008) needs refinement to encom-
pass data clumps originating from method parame-
ters to class fields (however, the reverse is not true).
This amendment is crucial for accurate refactoring be-
cause introducing a parameter object could create a
new data clump between classes, necessitating fur-
ther refactoring. Thus, we define the counting of a
data clump as follows:
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Let L1 and L2 represent Location 1 and Location 2,
respectively, where both locations can be their classes
or methods without a common hierarchy. However, if
Location 1 is a class, Location 2 cannot be a method.

Let VL1 and VL2 denote the set of variables associ-
ated with Location 1 and Location 2, respectively. If
a location is a class, the set includes all fields of that
class. If a location is a method, the set includes all
parameters of that method.

Let S(v1,v2) be a boolean function that compares
two variables, v1 and v2. It returns true if and only if
the name, type, and modifiers (as defined by (Zhang
et al., 2008)) of v1 and v2 are identical. The func-
tion is symmetric, meaning S(v1,v2) is equivalent to
S(v2,v1). Formally, it is defined as:

S(v1,v2) =


true if name(v1) = name(v2)∧

type(v1) = type(v2)∧
modi f iers(v1) = modi f iers(v2)

false otherwise
(1)

This definition in equation 1 ensures that S as-
sesses the similarity of two variables based on their
essential characteristics, contributing to the identifi-
cation of data clumps in code. However, this defini-
tion overlooks cases of more complex manifestations
of data clumps, particularly when variables share se-
mantic similarities. Therefore, it should be adapted
according to the user’s needs and specific definitions.

For reporting purposes and the comparison previ-
ously explained, only the largest set of a data clump
DL1L2 is defined as the largest set satisfying the fol-
lowing condition: For each v1 ∈ VL1 and v2 ∈ VL2 ,
S(v1) = S(v2). The term “largest set” refers to the set
with the maximum number of variables that satisfy
the given condition.

D1,2 = max{v1,v2}|
v1 ∈VL1 ,

v2 ∈VL2 ,

S(v1,v2)

(2)

Let D(L) be the total amount of data clumps for a
given location L, defined as follows:

D(L) = ∑
i̸= j

DLiL j (3)

This definition of when to count a data clump is
used in the reporting format for the dataset structure
proposal in Section 4.3.

4.3 Dataset Structure Proposal

Now this study examines RQ2: “What is an efficient
structure for a data clumps dataset that helps to cap-
ture the impact of data clumps on various software

quality attributes?”. A fine-grained level of detail is
required to support future analyses. For other analyt-
ical focuses, one must record sufficient information.

For each report on data clumps, it is essential to
preserve crucial information to reproduce the results
and to obtain the most significant information, such as
the report summary (the number of data clumps found
and the quantity of data clump types). Additionally,
one should retain information about the project, like
the URL, name, commit hash, and date. Additionally,
information about the detector utilized, a link to that
detector, and the options that were employed should
also be saved.

Next, this article examines the detected data
clumps may be saved at a fine-granular level. Our pro-
posed structure2 employs a dictionary with a key to
each detected data clump. Given the nature of data
clumps, for each data clump in the dictionary, we
identify the key and from which location (file, class,
method) to which location (file, class, method) the
data clump is found. Because there are different types
of data clumps, it is necessary to track which kind of
data clumps we might have.

For every data clump entry, we also store the in-
formation regarding which variables are matched to
other variables, and their respective locations. This
process could help other automatic refactorings match
corresponding variables if, for instance, a semantic
signature match is utilized instead of an exact match.
For every variable, we might also save the type, name,
modifiers, and position if we have this information.
This data is vital for refactoring and visualizing data
clumps. Additionally, a probability for each detected
data clump and variable match could be useful. This
probability can help to compensate for missing infor-
mation, like the data types in class diagrams. Beyond
this, for machine learning approaches, their certainty
can be saved. This information may help with priori-
tizing data clumps.

Since we saved only the largest counted data
clump proposed earlier, we could still use this group
information to generate all subsets. This reduced sav-
ing minimizes the required space while maintaining
readability. Furthermore, we can use this information
to check if two data clumps depend on or share the
same subset of variables or are independent of each
other. This information may be helpful when analyz-
ing whether one or another has greater impact on soft-
ware quality attributes.

2https://github.com/FireboltCasters/data-clumps-type-
context
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4.4 Dataset Generation

To generate our dataset3, we utilized source code data
from ArgoUML, Apache DolphinScheduler, Apache
RocketMQ, Caffeine, JFlex, JFreeChart, and Xerces2
Java. We selected these seven projects because they
exhibit a sufficiently high level of maturity, as evi-
denced by their age, number of commits, and releases.
Furthermore, these projects are well known and have
been analyzed in other research. All these projects are
predominantly written in Java. Table 1 summarizes
the latest release; the number of Java files, classes,
and interfaces; and the number of previous release
versions available in the Git repository.

Additionally, we manually filtered for tags that
hold only plugin support, only user manuals, or no
source code at all. In JFlex, we omitted six tags for
the maven-jflex plugin because it included no Java
source code. Since some projects like ArgoUML orig-
inated from SVN, the commit date is incorrect, pro-
ducing an incorrect order, so we manually adjusted
the commit date by the release version number for a
temporary order. At this point, we also filtered 13
tags, which included only documentation or test re-
leases, producing real tags with source code. For the
data clumps dataset generation, we adopted a two-
step approach to accommodate other analysis tools.

Step 1: In this step, we aimed to abstract a project
to be analyzed into an abstract syntax tree (AST) to
support multiple types of projects like UML diagrams
or Source Code Projects in different languages. For
a proof of concept, our tool4 could parse class dia-
grams exported in an XML file from Visual Paradigm
(Visual Paradigm, 2002). For analyzing the lifecycle
of data clumps, we parsed Java source code projects
with a Git history. Our approach employed PMD
(PMD, 2023) for parsing the source code into the
AST. In our static analysis, we analyzed only the ex-
isting code.
Step 2: We utilized the algorithm of (Baumgartner
et al., 2023), which had a 90 % match rate at file-level
with the Unified Bug Dataset, and adapted it accord-
ing to the improved data clumps definition in Section
4.1, to check the generated AST for data clumps. If
dependencies are not known, they can set a probabil-
ity factor based on the result of the detection. Thus, in
this analysis, we set this factor to 0 because we only
wanted to analyze securely detected data clumps. The
result came in the form of our proposed dataset struc-

3https://github.com/NilsBaumgartner1994/Data-
Clumps-Dataset

4https://github.com/NilsBaumgartner1994/data-
clumps-doctor

ture, which we defined in Section 4.3. We enhanced
this algorithm by detecting data clumps from methods
to class fields.

In total, we generated a dataset with more than
450,000 detected data clumps, more than 360,000
parameter-parameter data clumps, more than 70,000
field-field data clumps, and more than 15,000
parameter-field data clumps.

4.5 Characteristics of Data Clumps

In this section, we further investigate RQ3: “What
characteristics do data clumps have?”

From the more than 450,000 examined data
clumps, a median of three variables defined a data
clump. We have developed an interactive tool for vi-
sualizing data clumps5, which highlights the connec-
tions. An example of the visualization of the found
data clumps appears in Figure 2. The files are marked
in gray, the classes and interfaces in dark green, the
methods in light green, and the method parameters or
class fields in yellow. Upon examining the found data
clumps, we found that there was a separated graph of
the data clumps connections among the classes. Some
classes had a data clump only within themselves or
several classes connected by data clumps.

Figure 2: Excerpt of a Data Clumps Cluster Visualization.

First, at all of the examined points in time, there
was more than one group of data clumps form a group
(cluster). Next, we divided these clusters into the fol-
lowing three types:

• Cluster Type 1: A class or interface is not con-
nected with another class or interface via any data
clumps. Therefore, all the data clumps of that
class or interface remains in the class or interface.

5https://github.com/FireboltCasters/data-clumps-
visualizer
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Table 1: Summary of software Projects Analyzed.

Project Release Sizes
(Class and Interface
Count)

Sizes
(Method
Count)

Maturities
(Number
of git tags)

Maturities
(development
years)

ArgoUML v0.35.1 2,259 15,564 112 25
Apache DolphinScheduler v3.1.8 1,749 8,678 50 4
Apache RocketMQ v5.1.4 2,002 17,011 30 6
Apache Xerces2 Java v2.12.0 1,032 10,434 98 24
Caffeine v3.1.8 824 6,702 68 8
JFlex v1.9.1 700 3,075 29 20
JFreeChart v1.5.4 1,045 10,677 7 9

• Cluster Type 2: Only two classes or interfaces
are connected to each other via at least one data
clump.

• Cluster Type 3: Multiple (more than 2) classes
or interfaces are connected to each other via data
clumps. They may also form chains.

In Figure 3, the percentage distribution of data clumps
per cluster type can be taken for all 461 time points.
In the median, approximately 31 % of all data clumps
belong to Cluster Type 1. In contrast, in the median,
about 13 % of the data clumps belong to Cluster Type
2, and around 15 % of the data clumps belong to Clus-
ter Type 3.
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Figure 3: Distribution of Data Clump Cluster Types to the
Number of Data Clumps.

Furthermore, we examined all 461 time points for
Project Versions the relative number of data clumps
types. In Figure 4, the percentage distribution of data
clumps types can be taken. Additionally, the param-
eter–parameter data clump types occurred in the me-
dian to approximately 93.6 %. On the other hand,
the field–field data clump occurred in the median at
around 5.9 %. With about 0.5 %, the parameter–field
data clump is represented in the median to the least
extent.
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Figure 4: Distribution of Data Clumps Types.

4.6 Evolution of Data Clumps

This section explores RQ4: “How do data clumps
manifest and evolve across the lifecycle of a software
project?” Considering the evolution of data clumps in
the previously introduced software projects, we ex-
amine how data clumps behave over time.

First, we investigate the number of data clumps
over time. In Figure 5, the number of data clumps is
listed for each project over the analyzed project ver-
sions. Throughout the project, the number of data
clumps increased in the projects Caffeine (from 123 to
4150), DolphinScheduler (from 1621 to 6131), JFlex
(from 12 to 2243), RocketMQ (from 986 to 4565), and
Xerces2 Java (from 440 to 1451). The number of data
clumps decreased in the projects ArgoUML (from 142
to 139) and JFreeChart (from 2015 to 1830).

We now further examine the categories of the evo-
lution of data clumps. As (Tahmid et al., 2016) ex-
plained, the existence of code smell was divided into
the following four upper categories:

• Category A: A code smell existed at all examined
points of a project.

• Category B: A code smell occurred after the
first examined point and remains until the current
point.
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Figure 5: Number of Data Clumps across Project Versions.

• Category C: A code smell existed since the first
examined point and was removed before the cur-
rent point

• Category D: A code smell occurred between the
first point examined and disappeared before the
current point.

We examined the aforementioned projects for the four
evolution categories. For this purpose, we analyzed
all detected data clumps for each project. In Figure
6, the percentage distribution of data clumps to the
corresponding evolution category are visible.

• Of all the data clumps in the project ArgoUML,
approximately 90 % appear in Categories C and
D, about 10 % in Category B, and none in Cate-
gory A. Thus, many of the data clumps found over
time may have disappeared.

• Of all the data clumps in the project Caffeine,
about 80 % are assigned to Category B, indicat-
ing that most data clumps still exist. Category
C displays about 2 % and Category D with about
18 % show that the remaining data clumps were
removed over time. Finally, less than 1 % appear
in Category A.

• In the project Apache DolphinScheduler, the data
clumps are mainly distributed in Categories B
41 % and D 48 %. Approximately 11 % of all the
data clumps are assigned to Category C and 0 %
in Category A. Thus, approximately as many data
clumps as those still present were likely removed.

• For the project JFlex, data clumps are mainly dis-
tributed in Categories B (57 %) and D (43 %). Of
all data clumps in JFlex less than 1 % are assigned
to Category C and 0 % to Category A. Conse-
quently, more data clumps are currently present
than were removed over time.

• JFreeChart has data clumps in Categories C (ap-
proximately 52 %) and B (about 48 %). Of all data
clumps 0 % are in Category A and D. Thus, more
data clumps were likely removed than added.

• RocketMQ has of all data clumps about 4 % in
Category A, 59 % in Category B, 9 % in Category
C, and 27 % in Category D.

• Xerces2 Java has of all data clumps about 0 %
in Category A, about 27 % in Category B, 8 % in
Category C, and 65 % in Category D. These re-
sults indicated that the majority of all data clumps
appeared over time and then disappeared, but the
number of data clumps overall increased.

Thus, in the projects ArgoUML and JFreeChart, the
number of data clumps slightly decreased over time.
In all other examined projects, the number of data
clumps increased over time.
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Figure 6: Data Clumps Distribution to Evolution Category.

5 DISCUSSION

Performing static analysis on class diagrams for data
clumps allows for the early detection and mitigation
of this design smell. A comprehensive examination of
class diagrams from the dataset in the work of (Rob-
les et al., 2017) remains an open endeavor, offering
further points of connection.

The introduction of a probability metric for a data
clump simplifies additional investigations concerning
software quality. With an initial dataset compris-
ing 461 time points from projects spanning 4 to 25
years, a fine-grained data clumps dataset has been es-
tablished, which can be utilized for further research.
The dataset from (Ferenc et al., 2020) can be sup-
plemented with this data, enabling comparisons with
their findings on faults.

In the examined projects, the high amount of data
clumps, which we discovered through static analysis,
indicates that prioritization of data clumps is neces-
sary. An automatic incremental refactoring is desir-
able, yet we suspect that refactoring with too many
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files simultaneously may encounter resistance and re-
jection. Furthermore, an investigation on other lan-
guages such as TypeScript is desirable.

Based on the analysis, in the median 31 % of our
analysed data clumps fall into Cluster Type 1. Ad-
ditionally, data clumps had a median of three com-
mon variables, which was the lower limit set based
on the definition from (Zhang et al., 2008). This
situation suggests that there are some data clumps
which are simpler and easily automatable to refac-
tor because there are no large dependencies on other
classes, apart from the calls and further uses. The
assumption remains that the data clumps of Type 3
are harder to refactor and may potentially contribute
more to code quality. That is, data clumps of Clus-
ter Type 1 might be easier to supervise and thus to
maintain. The different data clumps cluster types fa-
cilitate further investigations into the relationship be-
tween faults in software projects. In this investigation,
we did not examine these clusters in depth. Thus,
the different sizes and natures of the clusters could
impact software quality, as suggested by (Hall et al.,
2014). It remains to be investigated to which cluster
group the data clumps types predominantly belong,
although we suspect that parameter-parameter data
clumps predominantly belong to Cluster Type 2.

According to (Tahmid et al., 2016), 78.8 % of
all Long Method Smell cases were (A+B). Com-
pared with data clumps, we could not demonstrate
these results, indicating instead that the number of
data clumps remained approximately constant, but
old ones disappeared and new ones emerged. Most of
the code smells examined (once they entered the sys-
tem) remained in the system, as mentioned by (Tah-
mid et al., 2016), corresponding to Categories A and
B. In our analysis, we found that for two out of the
seven projects, the majority of the data fell into Cate-
gories A and B. This was further corroborated by the
increased number of data clumps. This circumstance
raises the question of why data clumps are added to
or linger in the examined project. These data clumps
might positively affect quality attributes, are perhaps
too difficult to refactor, or simply do not stand out
due to a local removal in other folders, so they do
not attract attention. This process requires further in-
vestigation, such as investigating which data clump
types belong to the respective categories of the life-
cycle. A further investigation of Category D could
reveal whether data clumps reoccur after they have
already been removed.

(Tahmid et al., 2016) did not account for a par-
ticular scenario that we encountered in our test cases,
even though it’s a rare occurrence. We suggest in-
troducing a new category, Category E, to address this

scenario: A code smell is present at the initial time
point examined, disappears in subsequent examina-
tions, but then reappears and persists up to the current
time point.

6 THREATS TO VALIDITY

In this investigation, several potential biases and
limitations were identified, which might have im-
pacted the robustness and generalizability of our find-
ings. Initially, our analysis was solely confined to
Git tags, potentially omitting certain characteristics
present during the development phase and thus alter-
ing the lifecycle analysis. Moreover, we excluded Git
tags that were designated solely for documentation or
did not include source code. This exclusion might be
wrong if a project underwent significant changes and
only saved the documentation.

Furthermore, by examining the project over time,
our analysis represents merely a broad snapshot.
Since we only considered Git tags, we might have
missed some data clumps present in the commits in
between, which might have been either deleted or
newly added and hence not captured in this analy-
sis. Moreover, the values derived from this work
could change in the future. In addition, future re-
search could investigate the representativeness of the
projects studied, which were predominantly corporate
projects rather than private or small-scale projects.

The inconsistency in the number of data points per
project and the differing timelines examined also lim-
ited this study. For projects partially imported to Git
like ArgoUML, we assumed the release order based
on the semantic versioning tag, which might have
been incorrect, misrepresenting the time history for
this project.

Our parsing of the source codes into the abstract
syntax tree (AST) did not account for dependent li-
braries, except for those of Java. Consequently,
classes with unknown dependencies were not consid-
ered potential classes for data clumps. This oversight
could indicate that the actual number of data clumps
is significantly higher, affecting the results. As men-
tioned by (Zhang et al., 2008), additional data clumps
might exist due to semantic similarities in names,
which we did not consider due to the already high
number of detected data clumps.

Traceability is another concern because we did not
track whether a data clump had merely been moved or
if it was new. This lack of traceability could mean
it is unknown whether some data clumps were ei-
ther merely relocated or deleted to create a new data
clump.
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Analyzing source code in Git repositories, while
advantageous in several aspects, is limited compared
with compiled class analyses. One of the primary ad-
vantages is the accessibility of source code in repos-
itories, unlike the frequently unavailable compiled
class files. This accessibility is crucial given the myr-
iad of build tools like Maven, Ant, and Gradle that
projects may employ, each with its own unique set
of complexities. However, it is crucial that source
code analysis does not comprehensively capture in-
formation about dependencies, which are often bet-
ter explained through compiled class files containing
these dependencies to other libraries. Additionally,
this process is generally expedited because it bypasses
the time-consuming steps of downloading dependen-
cies and compiling the code. Despite limitations like
the static nature of source code analysis and its inabil-
ity to capture runtime behaviors make this approach
practical for automated, large-scale examination of
Git repositories.

7 CONCLUSIONS

This study investigated the characteristics of data
clumps in software projects. By developing a tool that
parses UML diagrams and source code into an AST,
we facilitated a fine-grained detection and examina-
tion of data clumps. Our findings indicated that a sig-
nificant number of data clumps exist in projects, and
they tend to form clusters, which complicate manual
refactoring. These insights emphasize the necessity
for supportive and (semi-) automated refactoring of
data clumps to avert potential design smells.

Our RQ1 questioned the method of counting. Our
manner of counting data clumps produces more than
merely counting the files where data clumps occur.
This process could produce the false conclusion that
there are significantly more issues. Due to the direc-
tional nature of data clumps, both directions should
be counted.

Our proposal for RQ2 on what an efficient data
structure should look like can be debated. At this
point, there are points of connection that we have not
considered. However, the current data structure meets
the requirements set by (Hall et al., 2014) and (Baum-
gartner et al., 2023) for a data clumps dataset, which
helped us examine the characteristics of data clumps
and set a preliminary starting point.

Our hypothesis for RQ3 was, ”that data clumps
tend to form larger clusters spanning across multi-
ple classes,” however, our findings refuted this and
showed that data clumps are often found in individ-
ual classes. It remains open to investigate whether the

cluster type has a relation to faults in the software.
Our hypothesis for RQ4 was, ”that data clumps

tend to increase in number over the lifecycle of a soft-
ware project,” which, our findings confirmed in two
out of the seven projects.

The ability to statistically examine class diagrams
for data clumps provides a proactive approach to
combating this design smell. This investigation sug-
gested that a broader analysis of class diagrams from
the dataset provided by (Robles et al., 2017) could
provide further insights and avenues for future re-
search. Additionally, introducing a probability metric
for data clumps allows a deeper exploration of soft-
ware quality and lays the groundwork for expanding
the dataset from (Ferenc et al., 2020).

Our findings regarding the enumeration of data
clumps and efficient data structuring offer a solid
foundation for further discussions and improvements
in this domain. Examining the evolution of data
clumps in projects revealed that these clumps either
persist or proliferate within projects, underscoring the
need for prioritization and incremental refactoring.
Exploring the relationship between data clumps and
software quality, particularly concerning faults, re-
mains an open field of research requiring further in-
vestigation.

In the future, we plan to continue analyzing the
UML datasets from (Robles et al., 2017), specifically
filtering for class diagrams and examining these di-
agrams’ history. Analyzing the lifecycles of data
clumps, especially concerning the four evolution cat-
egories introduced, presents a rich domain for future
research. The limitations of this study, such as the ex-
clusive analysis of Git tags and potential bias due to
project selection, leave room for improvements and
extended investigations.

In closing, our work provides initial insights into
the nature and impacts of data clumps in software
projects. The methods and results form the basis for
subsequent research in this field, aiming to enhance
software quality by identifying and remediating data
clumps.
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