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Abstract: In recent years, Machine Learning methods have been employed for testing the security of pseudorandom
number generators. It is considered that successful learning from pseudorandom data implies the existence of
some detectable pattern within it, thus reducing the generator security. As the number and complexity of such
approaches has reported important growth, the aim of the present paper is to synthesize current results, discuss
perspectives and challenges and provide relevant guidelines for future study. To the best of our knowledge, this
is the first comprehensive analysis on the current state of the research into the problem of pseudorandomness
exploration by means of Machine Learning.

1 INTRODUCTION

It is known that pseudorandom number generators
(PRNGs) produce numbers that, despite appearing in-
distinguishable from true random numbers and fol-
lowing certain statistical properties, are the result of a
deterministic process. Effort has been invested into
providing some statistical guideline for evaluating
PRNG security by means of statistical test suites such
as NIST (Rukhin et al., 2001), TestU01 (L’Ecuyer and
Simard, 2007) or Dieharder (Robert G. Brown, 2017)
that take into consideration properties like equidistri-
bution, gap and birthday spacings (among many oth-
ers) to determine whether the generated pseudoran-
dom sequence is uniformly distributed or may be pre-
dicted with more than chance accuracy by random
guessing. While such tests provided tremendous ad-
vances for PRNG evaluation in the past, their ability
of understanding patterns is reduced. With the advent
of Machine Learning, one may pose the question of
whether more than just statistical properties can be
extracted from PRNG data.

Thus far, Machine Learning approaches have been
used for performing cryptography and cryptanalysis
related tasks, such as pseudorandom number gener-
ation (Pasqualini and Parton, 2020) and differential
cryptanalysis (Gohr, 2019) bridging the gap between
theoretical algebra and the innovative possibilities of
intelligent algorithms. In the context of PRNG secu-
rity assessment through pattern exploration, Machine
Learning methods have been used sporadically un-

til (Fischer, 2018) formally proposed neural networks
for the task. As a consequence, a new area of research
has emerged and the number of studies on this matter
has significantly increased.

The aim of this paper is to bring to light exist-
ing research on PRNG security exploration by means
of Machine Learning in an attempt to synthesize cur-
rent knowledge and results as well as discuss poten-
tial challenges and opportunities for the future. As
this field is still in its infancy, approaches are in-
cluded based on the novelty and original perspective
they bring to the problem. To the best of our knowl-
edge, this is the first comprehensive study discussing
the current state of the research in Machine Learning
methods applied for PRNG pattern exploration and
security assessment.

The rest of the paper is structured as follows. Sec-
tion 2 discusses research premises in terms of prob-
lem formulation. Section 3 presents the existing ap-
proaches of Machine Learning methods applied for
PRNG security assessment. Section 4 displays syn-
thesized results. Section 5 proposes a discussion on
future work. Section 6 presents the conclusions of the
study.

2 PROBLEM FORMULATION

The present section describes existing formulations
for the problem of learning from pseudorandom data.
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Over the years, emerging research in the area of pseu-
dorandom pattern exploration by means of Machine
Learning has been organized in a number of direc-
tions:

• next in sequence prediction;

• entropy estimation;

• inversion;

• sequence randomness classification (strong vs.
weak).

Next in sequence prediction may be the most common
formulation for the problem of learning from pseu-
dorandom data. It consists of training classification
or regression models on pseudorandom number se-
quences in order to determine, for a given input se-
quence, which value is most likely to be generated
next. The approach is based on the intuition that weak
generators may exhibit more easily detectable pat-
terns (see randograms for Linear Congruential Gener-
ators (O’neill, 2014)), thus enabling learning and of-
fering a greater possibility of success when predicting
future outputs. In this case, the strength of the learn-
ing algorithm is measured by its prediction accuracy.
However, despite the apparent simplicity of the task,
the problem of predicting next PRNG values consid-
ering past sequences is a difficult one and in practice
PRNG simplfication is often used in order to facilitate
learning.

Another emerging direction of research is PRNG
entropy estimation, often measured in terms of the
min-entropy score. Higher entropy values are asso-
ciated with a higher quantity of information betrayed
by the PRNGs. Studies approaching the problem in
this way use a next in sequence prediction compo-
nent to estimate subsequent PRNG values and com-
pute entropy scores based on the obtained results. The
method has gained popularity since its introduction in
the late 2010s and interest in developing complex Ma-
chine Learning models for PRNG entropy estimation
is increasing.

PRNG inversion by means of Machine Learing is
an interesting, yet underdeveloped direction in PRNG
security assessment which involves training models
to learn form PRNG data to the point of determining
their hidden parameter configuration (such as seed,
modulus, tap positions or feedback polynomial for
LFSRs). Due to its difficulty, there are few attempts
to approach the problem in this way, yet some of the
cited studies may be considered to have (at least par-
tially) achieved it.

Another under-examined direction is the one of
sequence randomness classification, which involves
training Machine Learning models to differentiate be-
tween strong and weak pseudorandom sequences. A

strong pseudorandom sequence exhibits high unpre-
dictability, namely it is difficult to find correlations
within its data and consequently, to learn from it,
while in the case of a weak sequence, such correla-
tions are more apparent. The problem is formulated in
(Savicky and Robnik-Šikonja, 2008) and its difficulty
is acknowledged by the authors. Like in the case of
other PRNG security assessment approaches, no se-
curity proof can be emitted for the sequences that pass
such tests, but security may be dismantled for those
that fail.

The aforementioned problem formulations have
been introduced to provide improved understanding
of the task in relation to the presented approaches.

3 RELATED WORK

The current section organizes existing research in the
field of pseudorandomness exploration and security
assessment by means of Machine Learning. The
speed with which interest in this field has increased as
well as the modernization and complexity of the tech-
niques used are highlighted by the timeline display of
the studied approaches.

Early attempts at PRNG prediction with Machine
Learning revolve around Decision Trees.

The authors of (Kant and Khan, 2006) predict sub-
sequent bits from a Fibonacci Linear Feedback Shift
Register (LFSR). Given an initial state, the LFSR con-
structs a pseudorandom sequence by performing the
exclusive or (XOR) operation on bits located at tap
positions. The tap positions of the LFSR can be de-
scribed by a polynomial modulo 2. The powers of
the polynomial denote the positions of the taps to be
XOR-ed within the LFSR. The authors frame the next
in sequence prediction task as a classification problem
and attempt to solve it through the C4.5 algorithm. It
is observed that a number of bits equal to the degree of
the polynomial is needed as input size in order to out-
perform random guessing. The model reaches 100%
classification accuracy. The authors introduce a Bit
Prediction Ratio formula that describes the number of
input bits necessary for predicting the subsequent one,
which they find increases with the number of taps.
Moreover, the rules generated by the C4.5 algorithm
can be used to infer the initial feedback polynomial,
which may be considered a first attempt to PRNG in-
version.

The work of (Savicky and Robnik-Šikonja, 2008)
explores patterns in a widely used PRNG, namely
Matlab rand() in the case the state method is used
(denoted rand state). The authors propose a Ran-
dom Forest (RF) based framework and formulate 4
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different approaches for PRNG learning: two in-
volving classification, (following different threshold-
ing), one involving regression and one involving fea-
ture importance evaluation. Comparisons are per-
formed with PRNGs such as MINSTD, ANSIC, the
rand() method in the Microsoft C compiler (denoted
as ms rand) and RANDU (with odd seeds) as well
as Mersenne Twister (MT) based PRNGs such as
MRG32k5a and WELL19937a, which describe an
upper bound for security comparison. Statistical tests
lead to the rejection of the hypothesis according to
which rand state and RANDU values are indepen-
dent and identically distributed. For regression, it is
considered that if the ratio between the current error
and the average error of the test set is smaller than 1,
the model has successfully learned an approximation.
Root Mean Squared Error (RMSE) is used for mea-
surement. Both rand state and RANDU (with even
and odd seeds) fail, while the rest of the generators
pass. Dependencies are detected in all PRNGs, but
are strongest in rand state and RANDU.

The work of (Kant et al., 2009) expands on (Kant
and Khan, 2006), by employing a variety of Machine
Learning techniques, namely Naive Bayes (NB), Av-
erage One Dependence Estimators (AODE), C4.5 and
Artificial Neural Networks (ANNs), to predict future
bits for an Alternating Step and a Geffe LFSR as
well as for a number of keystreams in the eSTREAM
project. It is observed that the performance of NB is
insufficient for the given task and the ANN needs a
large number of instances for training. For the Al-
ternating Step and the Geffe LFSR, C4.5 and AODE
obtain over 90% accuracy, with C4.5 performing bet-
ter. It is important to note that previous experiments
(Kant and Khan, 2006) were unable to attain high pre-
diction accuracy for the Geffe LFSR. The authors ob-
serve that the number of bits needed for prediction
increases with the degree of the polynomial and the
sparsity of the taps. Studied keystreams could not be
predicted with more than chance accuracy.

Following these initial approaches, the literature
has seen a shift in focus as approaches began to lean
towards the increasingly popular neural networks.

The work of (Hashim and Abdulhussien, 2015)
describes an attempt at strong vs. weak PRNG clas-
sification with ANNs. While such classification is
deemed feasible, the approach involves rather few
pseudorandom number sequences. Moreover, since
class labels used in training are obtained through sta-
tistical test evaluation, one may say the neural net-
works capacity for learning is reduced to the baseline
of statistical tests. The approach was included, how-
ever, on the base of its originality and for being, to the
best of our knowledge, the first attempt at strong vs.

weak PRNG classification.
The work of (Fan and Wang, 2018) studies the

ability of an ANN to find correlations in natural se-
quences such as π,

√
2 and e and the MT PRNG. Nat-

ural sequences follow a thresholding for binarization.
The authors perform statistical testing on the obtained
results and claim enough evidence exists for consid-
ering that thresholded π digits present a subtle corre-
lation that can be learned by means of an ANN. The
approach is extended to a Linear Congruential Gener-
ator (LCG) and a Quantum Random Number Gener-
ator (QRNG) in the work of (Feng and Hao, 2020). It
is observed that slightly more predictable results are
obtained for the LCG, while insufficient information
can be extracted from other generators.

The study of (Fischer, 2018) is considered an in-
flection point in the literature since PRNGs to be
evaluated are extended to include cryptographically
secure PRNGs and learning is performed by ad-
vanced Machine Learning techniques such as Long
Short-Term Memory Networks (LSTMs), Gated Re-
current Units (GRUs) and their bidirectional varia-
tions (BiLSTM, BiGRU). The studied generators are
Debian rand, Python random.randint, arc4random,
SHA1PRNG and /dev/urandom (with arc4random
and SHA1PRNG passing the Dieharder test suite).
Training involves a simple data mean fitting step fol-
lowed by a more complex estimation step based on
the networks ability of learning variation. The Mean
Average Error (MAE) score is obtained and an evalu-
ation framework based on multiple indicators is built.
The first indicator is the computed mean. If the MAE
score is lower than the expected average, learning is
considered successful. Due to model construction, it
is believed that a good model provides low MAE lev-
els and a good variance score in order to prove the
model did not simply learn the mean of the training
set. Thus, the second indicator is the obtained vari-
ance. In the case variance is small, the system has
likely overfit the data. The authors describe some
variance bounds within which learning is deemed suc-
cessful. The third indicator is p-value testing. Statis-
tical tests are performed for p-values < 0.01 in or-
der to reject the null hypothesis of the data belonging
to an independent and identical distribution. If one
indicator raises concerns, the result is unknown. If
more indicators suggest the model has learned from
the PRNG sequence, the result is fail. The tests pass
only if no indicators are able to detect issues.

Following this framework, vulnerabilities are dis-
covered in all studied PRNGs, with higher degree of
insecurity for rand and random.randint. The LSTM
model is deemed the most suitable for the task.

The paper (Truong et al., 2018) describes an at-

ICAART 2024 - 16th International Conference on Agents and Artificial Intelligence

188



tempt to evaluate the security of a Quantum Random
Number Generator (QRNG) by means of min-entropy
estimation and, in the process, provides an evaluation
for a LCG as well. The authors use a hybrid model
consisting of Convolutional and LSTM layers (CNN-
LSTM). The problem is approached as a classification
in terms of the output layer, where classes represent
the corresponding bits of the following number. The
authors observe that up to a certain period the model
displays better than random performance, but the ac-
curacy declines as the period is increased beyond that
threshold.

The work of (Lv et al., 2020) proposes a Recurrent
Neural Network (RNN) and an ANN for the task of
min-entropy estimation. This comes as a refinement
to the traditional approach (Kelsey et al., 2015) that,
due to its design, is prone to underestimates. The pro-
posed estimators are used to evaluate a number of se-
quences, including pseudorandom sequences such as
those from random.org, Ubld.it, linux kernel entropy
source, linux /dev/urandom and Windows random bit
generator with Crypto API. The approach consists of
evaluating network performance while still updating
model parameters. When compared to the traditional
NIST package evaluation, the results obtained by both
the RNN and the ANN are considered better. Among
the two, RNNs prove superior excepting the linux ker-
nel entropy source, where ANNs provide better esti-
mation. Due to the fact that the generator draws its
entropy from the pattern of repetitiveness of user in-
teraction with the operating system and given the na-
ture of ANN learning, this led the authors to believe
periodicity is produced in the random number gener-
ator.

The authors of (Li et al., 2020) propose a LSTM
model with Temporal Pattern Attention (TPA) to learn
from a QRNG and a LCG. The problem is approached
as in (Truong et al., 2018), with a final classification
step for the bits of the following number. Compar-
isons with models similar to those in (Truong et al.,
2018) and (Lv et al., 2020) are provided and the re-
sults are evaluated with respect to the length of the
input sequence as well. It is observed that both the
ANN and the TPA-LSTM are able to detect patterns
for sequence lengths as small as 3.2× 106. While in
this case the ability of the ANN is significantly higher
than that of the TPA-LSTM, as the sequence grows to
8× 106 the use of attention is considered influential
in elevating the TPA-LSTM model performance to an
accuracy of over 95%.

The work of (John Labelle, 2020) explores the
deterministic nature of PRNGs and attempts to de-
termine subsequent values generated by the Xor-
shift128 PRNG using an LSTM. While the developed

model exceeds 95% bitwise accuracy, (Mostafa Has-
san, 2021) observes that using an ANN for the task
can significantly reduce the number of model param-
eters while maintaining (and even increasing) the ac-
curacy. Thus, an ANN is trained and achieves 100%
bitwise accuracy. Moreover, the author displays the
values of the learned weights, showing that the model
was able to capture essential information in the data in
what may be considered an early stage of an inversion
attempt. These approaches are considered noteworthy
as they discuss the trade off between model complex-
ity, accuracy and domain knowledge in the context of
PRNG learning.

The work of (Gupta et al., 2021) addresses the
same problem as (Kant and Khan, 2006) for the Fi-
bonacci LFSR. The authors attempt to decrease the
number of bits the traditional Berlekamp Massey
(BM) algorithm needs for decryption, then train an
ANN on the reduced dataset to perform next in se-
quence prediction. This is possible through the in-
troduction of two pattern generation algorithms. The
problem is again framed as a classification task.
Training is first conducted in order to find the mini-
mum number of bits needed to obtain sufficient accu-
racy by gradually decreasing this number and evalu-
ating model performance. As the lower bound on the
number of bits is established, the value is retained and
the model is retrained with this configuration. Thus,
the authors succeed in finding a new lower bound for
the number of bits needed for learning to make accu-
rate next in sequence predictions for the LFSR.

The work of (Kim and Kim, 2021) performs a the-
oretical analysis on the relation between the ANN in-
put size and tap positions of Fibonacci LFSRs in the
context of learning from PRNG data, validating their
results in practice via a number of simulations. After
training on the proposed configuration, model insight
is provided through weight visualization, which may
be considered a proof for the model ability towards
inversion.

The paper (Amigo et al., 2021) approaches the
problem of predicting subsequent values for some
LCG variations using deep ANNs. The task is framed
as a regression, where the next in sequence prediction
problem is modeled in a Markovian way (considering
only one previous state) and is reduced to the approx-
imation of a piecewise continuous function with a fi-
nite number of discontinuities. The authors success-
fully train the models and compute the Mean Squared
Error (MSE) for evaluation. Errors in approximation
are found to occur in very few cases, for points close
to the discontinuity edge. This is assumed to happen
because of the nature of the training process where
only one previously generated seed is used and con-
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secutive values near discontinuity points lead to pre-
diction results at opposite sides of the codomain. The
approach is claimed to be the first to successfully use
neural networks for estimating piecewise continuous
functions.

4 EVALUATION AND RESULTS

The present section expands on the evaluation meth-
ods and results obtained in the studied approaches.

It is important to note the difficulty of training
Machine Learning models to learn from PRNG data.
There have been cases when certain approaches pro-
duced no results (Zanin, 2022). For this reason, any
attempt that manages to extract information from such
data may be deemed, at least to some degree, success-
ful. Section 3 describes a number of approaches for
performing this admittedly difficult task. It is appar-
ent that the focus of the scientific community has been
on framing it as either a next in sequence prediction
or an entropy estimation problem. While the next in
sequence prediction approaches are more numerous,
those concerning entropy estimation tend to employ
increasingly complex models.

Next in sequence prediction is generally per-
formed through an initial simplification (binariza-
tion) of the sequences and consequently regarded as
a binary classification problem (Savicky and Robnik-
Šikonja, 2008), (Fan and Wang, 2018), (Feng and
Hao, 2020). Attempts at performing regression on

real valued inputs have been successful, but have re-
quired more complex architectures as well as heavier
preprocessing (Amigo et al., 2021).

The computational techniques used range from
Decision Trees in early approaches to more sophis-
ticated neural network models (ANNs, LSTMs) and
the majority focus on PRNGs based on shift registers
or LCGs, while there are some that evaluate PRNGs
that come with a security claim as well. The generic
approach involves computing the next value of the
sequence and retaining the corresponding prediction
accuracy that would, in the end, be subject to a sta-
tistical test (Savicky and Robnik-Šikonja, 2008), (Fan
and Wang, 2018), (Feng and Hao, 2020). However,
in some cases the values may be considered in en-
sembles of indicators to obtain the final verdict on the
PRNG security (Fischer, 2018).

It is observed that ANNs are preferred for learning
on LFSRs and produce better results than their recur-
rent variations.

For regression tasks, metrics such as MSE (Amigo
et al., 2021) or RMSE (Savicky and Robnik-Šikonja,
2008) are used to evaluate the accuracy of the predic-
tion.

Regarding the formulation of the problem as an
entropy estimation task, evaluated PRNG generators
range from simple LCGs to some that include quan-
tum noise components. It is considered that higher
entropy scores signify larger amounts of learned in-
formation. For this method, all employed models
rely on neural networks and comparisons may be per-
formed not only against a baseline distribution, but

Figure 1: Machine Learning techniques used in the corresponding studies.
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Table 1: Overview of the studied Machine Learning approaches for PRNG exploration.

Work Technique PRNG Training dataset
size

Results

(Kant and Khan,
2006)

C4.5 Fibonacci LFSR,
Geffe LFSR

105 100% prediction
accuracy,
polynomial
inference

(Savicky and
Robnik-Šikonja,
2008)

RF rand state,
ms rand, RANDU,
MINSTD, ANSIC,
MRG32k5a,
WELL19937a

104 dependencies in all
but MRG32k5a
and WELL19937a,
worst in rand state

(Kant et al., 2009) C4.5, NB (no
results), AODE,
ANN

alternating step
LFSR, Geffe
LFSR, eSTREAM

90% of period, 106

for eSTREAM
up to 100%
prediction
accuracy for
LFSRs

(Hashim and
Abdulhussien,
2015)

ANN random bit
generator

103 low MSE score

(Fan and Wang,
2018)

ANN thresholded natural
sequences, MT,
QRNG

104 higher prediction
accuracy for π

(Feng and Hao,
2020)

ANN thresholded natural
sequences, MT,
LCG, QRNG

106 higher prediction
accuracy for π,
LCG

(Fischer, 2018) LSTM, GRU,
BiLSTM, BiGRU

random.randint,
Debian rand(),
arc4rand,
SHA1PRNG,
/dev/urandom

107 vulnerabilities in
all but
/dev/urandom

(Truong et al.,
2018)

CNN-LSTM LCG, QRNG 106 better accuracy for
LCG for smaller
periods

(Lv et al., 2020) ANN, RNN random.org,
Ubld.it, linux
kernel entropy
source,
/dev/urandom,
Windows RNG

106 −108 entropy evaluation,
possible
periodicity in
/dev/urandom

(Li et al., 2020) CNN-LSTM with
TPA

LCG, QRNG 108 high entropy for
LCG for smaller
periods

(John Labelle,
2020)

LSTM Xorshift128 106 over 95% bitwise
accuracy

(Mostafa Hassan,
2021)

ANN Xorshift128 106 100% bitwise
accuracy

(Gupta et al.,
2021)

ANN Fibonacci LFSR 7 to 45% less than
BM

up to 100%
prediction
accuracy

(Kim and Kim,
2021)

ANN Fibonacci LFSR 104 0 Bit Error Rate
value

(Amigo et al.,
2021)

Deep ANN variations of a
LCG

106 good model fit,
low MSE score
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also against similar approaches. The work of (Li
et al., 2020) evaluates model performance with re-
spect to various data sizes as well. Moreover, it pro-
vides a comprehensive comparison to min-entropy
scores obtained by network architectures similar to
those in (Truong et al., 2018) and (Lv et al., 2020).

In terms of training, the above described ap-
proaches use datasets of size ranging from 103 − 105

in early studies to 108 in the later ones. The train-
ing time varies from hours to weeks, being generally
performed on GPUs.

Table 1 provides a synthesized overview of exist-
ing approaches. It covers computational techniques,
PRNGs, dataset size and obtained results for each of
the discussed works.

Figure 1 displays a distribution of the Machine
Learning techniques used the included studies.

5 DISCUSSION AND FUTURE
WORK

The present section expands on some of the discussed
approaches and presents a number of directions for
future study.

The task of training Machine Learning models for
PRNG pattern exploration and security assessment
is undoubtedly difficult, hence the small number of
studies performed on the subject in the past decades.
Recent advances in Machine Learning have prompted
growing interest in performing such experiments as
they reveal not only the complexity of PRNGs, but
also that of the models employed for the learning task.
For this reason, study in the direction of Machine
Learning analysis of loosely correlated data such as
that of PRNGs may be regarded as a means of test-
ing (and expanding) the frontier of how much infor-
mation Machine Learning models are capable to ex-
tract. It may be considered that future studies per-
formed in this direction will have an enormous im-
pact when extending their results to other problem
domains that share in dealing with subtle correlations
(Fan and Wang, 2018). To some extent, this was al-
ready achieved in the case of (Kim and Kim, 2021),
where the actual application domain of the study was
intended to be optical communication systems.

Interest has been invested in employing current
PRNG pattern exploration models to verify quantum
random number generators as well.

In terms of current results, the studied approaches
involve a rather small number of generators mostly
belonging to classes of weak PRNGs (Shift Registers,
LCGs), yet interesting learning tasks have been for-
mulated for them. The most widely used approach is

that of next in sequence prediction, while entropy es-
timation problems have sparked growing interest by
capitalizing on the use of increasingly complex mod-
els. Few studies have so far involved inversion and
strong vs. weak PRNG classification. Despite the
widespread tendency of leaning towards “one-size-
fits-all” black box models, given the difficulty of the
problem, one may at this stage benefit from devel-
oping tailored models with domain knowledge, tar-
geting some precise PRNG. When such approaches
are applied, especially in the case of stronger PRNGs,
generator simplification may be required to perform
learning.

It is believed that successful models can be devel-
oped using PRNG simplification and domain knowl-
edge to capture the underlying deterministic pro-
cesses of stronger generators. It may be assumed that
once captured, such deterministic rules can be learned
to perfection. It would be interesting to perform such
attempts on stronger PRNGs with next in sequence
prediction and inversion tasks, especially since the
latter has been under-examined until this point.

Different robust neural network models such as
Generative Adversarial Networks (GANs) and Trans-
formers, as well as other hybrid model frameworks
may be evaluated with respect to this task.

Despite important progress, the time when Ma-
chine Learning testing will be performed instead of
(or complimentary to) traditional statistical test suite
evaluation may still be far. The main reason for this is
the complexity in the design of PRNGs regarded from
the Machine Learning methods perspective. Another
important issue is the high training time which may
deem implementation impractical. However, with the
advent of GPU and TPU computation this drawback
is expected to be mitigated in the future.

It is important to acknowledge the progress at-
tained through the use of Machine Learning for
PRNG pattern exploration and security evaluation in
the past decades. The number and complexity of ap-
proaches to tackle this task is rapidly increasing as
is the interest in this emerging niche. While current
domain applicability of the developed solutions may
be reduced to theoretical exploration, there is reason
to believe that in the future, knowledge derived from
these studies may actually be transferred to tackle
more practical problems.

6 CONCLUSIONS

The present study discusses Machine Learning meth-
ods in the context of learning from PRNG data. While
existing approaches are able to perform satisfacto-
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rily in the case of this admittedly difficult task, im-
proved computational approaches are proposed and
may be used in the future. As this field is still in
its infancy, more complex studies are expected to
be performed covering a wider range of PRNGs and
Machine Learning models. The present work is, to
the best of our knowledge, the first to highlight and
synthesize existing results on PRNG exploration by
means of Machine Learning in an attempt to organize
knowledge and popularize this emerging niche.
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