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Abstract: One-hot vectors representing correct/incorrect answer classes as {1/0} are usually used as labels for 
classification problems in Deep Neural Networks. On the other hand, a method using a tensor consisting of 
speech spectrograms of class names as labels has been proposed and reported to improve resistance to 
Adversarial Examples. However, effective representations for tensor-based labels have not been sufficiently 
studied. In this paper, we evaluate the effects of selections of image, complexity, and tensor size expansion 
on the tensor representation labels. Evaluation experiments using several databases and DNN models show 
that higher accuracies and tolerances can be achieved by improving tensor representations. 

1 INTRODUCTION 

Since high recognition accuracies in the image 
recognition were achieved on AlexNet (Krizhevsky, 
2012), Deep Neural Networks (DNNs) have been 
used not only for image recognition but also for 
understanding various media. When used for 
classification problems, a one-hot vector is usually 
used as a class label for each data with the correct 
answer class set to 1 and the incorrect answer class 
set to 0. In recent years, several methods of making 
various improvements of the one-hot vector have 
been proposed for generalizing DNNs. Label 
smoothing (Szegedy, 2016), in which labels are 
smoothed with a small amount of noise, has been 
reported to improve recognition accuracies. Also, 
Knowledge Distillation (Hinton, 2015) generalizes a 
small DNN by using the output of a larger DNN as 
the correct label. Knowledge Distillation can be 
positioned as a kind of label smoothing from a 
viewpoint of adjustment of the one-hot vector. 

On the other hand, a different approach has been 
proposed in (Chen, 2021). Their method trains the 
output of a DNN to be close to image labels of each 
class from images by setting 2D images consisting of 
the speech spectrogram of each class name. In the 
labelling of tensors consisting of these images, 
recognition accuracies for ordinary images are 
comparable to that using one-hot vectors, but the 

improvement of robustness to Adversarial Examples 
(AEs) has been reported (Szegedy, 14). However, 
little sufficient understanding and evaluation of 
properties of tensor representation labels exist. In this 
paper, we extend the tensor representation of labels. 
Specifically, we propose and evaluate extensions to 
image selection as a base of tensor, its value range, its 
complexity, and sizes of tensors. 

2 RELATED WORKS 

In this section we describe conventional methods 
about the improvement on label representation in 
DNNs. 

2.1 Label Smoothing 

Label smoothing (Szegedy, 2016) is a smoothing 
technique that adds a small amount of noise to 0 of 
incorrect classes in the one-hot vector. Specifically, 
subtracting a small value of ε from 1 in the correct 
class, and distributing a value obtained by dividing ε 
by the number of classes to all the classes. This allows 
smoothing the output of the softmax function used as 
the loss function and the regularization effect on the 
weight parameters (Lukasik, 2020). Therefore, 
overfitting tends to be suppressed and generalization 
performance is often improved. 
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Hinton et al. have proposed Knowledge 
Distillation (Hinton, 2015), which improves the 
generalization performance of small DNN models. In 
this technique, a small DNN model adjusts weight 
parameters using not errors between predictions of 
the small DNN model and one-hot vectors of the 
correct labels, but errors between predictions of the 
small DNN model and that of large and high-
performance trained DNN models during the training 
process. Here, treating the predictions of the large-
scale model as labels for the training data can be 
regarded as a kind of label smoothing techniques. 

2.2 Tensor Representation 

On the other hand, as a completely different 
approach, a tensor as a 2-dimensional image based on 
a speech spectrogram of each class label name is set 
as the class label (Chen, 2021). The distance between 
the tensor-based output of a DNN model and a tensor 
as the 2-dimensional image of the correct label is used 
for learning and inference. Figure 1 shows overviews 
of a conventional process using a one-hot vector label 
and their process using a tensor label based on a 
speech spectrogram. In the process of (Chen, 2021), 
a DNN model generates and outputs a tensor 
consisting of a 2-dimensional vector obtained by the 
deconvolution from the feature vector after the 
convolution process. Their evaluation experiments 
have confirmed that the recognition accuracy for 
ordinary images is not so different from that obtained 
using the one-hot vector, but the tolerance against 
AEs (Goodfellow, 2015, Kurakin, 2017) is improved. 
They also have reported that the increase of the 
complexity of the speech spectrogram caused by 
randomly switching the spectrogram among 
frequencies, improves recognition accuracies. 

3 PROPOSED METHOD 

3.1 Our Approach 

(Chen, 2021) mainly used a tensor consisting a two-
dimensional vector based on the speech spectrogram 
for each class label. However, the validity of the 
speech spectrograms mentioned above as a class label  
has not been verified in any way. Several topics such 
as a kind of image used, complexity, size of tensor, 
and value range are also not sufficiently validated. 

In this paper we seek to improve the tensor 
representation label consisting a multidimensional 
vector like an image from several perspectives. First, 
we consider a selection of an image as a reference. 

One is to select an image from training data itself and 
the other uses a mean image obtained by averaging 
training data for each class. As for the complexity of 
the images, we add gaussian noise to reference 
images and apply block ciphers to each reference 
image. We also examine the expansion of the tensor 
size and the number of channels to 3 channels (RGB). 
Details of our proposed approach are described 
below. 

3.2 Tensor Representation Label 

3.2.1 Image Selection 

First, we consider the use of an image sampled from 
the training data as a reference image to be set as a 
label. If the output of the DNN is positioned as an 
image reconstruction problem, sampling an image 
from the training data and setting it a reference seem 
to be reasonable. In this paper, we set labels as images 
sampled from the training data for each class or the 
averaged image of each class from the training data. 
Figure 2 shows sampled images as tensor 
representation labels from CIFAR10 (Krizhevsky, 
2009), and examples of labels based on the mean 
image for each class (each label of images is 
“airplane”, “automobile”, “bird”, “cat”, and “deer” 
from left to right in Figure 2, 3, 4 and 5). 
 

 
(a)  One-hot vector representation 

 
(b) Tensor representation 

Figure 1: Overviews of inference process using label of 
one-hot vector and tensor representation labels. 

  

Conv

DNNInput Output 

Cat
Bird

One-hot vector
Label 

Output 

Conv Deconv 

DNN Bird

Cat

Input

Tensor Label

Improvement of Tensor Representation Label in Image Recognition: Evaluation on Selection, Complexity and Size

233



3.2.2 Image Complexity 

Next, we examine the complexity of images used as 
tensor representation labels, since the study in (Chen, 
2021) suggests that the entropy of images may affect 
classification accuracies. In this paper, we adopted 
two ways of increasing image complexity. One is the 
addition of noise and the other is block ciphers as a 
kind of data encryption methods.  

In the case of adding noise, we used the image 
shown in 3.2.1 as refences and applied Gaussian noise 
only once and iteratively 20 times to each image. We 
also exploited noise itself as a label. Figure 3 shows 
examples of noise-added image and noise itself as 
tensor labels. In examples of Figure 3 (a), we can see 
original images under noise but cannot see original 
shapes after iterative noise addition in Figure 3 (b). 

To increase the image complexity using the block 
cipher, we applied CBC mode (Ehrsam, 1976), that is 
one of widely used block ciphers, to each image. 
Figure 4 shows images after applying CBC to 
sampled and averaged images. These examples well 
show unique complexities on each class.  

3.2.3 Size and Channel of Images 

In (Chen, 2021), the size of each tensor label was 64 
pixels square. Therefore, in this paper, we set the size 
of each 2-dimensional (single channel) tensor 
described in 3.2.2 to same 64 pixels square. In this 
section we validate effects of other tensor size and 
number of channels. First, as a viewpoint from the 
increase of the tensor size, we convert the image to 3 
channels of RGB while keeping the image resolution 
at the same size. The tensor size is therefore tripled 
than that with a single channel. Furthermore, as 
another approach, the resolution is increased while 
keeping the single channel. To compare with the 3-
channel conversion described above, we use an image 
whose height and width are about 1.7 times larger, so 
that the tensor size is three times larger as same as 
RGB 3-channeled images. Figure 5 shows RGB 3-
channeled images (before grayscaling original 
training images) shown in Figure 2. 

3.2.4 Value Range 

Furthermore, we examine the effect of a value range 
of images as tensor representation labels. We 
examine the following three different types of value 
ranges; The first type has the original (0 - 255) value 
of each image. The second one has (-1 - 1) value by 
shifting with -1 after dividing by 128. The last one has 
values normalized by the mean and the variance of 
the training data for each class. 

 
Sampled images for each class 

Averaged images for each class 

Figure 2: Examples of sampled and averaged images. 

 
Sampled images with noise 

 
Averaged images with Gaussian noise 

 
Gaussian noise 

(a) Noisy label with gaussian noise. 

 
Sampled images with iterative Gaussian noise 

 
Averaged images with iterative Gaussian noise 

 
Iterative Gaussian noise 

(b) Noisy label with iterative Gaussian noise. 

Figure 3: Examples of images with Gaussian noise. 

 
Sampled images after applying block cipher 

 
Averaged images after applying block cipher 

Figure 4: Examples of images after applying block cipher. 
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Sampled RGB images for each class 

 
Averaged RGB images for each class 

Figure 5: Examples of RGB (3-channel) image. 

4 EVALUATION EXPERIMENTS 

In this section we describe evaluation experiments for 
validating and analysing the performance of our 
proposed label representation. 

4.1 Experimental Set-up 

CIFAR10 and CIFAR100 (Krizhevsky, 2009) were 
used for the experimental data. The training data 
consists of 50,000 images (CIFAR10: 5,000 images / 
class, CIFAR100: 500 images / class) and the test data 
consisted of 10,000 images. Each sample was 
normalized by a mean and a variance. Cropping and 
horizontal flip were applied as data augmentation in 
the training process. Smooth L1 loss was used as the 
cost function as in (Chen, 2021). The number of 
epochs was set to 300, and SGD with moment was 
used as the optimizer. VGG19 (Simonyan, 2015) and 
ResNet110 (He, 2016) were used as DNN models. 
The architectures of the deconvolution process for 
tensor representation labels are tabulated in Table 1. 
Each experimental result is calculated as a median of 
5 experimental results with different seed values. 

Table 1: Architectures of deconvolution processes. 

(a) 1 channel tensor. 
Input Output Kernel Stride

64 x 1 x 1 64 x 4 x 4 4 x 4 1 x 1
64 x 4 x 4 32 x 8 x 8 4 x 4 2 x 2
32 x 8 x 8 16 x 16 x 16 4 x 4 2 x 2

16 x 16 x 16 8 x 32 x 32 4 x 4 2 x 2
8 x 32 x 32 1 x 64 x 64 4 x 4 2 x 2

 
(b) 3-channel tensor. 

Input Output Kernel Stride
128 x 1 x 1 128 x 4 x 4 4 x 4 1 x 1
128 x 4 x 4 64 x 8 x 8 4 x 4 2 x 2
64 x 8 x 8 32 x 16 x 16 4 x 4 2 x 2

32 x 16 x 16 16 x 32 x 32 4 x 4 2 x 2
16 x 32 x 32 3 x 64 x 64 4 x 4 2 x 2

4.2 Experimental Results 

4.2.1 Comparison Between Types of Labels 

First, we compare the conventional one-hot vector 
(Category), a speech spectrogram-based tensor label 
(Speech), and a shuffled image of speech spectrum 
(Shuffle) with our proposed labels consisting of 
sampled grayscale images (Gray_s) and averaged 
images of each class (Gray_a) from the training data. 
Table 2 shows classification rates for each type of the 
label representations. The subscripts (1-3) of the 
labels based on the sampled and averaged images 
mean as follows; The subscript of 1 means the 
original image with a value range of 0 to 255. That of 
2 expresses labels with -1 to 1 values by shifting and 
dividing. That of 3 means the label values after the 
normalization by the mean and the variance of the 
training data. Table 2 shows that, when using sampled 
image-based labels with normalized value ranges, 
higher accuracies than the conventional spectrogram-
based labels were obtained on  CIFAR10 and are 
close to the accuracies given by the ordinary one-hot 
vector label. These results provides that the 
normalization on the value range seems to reduce 
intra-class variation and emphasize diffrences 
between classes. And generating a tensor with a value 
range form 0  to 255 may be difficult in the 
deconvolution based on the process using network 
weights of 0 to 1. On the other hand, for CIFAR100, 
the accuracies are conversely reduced. In particular, 
when the averaged image-based labels of each class 
were used, the accuracies were low under all 
conditions. The reason for these results seems that the 
averaged images are generally blurred as shown in 
Figure 2, so this blurness maks it difficult to 
distinguish between classes. 

Table 2: Classification rates for each type of labels [%]. 

Label CIFAR10 CIFAR100
VGG ResNet VGG ResNet

Category 93.27 94.01 72.19 72.82
Speech 91.75 92.51 70.16 68.96
Shuffle 92.51 92.67 71.01 69.16
Gray_s1 91.08 92.24 66.64 66.86
Gray_s2 93.08 93.23 67.30 64.20
Gray_s3 92.91 93.12 68.16 65.96
Gray_a1 90.86 91.50 64.69 63.47
Gray_a2 91.69 90.71 59.08 50.67
Gray_a3 91.79 91.06 60.64 53.24

Next, we examine the effect of the complexity of 
a tensor label. Table 3 shows results for labels applied 
to sampled and averaged grayscale images with 
additive noise (Noisy_Gs and Noisy_Ga) and labels 
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using noise itself (Noise_G). Table 4 shows results 
using iterative addition of noise. Table 3 provides that 
our tensor labels with additive noise provides higher 
accuracies than one-hot vectors as well as 
conventional spectrogram-based labels on the model 
of VGG19. However, on the model of ResNet110, our 
proposed labels were more accurate than the 
spectrogram-based labels, but slightly less accurate 
than the one-hot vectors. The matching between the 
tensor representation and the ResNet structure is one 
of subjects for future investigation. From Table 4, 
more complexity derived from iterative noise 
addition provides higher accuracies, but that was not 
as much of an improvement as expected. And results 
from both of Table 3 and 4 show that noise itself with 
no class images can achieve good performances. 

Table 3: Classification rates for labels with additive noise 
and noise itself [%]. 

Label CIFAR10 CIFAR100
 VGG ResNet VGG ResNet

Noisy_Gs1 91.48 92.17 68.27 67.32
Noisy_Gs2 93.33 93.71 69.64 66.98
Noisy_Gs3 93.27 93.49 70.05 67.73
Noisy_Ga1 91.98 92.36 68.71 67.26
Noisy_Ga2 93.73 93.75 71.62 67.54
Noisy_Ga3 93.67 93.70 71.52 67.78
Noise_G1 91.95 92.47 69.02 57.30
Noise_G2 93.65 93.60 71.85 67.08
Noise_G3 93.08 93.30 71.36 65.10

Table 4: Classification rates for iterative noise-added label 
and iterative noise itself [%]. 

Label CIFAR10 CIFAR100
 VGG ResNet VGG ResNet

Noisy2_Gs1 91.57 92.26 69.00 65.17
Noisy2_Gs2 93.70 93.79 71.67 69.11
Noisy2_Gs3 93.43 93.43 71.77 68.91
Noisy2_Ga1 91.45 92.25 69.43 61.62
Noisy2_Ga2 93.63 93.82 71.72 68.14
Noisy2_Ga3 93.57 93.75 71.86 68.01
Noise2_G1 91.27 92.26 69.63 69.93
Noise2_G2 93.68 93.73 71.76 68.00
Noise2_G3 92.61 92.76 71.45 64.31

Table 5 shows classification rates for encrypted 
image-based tensors. (Crypt_Gs) means sampled 
image after applying block cipher and (Crypt_Ga) 
means averaged encrypted one. Table 5 shows that 
more increase of complexity gives more accuracies as 
in the case of labels based on images with additive 
noise. Also averaged image-based label can obtain 
similar accuracies to sampled image-based one. This 
tendency is also similar to the case of additive noise. 

 

Table 5: Classification rates for encrypted image [%]. 

Label CIFAR10 CIFAR100
VGG ResNet VGG ResNet

Crypt_Gs1 91.61 92.31 69.41 60.67
Crypt_Gs2 93.86 93.79 71.92 67.83
Crypt_Gs3 93.50 93.66 71.91 67.52
Crypt_Ga1 91.52 92.45 69.71 60.90
Crypt_Ga2 93.57 93.76 71.68 67.21
Crypt_Ga3 93.71 93.74 71.99 67.46

We also examine the effect of increasing the 
tensor sizes and the number of channels. Table 6 
shows the results of the channel enhancement, that is 
a 3 channelled RGB image-based tensor while 
keeping the image resolution (RGB64), and the 
results of enlarging image size while keeping single 
channel (Gray112). Both of them means tripling the 
tensor size of original tensor labels. Comparison with 
Table 2 shows that a little improvement on accuracy 
was obtained by increasing the number of channels to 
three (RGB64) for the same image size but this is not 
to the extent expected from tripling the tensor size. 
And there was also no effect when the image size 
(resolution) was increased keeping a single channel. 
The reason for these results is assumed that the 
training data is 32 pixels square and this limits the 
effect of increasing the tensor size. To validate the 
effectiveness of increasing tensor size, further 
evaluation using larger resolution images is needed. 

Table 6: Accuracies for each enhanced tensor size [%]. 

Label CIFAR10 CIFAR100
VGG ResNet VGG ResNet

RGB64_s1 91.07 92.58 67.81 68.29
RGB64_s2 93.24 93.14 68.34 66.11
RGB64_s3 93.00 93.24 69.04 67.43
G112_s1 90.47 92.34 65.54 67.07
G112_s2 93.06 93.42 67.32 64.94
G112_s3 92.78 93.06 68.43 65.75

Finally, we evaluated the effectiveness of the 
combination between the increase of tensor size and 
the complexity. Table 7 shows classification rates of 
RGB-based tensor label with additive noise or after 
applying block cipher. (Rs) means a label based on a 
sampled RGB image. From Table 7, our proposed 
label clearly outperforms conventional tensor labels 
and obtained almost same accuracies as the 
conventional one-hot vector representation. On the 
other hand, results using Resnet110 on CIFAR100 are, 
unfortunately, lower than those obtained by the one-
hot vector on the same condition. As mentioned 
above, the investigation of this tendency is one of 
future works.  
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Table 7: Rates for noisy or encrypted RGB-based label [%]. 

Label CIFAR10 CIFAR100
 VGG ResNet VGG ResNet

Noisy2_Rs1 91.45 92.39 69.54 66.46
Noisy2_Rs2 93.69 93.89 71.41 68.78
Noisy2_Rs3 93.58 93.80 71.37 68.86
Noise2_Rs1 91.18 92.12 70.82 61.43
Noise2_Rs2 93.63 93.94 72.20 67.76
Noise2_Rs3 93.45 93.77 72.09 66.86
Crypt_Rs1 91.53 92.43 71.23 60.21
Crypt_Rs2 93.73 93.86 71.80 67.37
Crypt_Rs3 93.65 93.83 71.85 67.22

 

 
Figure 6: Accuracies on with/without normalization against 
the iterative method of AEs. 

4.2.2 Robustness Against AEs 

We evaluated the robustness of each label against 
AEs generated by the method of FGSM (Goodfellow, 
2015) and the Iterative method (Kurakin, 2017). And 
we adopted cases with and without a mis-recognition 
target class to each algorithm. First, to investigate 
how the normalization on value ranges affects the 
recognition of AEs, we see accuracies among three 
types of value ranges on iterative noise added and 
encrypted tensors on several dataset and DNN models 
against iterative method without mis-recognition 
target. The reason to select this AEs method is the 
most difficult to recognize them correctly. Figure 6 
shows accuracies mentioned above. The horizontal 
axis of each graph represents the noise level at the 
time of AEs creation. Please note that all the proposed 
tensors are based on sampled images. Results shown 
in Figure 6 show that accuracies of each tensor vary 

with conditions. From these results, we deeply 
validate tensors with an original value range (0 – 255: 
s1) and a value range of (-1 – 1: s2) by normalization.  

Next, we compare our proposed labels selected 
above and existing labels using several datasets and 
DNN models. Classification accuracies of each label 
expression against AEs on CIFAR10 and CIFR100 
are shown in Figure 7 and 8, respectively. Here we 
use only the shuffled spectrogram-based label as the 
conventional method because that are generally 
superior to the basic spectrogram-based label. From 
Figure 7 & 8, as evaluated in (Chen 2021), tensor 
representations are more tolerant to AEs than the one-
hot vector representation, especially in the cases with 
mis-recognition target. Compared to spectrogram-
based tensor representation, our proposed tensor label 
often achieved higher accuracies. In particular, 
among our proposed labels, post-cryptographic tensor 
labels with high complexity, which were highly 
accurate in 4.2.1, show higher tolerance in the cases 
with mis-recognition target class. This seems to be 
caused by high complexity and normalization pre-
process. On the other hand, our method did not differ 
much from the conventional tensor representation 
under the condition of the use of ResNet110 for 
CIFAR100 similar to results in 4.2.1. 

4.2.3 Impact of Number of Training Data 

Finally, we validate the influence of sample number 
in the training. Therefore, we examined classification 
rates when the number of training data is reduced 
from 20% to 1% of the standard 50,000 training data 
on CIFAR10. Figure 9 shows accuracies among three 
types of value ranges on iterative noise added and 
encrypted tensors when using VGG19 and 
ResNet110 as DNN models for validating the effect 
of the normalization on value ranges. The horizontal 
axis of each graph represents the percentage [%] of 
the total training data actually used for training. 
Please note that all of the proposed tensors are based 
on sampled images. These results give that the 
normalization pre-process does not always achieve 
high accuracies. One of causes that tensors with 
original value range of (0-255) obtained higher 
accuracies seems that a wider value range can 
enhance a more gap between different classes when 
using limited training samples. On the other hand, 
normalization process seems to narrow the 
differences between classes, because a variety of 
values of each dimension is smaller than that of an 
ordinary tensor. Figure 10 shows the comparison 
among our proposed label selected based on results in 
Figure 9 and conventional labels. Figure 10 provides 
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that our tensor representations are better than the 
existing tensor representation especially for less 
training samples used on VGG19. when the number 
of samples is large, each tensor representation label 
has a similar performance but higher accuracies than 
the conventional one-hot vector label. 

 
(a) VGG19 

 
(b) ResNet110 

Figure 7: Classification rates for AEs on CIFAR10. 

 
(a) VGG19 

 
(b) ResNet110 

Figure 8: Classification rates for AEs on CIFAR100. 
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Figure 9: Classification rates among several value ranges of 
tensors for each amount [%] of training data of CIFAR10. 

 
Figure 10: Classification rates of several types of labels for 
each amount [%] of training data of CIFAR10. 

5 CONCLUSIONS 

In this paper, we improved and evaluated the tensor 
representation label proposed in (Chen, 2021) as a 
different label representation in image recognition. 
Specifically, improvements and evaluations were 
conducted on image selection of a reference, 
complexity increase, and tensor size setting. For the 
reference image of the tensor representation, we 
proposed sampling directly from the training data and 
averaging procedures for each class. To increase 
complexity, we proposed the addition of Gaussian 
noise and the application of block encryption. We 
also evaluated the expansion of the tensor size and the 
number of channels. We also examined the varieties 
of value range. In the recognition experiments 
conducted for evaluating the proposed methods, our 
proposed tensor representations with higher 
complexity and larger sizes were as accurate as the 
conventional one-hot vector for ordinary data and 
more accurate than the conventional tensor 
representation labels based on speech spectrograms. 
In addition, in the evaluation of resistance to AEs and 
experiments with reduced training data, we confirmed 
that our proposed labels provide higher accuracy than 
conventional labels, including one-hot vectors in 
many cases. However, we unfortunately found that no 

method was superior in all the cases, and that some 
methods are not suitable for certain models and 
datasets. 

Future works include verification of the 
compatibility between label types and the structure of 
DNN models, and evaluation using other databases 
and DNN models. 
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