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Abstract: With the increasing complexity of cyber attacks, traditional methods for anomaly detection in cybersecurity
are insufficient, leading to the necessity of integrating deep learning and neural network approaches. This
paper presents a comparative analysis of the most powerful deep learning methods for such anomaly detection.
We analysed existing datasets for syslog and dataflow, compared several preprocessing methods and identified
their strengths and weaknesses. Additionally, we trained and evaluated several deep learning models to provide
a comprehensive overview of the current state-of-the-art in cybersecurity. The CNN model achieves excellent
results, with 0.999 supervised and 0.938 semi-supervised F1-score in syslog anomaly detection on the BGL
dataset and 0.985 F1-score in dataflow anomaly detection on the NIDS dataset. This research contributes to
the field of cybersecurity by aiding researchers and practitioners in selecting effective deep-learning models
for robust real-life anomaly detection systems. Our findings highlight the reusability of these models in real-
life systems.

1 INTRODUCTION

Cybersecurity, a subset of computer science focused
on defending computer systems and networks, faces a
rising tide of sophisticated attacks. Traditional meth-
ods using keywords and pattern detection fall short,
leading to the adoption of deep learning (DL) and
neural network techniques for improved anomaly de-
tection.

In this paper1, we present a summary of exist-
ing datasets for syslog and dataflow and compare dif-
ferent preprocessing methods with emphasis on their
benefits and disadvantages. We compare different ap-
proaches of AI models based on the most common
deep learning methods to provide a general summary
of the current state-of-the-art in the area of cyber-
security. Moreover, we emphasized the reusability
of these models in real-life systems and we evaluate
them accordingly. For the syslog, we compared sev-
eral models and the syslog preprocessing approaches

a https://orcid.org/0000-0001-9815-2763
b https://orcid.org/0000-0003-0049-4381
1This research is a part of Project TM03000055, cofi-

nanced from the state budget by the Technology Agency of
the Czech Republic under the DELTA2 Programme for ap-
plied research, experimental development and innovation.

on several datasets from the LogHub collection. We
reached the best results on the BGL dataset with the
CNN model with 0.999 supervised and 0.938 semi-
supervised F1 score. We compared NIDS and CTU-
13 datasets and different approaches to dataflow pre-
processing. We reached the best results with the CNN
model on the NIDS dataset with a 0.985 F1 score
highlighting the reusability of CNN models in real-
life systems.

2 MOTIVATION

Syslog and dataflow, easily accessible from net flow,
provide crucial insights into network activities and
cybersecurity threats. While other network data is
challenging to preprocess, syslog and dataflow offer
comprehensive coverage for anomaly and attack de-
tection. In our paper, we chose these sources due
to their accessibility and comprehensive representa-
tion of network aspects. Utilizing deep learning tech-
nologies, we can create robust systems for monitoring
network security and detecting attacks. Deep neural
networks outperform traditional methods and manual
rule creation (Chen et al., 2021), (Tang et al., 2016),
thanks to their multiple layers that efficiently handle
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complex features and computational tasks.
Existing papers analyse either anomaly detection

in syslog or anomaly detection in dataflow. They
present different approaches and algorithms on sev-
eral datasets. Therefore, it is impossible to compare
their results and the methods directly. We present
a transparent analysis and comparison of existing
approaches on the most common datasets for sys-
log Loghub (He et al., 2020) and the most common
datasets for dataflow NIDS (Sarhan et al., 2021) and
CTU-13 (Garcia et al., 2014). This paper is orga-
nized into two main sections. In the first part, we
present current methods and datasets followed by ex-
periments and the discussion of the results for syslog
and in the second part we do the same for dataflow. In
the end, we sum up both of them in a common con-
clusion.

3 SYSLOG

A device, system or application performs actions with
certain parameters during its operation. The infor-
mation about these actions is stored in the system
log (syslog). Syslog is an unstructured text message
written by the programmer during the development
of a given application, system or software. It con-
sists of characteristics of the syslog source (IP, MAC,
DHCP, system information, type, name) and opera-
tional information that describes what happened on
that source. However, as there is no general struc-
ture, the contents of these messages can vary a lot and
the collection of such data and their parsing for fur-
ther anomaly and attack detection is complicated. It
is necessary to develop general systems able to pro-
cess all these data and extract important information
from them to reveal possible attacks.

3.1 Literature Review

Most of the current experiments on anomaly detec-
tion in syslog were performed on the largest collection
of labelled and unlabeled datasets for syslog anomaly
detection LogHub (He et al., 2020) dataset which is
the only dataset used in all the related work. Unfor-
tunately, no other labelled large enough datasets were
found.

The best results are obtained using deep learning-
based models which are significantly surpassing clas-
sical ML methods (Chen et al., 2021) and (He et al.,
2016). They have strong generalization capabilities
that can help with handling unknown logs. Several
DL approaches and processing methods are compared
in related work but a comprehensive overview of all

Table 1: Sizes and proportions of train and test data of indi-
vidual syslog datasets.

Dataset HDFS 1 BGL Hadoop Open
Stack

Thunder-
bird(5%)

Labelled ✓ ✓ ✓ ✓ ✓
Time span 38.7h 214.7d - - 244d
#Messages 11,175,629 4,747,963 394.308 207.82 10,560,610
(% anomalies) (2.58%) (7.34%) (93.47%) (8.87%) (3.77%)
Data size 1.47GB 708.76MB 48.61MB 60.01MB 1.48GB
#Templates 30 619 298 51 4040
#Train sessions 460048 662 782 1656 449
(% anomalies) (2.92%) (50.3%) (82.23%) (9.48%) (44.77%)
#Test sessions 115013 166 196 414 113
(% anomalies) (2.94%) (45.18%) (85.71%) (10.14%) (42.48%)

combinations of the best deep learning-based meth-
ods with the best log preprocessing methods is not
available in any.

3.1.1 Datasets

Loghub (He et al., 2020) is a collection of 17 system
log datasets with a total size of 77GB created by a
group of scientists at the Chinese University of Hong
Kong (CUHK). Logs come from real traffic in a lab-
oratory environment from 6 different systems: dis-
tributed supercomputer systems, operating systems,
mobile systems, server applications and standalone
software. It contains a wide variety of different data
natures and formats, of which 5 datasets are labelled
by human annotators and can be used for training
deep learning models.

In this paper, we used only 5 labelled datasets
from the whole Loghub collection: BGL, Hadoop,
HDFS 1, OpenStack, and Thunderbird. HDFS 1,
OpenStack and Hadoop were collected from dis-
tributed file system logs, and BGL and Thunderbird
were generated from Blue Gene/L supercomputer log.
We selected these datasets as they are labelled and
both supervised and semi-supervised methods can be
easily evaluated on them. They differ in the source
of logs, the size of the datasets, the time span during
which the data were collected and the number of ses-
sions and percentage of anomalies, see Table 1. Note
that, from Thunderbird, we used only 5% of its orig-
inal size for train and test session creation because of
the limited capacity during the computation.

3.1.2 Models

This section describes the deep learning models for
syslog anomaly detection evaluated on BGL and
HDFS datasets.
DeepLog. Deeplog (Du et al., 2017) is a method
based on recurrent neural networks (RNN) which al-
lows the output from certain nodes to affect subse-
quent input to the same nodes and is widely used in
natural language processing tasks. They preserve de-
pendencies in time and remember patterns to predict
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the next likely scenario based on previously seen data.
DeepLog parses syslog and converts them to vectors
called embeddings using word2vec. Word2vec uses a
neural network model to learn word associations from
a large unlabelled corpus of text and creates embed-
dings keeping similar words close and distant words
far from each other.
LogAnomaly. LogAnomaly (Meng et al., 2019)
is another RNN-based model, which is similar to
DeepLog but instead of word2vec uses a tem-
plate2vec approach to create syslog embeddings.
Template2vec uses a special language model that was
retrained to take into account synonyms, antonyms
and similar word relationships in the context of logs
and not from general texts as in the case of word2vec.
Logsy. Logsy (Nedelkoski et al., 2020) is a deep
learning technique based on Transformer language
models which are deep learning architecture that re-
lies on the parallel multi-head attention mechanism
that allows words from a given text to focus only on
the important words from the text requiring less train-
ing time than RNN. Transformer learns to distinguish
between normal data from systems and anomalies and
also it can predict the next log in the sequence based
on language semantics and syntax learned from large
amounts of unlabeled data.
Autoencoder. Autoencoder (Zhang et al., 2019) is a
type of neural network mostly used in unsupervised
setups which learns to efficiently encode unlabeled
data to a representation with a reduction of the data di-
mensionality. It consists of two neural networks: the
encoder maps the message to a code, and a decoder re-
constructs the message from the code optimally with
zero difference. During the detection of anomalies in
syslog, only the encoder is important to extract and
encode the most valuable information.
Convolutional Neural Network. Convolutional neu-
ral networks (CNN) (Lu et al., 2018) is a type of neu-
ral network that learns features via filter (or kernel)
optimization using a special function called convolu-
tion and it also can detect anomalies in logs under a
supervised setup.

3.2 Datasets Preprocessing

3.2.1 Sessions and Windows

According to the original paper (He et al., 2020), the
data were grouped into sessions which contain a set
of related logs and the results are evaluated on those.
Sessions are useful for preserving relations among
logs and therefore, we kept the sessions in this pa-
per too. In HDFS 1 (and OpenStack), the sessions
are marked by identifier block ID (and instance id).

Hadoop has no identifier but grouping is easily possi-
ble by featured application id and container id. BGL
(and Thunderbird) could only be grouped into ses-
sions by time, the most appropriate length was set to
be 6 hours (and 1 hour) (He et al., 2016), see Table 1

During the evaluation, some of the sessions were
too long so we also grouped all of the datasets by
fixed-length windows of 10 logs to speed up the de-
tection process. However, during the experiments, we
also tested different lengths. During training, we also
used sessions as mentioned above. The whole ses-
sion was considered anomalous if at least one of the
logs was labelled as an anomaly. After the creation of
sessions and windows, we performed data preprocess-
ing: the log is parsed into templates and the templates
are converted into numerical vectors. we compared
several techniques to find the most suitable for each
dataset to deduce general rules.

3.2.2 Template Parsing

We parsed the original log message into the template
using three methods: 1) Sophisticated template pars-
ing, 2) Regular expression to remove variables from
the full log message, and 3) Regular expression. Each
log is parsed into a template by extracting variables
and parameters such as numbers, time stamps, IP ad-
dresses or dates to keep only the textual part. So-
phisticated template parsing uses special parsing al-
gorithms for this: Spell (Du and Li, 2016), Drain (He
et al., 2017) or IPLoM (Makanju et al., 2009). Firstly,
we used Spell on all datasets but the number of parsed
templates was often far from reality so we selected
the best-performing algorithm for each dataset based
on experiments performed by authors of (Zhu et al.,
2019): Spell for the HDFS 1, IPLoM for the Open-
Stack, Drain for for BGL, Hadoop, and Thunderbird.

Although sophisticated methods work with reg-
ular expressions in the initial step to enhance pars-
ing accuracy, we exclusively extracted main bench-
mark parameters (Zhu et al., 2019). Evaluation in-
volved comparing the number of extracted templates
in the training dataset, testing dataset, and out-of-
vocabulary templates in the test dataset for all three
methods (see Table 2).

3.2.3 Template Embedding

We converted created templates into numerical vec-
tors called embeddings by two approaches: 1) Ran-
dom embeddings and 2) Log2Vec semantic embed-
dings (Liu et al., 2019). Random embeddings (of-
ten referred to as sequential) extract unique templates
and randomly number them and no semantic mean-
ing of the logs is included. Log2Vec is based on
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Table 2: Number of templates from train and test logs in all
syslog datasets.

Dataset Data type # Train
templates

# Test
templates

#Test OOV
templates

BGL Drain templates 1645 614 218
Regex full 3381 1548 369
Regex content 1461 666 153

HDFS 1 Spell templates 35 36 2
Regex full 71 63 1
Regex content 71 63 1

Hadoop Drain templates 657 405 51
Regex full 770 623 23
Regex content 722 593 21

OpenStack IPLoM templates 1705 445 413
Regex full 5233 1503 1017
Regex content 2090 539 470

Thunderbird Drain templates 7443 1091 165
(5%) Regex full 3060 1903 69

Regex content 1786 1128 39

Table 3: Numbers of triplets, synonyms and antonyms.

Dataset Triplets Synonyms Antonyms

BGL 423 1070 54
HDFS 1 29 95 1
Hadoop 305 933 59
OpenStack 883 229 185
Thunderbird (5%) 630 3021 173

the idea of word2vec but in the context of logs in-
volving the semantics of words in the embedding cre-
ation. The emphasis is put on antonyms, synonyms
and meaning triples. Especially logs with opposite
words should be far from each other as they have a
significant impact on anomaly detection2. We trained
the Log2Vec model for every dataset separately as
the creation of one Log2vec model for all gave very
poor results. Moreover, a special model called MIM-
ICK3 was trained to predict embeddings for out-of-
vocabulary words and to generate embeddings for un-
seen logs. We computed the numbers of synonyms,
antonyms and triplets found in each dataset, see Ta-
ble 3.

3.3 Experiments

We tested two approaches: 1) Anomaly prediction
and 2) Next-log prediction. Anomaly prediction is
a supervised approach to predicting an anomaly or
normal behaviour in the sequence of logs. Next-log
prediction is a semi-supervised approach to predicting
the probability distribution of all logs that can follow

2For example embeddings for TURN ON and TURN
OFF would be close in word2vec, which is not desirable
in case of logs.

3Model mimicking the prediction of Log2Vec but on a
character-level.

Table 4: F1 scores of all syslog experiments after selecting
the best model for each supervised setup.

Label type Anomaly predictions

Eval type Session Without

Dataset Data type RFa RCb TEMc RFa RCb TEMc

BGL
semantics 0.999 0.999 0.993 0.992 0.991 0.996
sequentials 0.999 0.999 0.993 0.981 0.982 0.995

HDFS 1
semantics 0.979 0.973 0.959 0.635 0.641 0.637
sequentials 0.967 0.975 0.98 0.64 0.637 0.641

Hadoop
semantics 0.899 0.899 0.923 0.992 0.992 0.994
sequentials 0.899 0.899 0.923 0.992 0.992 0.994

OpenStack
semantics 0.158 0.156 0.191 0.154 0.154 0.181
sequentials 0.214 0.175 0.188 0.15 0.15 0.172

Thunderbird
semantics 0.999 0.999 0.99 0.993 0.993 0.993
sequentials 0.999 0.999 0.99 0.994 0.994 0.994

the given log sequence. If the observed log is different
from the top k4 predictions, the anomaly is raised.

Additionally, we compared several deep-learning
techniques to find the best model for anomaly detec-
tion. We involved LSTM, CNN and Transformers
for both supervised and semi-supervised approaches.
These models were selected based on the experiments
in (Chen et al., 2021) and the extensive overview of
methods provided in (Li and Jung, 2022).

During the training process, we considered sev-
eral preprocessing methods of template creation as
described in Section 3.2.2 which we combined with
both techniques for embedding creation described in
Section 3.2.3. We tested other hyperparameters in-
cluding the percentage of training data, window size,
window stride size, whether adding an attention layer
helps and the optimal number of predictions in a semi-
supervised setup. We selected the best models based
on the F1 score.

3.4 Results

We compared the results of the best-performing mod-
els from different combinations of setups described in
the previous section, see Table 4 and 5. In this set of
experiments, we fixed the following parameters for all
models: K = 10, strides = 1, window size = 10, and
no attention.

Datasets. The results vary a lot among the
datasets. Real-life use cases would require to se-
lection of the dataset closest to the real data. BGL
and Thunderbird behave similarly, they have a
high difference in supervised and semi-supervised
performance. HDFS 1 has very accurate predic-
tions in both supervised and semi-supervised ap-
proaches but has a very low number of templates
indicating its unsuitability in reality. The results

4Hyperparameter optimized for each dataset.
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Table 5: F1 scores of all syslog experiments after selecting
the best model for each semi-supervised setup.

Label type Next log predictions

Eval type Session Without

Dataset Data type RFa RCb TEMc RFa RCb TEMc

BGL
semantics 0.678 0.709 0.688 0.54 0.668 0.87
sequentials 0.678 0.712 0.701 0.512 0.664 0.885

HDFS 1
semantics 0.956 0.964 0.963 0.387 0.369 0.388
sequentials 0.969 0.958 0.954 0.393 0.369 0.414

Hadoop
semantics 0.901 0.903 0.923 0.97 0.976 0.714
sequentials 0.903 0.903 0.923 0.962 0.962 0.558

OpenStack
semantics 0.168 0.196 0.184 0.154 0.145 0.17
sequentials 0.165 0.188 0.184 0.146 0.146 0.168

Thunderbird
semantics 0.604 0.604 0.604 0.658 0.626 0.62
sequentials 0.604 0.604 0.604 0.826 0.658 0.636

a Regex full, b Regex content, c Sophisticated template parsing,
Cell colours: CNN, LSTM, Transformer.

from other datasets are ambiguous: Hadoop has
very low variability in F1 score and OpenStack is
very difficult to train in general5. This might also
be the reason that the literature usually employs
only BGL and HDFS 1.

Sessions and Windows. Sessions have signifi-
cantly higher F1 scores and they are commonly
used for evaluation in literature. However, the
sessions are often not marked in real data and the
evaluation of several hours long time sessions can
cause delay for early warning or adequate reaction
in practice. Therefore, we considered a window
evaluation more suitable for the reality.

Supervised and Unsupervised. A supervised ap-
proach generally yields better results, but labelled
data is usually not available in reality. Therefore,
a semi-supervised approach should provide more
valuable insights about real performance. Even
though some of the semi-supervised models ap-
pear to be underperforming compared to (Chen
et al., 2021), we believe this can be fixed by fine-
tuning, especially the K parameter.

Template Creation. Sophisticated parsing and
regex full and regex content methods reach similar
results. Sophisticated parsing usually is slightly
better, but requires knowledge about the dataset
and slows down the whole preprocessing. An in-
teresting observation was that none of the sophis-
ticated parsing algorithms was universal for all
datasets. Therefore, the regular expression pars-
ing methods in reality are more suitable.

Embeddings Creation. The results when com-
paring Log2Vec and embeddings without seman-
tics are also surprising. According to (Liu et al.,

5Probably caused by difficulties during template pars-
ing as suggested by experiments (Zhu et al., 2019).

2019), Log2Vec should significantly improve the
results but as to our analysis, the results were
nearly the same and Log2Vec only slowed the pro-
cess. Nevertheless, we still believe that Log2Vec
has a lot of exploring potential if the model is fur-
ther tuned and optimized, however, its inclusion
in reality is not suitable.
Model Architectures. When comparing different
model architectures, all of the models performed
reasonably well. In general, LSTM and CNN
have better results than Transformers. LSTM ap-
peared to be more suitable for the semi-supervised
approach, but it was significantly slower than
CNN. Therefore, CNN is expected to be the best
choice for the real-life use case as proved in (Chen
et al., 2021).
Train Data Size. We experimented with differ-
ent train set sizes and found out that in the case
of datasets with very few templates, only 1% per-
centage of data was enough to achieve reasonable
performance. This indicates that these datasets are
far from reality, where thousands of different log
templates appear.
Additionally, we ran another experiment with the

usage of a semi-supervised CNN trained on Regex
content with semantic embeddings and only 50% of
data to save time. The results are the following.

Number of Predictions (K). The number of pre-
dicted most probable logs had a significant impact
and its increasing size helped to achieve much bet-
ter results in BGL and Thunderbird. For example,
if we change the parameter K from 10 to 200 in
BGL, we get an astounding improvement in F1-
score from 71.2% to 93.8% which is much closer
to the findings from literature (Chen et al., 2021).
Window Size. Increasing window size helps to
improve results during window evaluation, but
longer windows are significantly more demanding
on memory. This is not surprising as each window
can consider more information and make more ac-
curate predictions.
Other Hyperparameters. According to the size
of strides, there is no general rule to improve the
results. We believe increasing the size might only
be beneficial during training. The final observa-
tion was that the attention layer had a minimal
impact on the results.

4 DATAFLOW

Dataflow includes vital information detailing network
data flow characteristics between two devices: IP and
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MAC addresses of source and target devices, commu-
nication ports and protocols, packet and byte sizes,
and communication start time with duration. Due to
computational demands, specific exchanged data is
excluded. Typically formatted in standardized IPFIX
or Netflow formats, parsing and preprocessing com-
plexity is significantly reduced.

4.1 Literature Review

Dataflow is usually collected in a standardized format
so its processing is not as demanding as in the case
of syslogs. It includes a selection of the most impor-
tant features either based on general knowledge or us-
ing tools such as PCA or correlation matrix to reduce
the dimensionality of data with minimal loss of infor-
mation. Except for IP addresses, all features can be
preprocessed by categorisation and normalisation. IP
addresses can be preprocessed using categorisation or
IP2Vec (Ring et al., 2017). In comparison to syslog,
the field of dataflow research exhibits weaker perfor-
mance, potentially attributed to the lower complexity
of data.

4.1.1 Datasets

Most of the current experiments on anomaly detec-
tion in dataflow were performed on NIDS (Sarhan
et al., 2021), CTU-13 (Garcia et al., 2014) or KDD
Cup 1999 (Hettich, 1999) datasets, which are the most
common datasets for dataflow anomaly detection. As
KDD Cup 1999 is very small compared to the others,
we omit it and perform the experiments only on NIDS
and CTU-13.

NIDS (Sarhan et al., 2021) dataset is a collec-
tion of 5 datasets of dataflow collected from sev-
eral sources, which reflect normal behaviour com-
bined with several types of attacks. We used only
NF-UQ-NIDS, which is a combination of all other 4
datasets NF-UNSW-NB15, NF-BoT-IoT, NF-ToN-IoT,
and NFCSE-CIC-IDS2018. In total, NIDS contains
11,994,893 flows from which 2,786,845 (23.23%) are
anomalies.

CTU-13 (Garcia et al., 2014) is a collection of 13
scenarios of botnet attacks mixed with normal flow.
The idea is to capture real botnet traffic mixed with
normal and background traffic in several scenarios.
A specific malware that uses particular protocols and
performs different anomalies is simulated in each sce-
nario. For our purposes, we combined all of these sce-
narios which resulted in a total of 19,474,237 flows
from which 331,852 are anomalous (1.70%).

4.1.2 Models

Deep learning-based models reach the best results for
detecting anomalies in dataflow and they significantly
outperform classical ML methods (Tang et al., 2016).
Similarly, as in the case of syslog, the most promising
existing experiments include RNN, CNN and Autoen-
coders. They were trained along with several types
of classical neural networks and Generative Adver-
sarial Networks on a preprocessed and cleaned ver-
sion of the original KDD dataset called KDD Cup
99 in (Podder et al., 2021) and the best results were
obtained with RNN. The convenience of RNN was
also confirmed by other experiments in (Kim et al.,
2016). However, CNN achieved comparable results
(Kim and Cho, 2018) so both of these approaches
were combined into a C-LSTM model. It consists of
several convolutional and recurrent layers in a linear
structure, where each layer extracts different features.
Models were trained on the Webscope S5 dataset,
which contains 367 time series and each has a length
of 1500 dataflows. According to the results, tradi-
tional RNN and CNN approaches were significantly
outperformed by C-LSTM. We decided to employ
larger data and verify these results along with differ-
ent IP preprocessing approaches.

4.2 Datasets Preprocessing

All the characteristic features in dataflow are numer-
ical or categorical except for IP. We preprocessed
features either by normalization6 or categorization7.
We employed several techniques to preprocess IP ad-
dresses as they have a more complicated structure.
Normalization. During normalization, we performed
a standard min-max normalization. We normalized
the features sum of TCP flags and flow duration
columns independently. In the case of packets and
bytes features, we normalised both input and output
columns together using common min and max values
to preserve the relationship between those values.
Categorization. We limited the number of categories
in some features to improve the generalization of the
model. In feature protocol number (0-255), all pro-
tocols up to 145 were kept as unique, and protocols
higher than this were merged to a single category8.
Similarly, port numbers (0-65536) higher than 49151
were merged to one category9 as all those numbers

6packets and bytes, sum of TCP flags, flow duration
7ports, protocols, flow direction
8https://www.iana.org/assignments/protocol-numbers

/protocol-numbers.xhtml
9https://www.iana.org/assignments/service-names-por

t-numbers/service-names-port-numbers.xhtml
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Table 6: Number of rows, anomalies and unique values in
dataflow datasets.

NIDS CTU-13

Train Test Train Test

Number of rows 8996169 2998724 15579389 3894848

Number of anomalies 2091125 695720 265649 66203

Unique source ip 65613 38015 1787875 708206
values target ip 25698 18122 469689 206522

source port 4064 3969 4165 3969
target port 4082 3944 4010 3889
protocol 147 147 7 6
l7 protocol 127 122 - -
input bytes 37635 24388 82339 38882
output bytes 64700 35061 - -
total bytes - - 220784 104478
input packets 4310 2086 - -
output packets 2830 1667 - -
total packets - - 6149 12668
sum tcp flags 48 49 - -
flow duration 108417 72597 4298221 1320011
direction 21 10 6 6
label 2 2 2 2
attacks 21 10 12 12

are unassigned. The other ports were grouped based
on the first word of the name9.
IP Addresses. During the IP preprocessing, we ex-
perimented with several approaches: 1) convert each
unique IP to a new category, 2) grouping all IPs into
6 categories (host, private network, subnet, documen-
tation, internet, software)10 and 3) IP2Vec. IP2Vec
(Ring et al., 2017) is a new method for IP preprocess-
ing based on the same principle as word2vec. The
context of IPs is learnt from other features and then
a vector embedding is calculated, grouping IPs with
similar behaviour close to each other, while keeping
IPs with distinct behaviour far away.

We created 12 numerical features for NIDS and 9
for CTU-13. Along with the binary label of whether
the flow is anomalous, we trained several AI models
for anomaly prediction. We computed the descriptive
statistics of all features from both datasets split into
train and test, see Table 6. Note that NIDS are ap-
proximately half the size of CTU-13 and that anoma-
lies are significantly less common than normal flows.
We solved the insufficient amount of anomalies by ap-
propriately upsampling.

4.3 Experiments

We employed several DL techniques to find the best
model for anomaly prediction evaluated on CTU-13
and NIDS datasets. We used CNN, and RNN, and we

10Inspired by (Cotton et al., 2013)

Table 7: Results of all dataflow experiments on NIDS
dataset.

Raw IP Cat IP IP2Vec

Model Upsample No Yes No Yes No Yes

NN

Accuracy 0.980 0.983 0.870 0.508 0.873 0.528
Precision 0.965 0.952 0.985 0.319 0.990 0.330
Recall 0.946 0.976 0.448 0.991 0.456 0.999
F1 0.956 0.964 0.616 0.483 0.625 0.496

NN HC

Accuracy 0.768 0.234 0.864 0.869 0.867 0.386
Precision 0.000 0.233 0.987 0.966 0.992 0.274
Recall 0.000 0.999 0.418 0.450 0.430 0.999
F1 0.000 0.377 0.587 0.614 0.600 0.430

RNN

Accuracy 0.966 0.947 0.987 0.984 0.993 0.989
Precision 0.933 0.835 0.989 0.959 0.986 0.954
Recall 0.920 0.962 0.954 0.971 0.983 0.999
F1 0.927 0.894 0.971 0.965 0.984 0.976

CNN

Accuracy 0.986 0.985 0.986 0.983 0.993 0.989
Precision 0.970 0.958 0.989 0.959 0.994 0.955
Recall 0.970 0.979 0.952 0.970 0.976 0.999
F1 0.970 0.968 0.970 0.965 0.985 0.976

RCNN

Accuracy 0.986 0.983 0.986 0.983 0.993 0.988
Precision 0.966 0.950 0.989 0.958 0.990 0.953
Recall 0.972 0.979 0.953 0.969 0.979 0.999
F1 0.969 0.964 0.970 0.964 0.985 0.976

also experimented with RCNN (Kim and Cho, 2018),
which combines the best from CNN and RNN to
achieve higher performance. Additionally, we com-
pared those techniques with simple neural networks
(NN) and simple neural networks with high capac-
ity (NN HC) to verify the necessity of advanced deep
learning methods.

Also, as we already noted, the ratio of anomalies
in both training datasets is very low. Therefore, we
included upsampling and evaluated the models with
and without it. In the case of NIDS, anomalies were
upsampled 4 times, while in CTU-13 we upsampled
all scenarios individually to balance the total number
of anomalies.

4.4 Results

We compared the results of all neural network models
on both NIDS and CTU-13 datasets, see Tables 7, 8.
The interpretation is split into the following parts.
Datasets. The NIDS dataset has significantly bet-
ter results than CTU, as confirmed in other pa-
pers(Maimó et al., 2018). We reached similar results
with NIDS as in (Sarhan et al., 2021) and (Kim and
Cho, 2018). With CTU-13, the results were much
worse except for models with IP2Vec, which im-
proves the results in deep-learning models up to an
F1 score and accuracy of 0.99. This demonstrates
the strong dependency on IP addresses in the CTU-
13 dataset, which is the reason why addresses are
completely excluded during training in other litera-
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Table 8: Results of all dataflow experiments on CTU-13
dataset.

Raw IP Cat IP IP2Vec

Model Upsample No Yes No Yes No Yes

NN

Accuracy 0.983 0.983 0.993 0.945 0.999 0.999
Precision 0.000 0.000 0.869 0.230 0.988 0.974
Recall 0.000 0.000 0.678 0.955 0.946 0.947
F1 0.000 0.000 0.762 0.371 0.967 0.960

NN HC

Accuracy 0.983 0.017 0.993 0.907 0.999 0.999
Precision 0.000 0.017 0.851 0.149 0.993 0.958
Recall 0.000 0.999 0.693 0.954 0.945 0.979
F1 0.000 0.033 0.764 0.258 0.968 0.968

RNN

Accuracy 0.987 0.968 0.994 0.985 0.999 0.999
Precisio 0.877 0.296 0.800 0.525 0.999 0.999
Recall 0.288 0.652 0.826 0.929 0.999 0.999
F1 0.434 0.407 0.813 0.671 0.999 0.999

CNN

Accuracy 0.983 0.921 0.993 0.980 0.999 0.999
Precision 0.496 0.168 0.811 0.460 0.999 0.999
Recall 0.024 0.923 0.764 0.930 0.999 0.999
F1 0.045 0.284 0.787 0.616 0.999 0.999

RCNN

Accuracy 0.983 0.912 0.988 0.980 0.999 0.999
Precision 0.528 0.154 0.869 0.453 0.999 0.999
Recall 0.049 0.927 0.365 0.932 0.999 0.999
F1 0.089 0.264 0.514 0.610 0.999 0.999

ture (Nguyen et al., 2022). Surprisingly, NIDS does
not have this problem and it might be caused by more
features in the source dataset.
Upsampling. We reached better results without up-
sampling the anomalies in training data in almost ev-
ery type of model. This was not expected as the
model’s learning is usually improved by balancing the
data. We are not sure about the origin of this and it
might be interesting to perform more experiments to
verify this problem.
IP Preprocessing. In all models except for sim-
ple NN, IP categorization into 6 categories helps to
achieve better results compared to keeping original
IPs as single categories. This indicates that simple
NN is strongly dependent on particular IP addresses.
IP addresses are not stable and every time one de-
vice logs into the network, it can have different IPs.
Therefore, ungrouped IP addresses should be defi-
nitely omitted. IP2Vec can slightly improve the re-
sults but it involves a high risk of dependency on IPs.
The IP2Vec creation significantly slows the process-
ing and therefore, we do not see much benefit in real-
life models in spite as claimed in (Ring et al., 2017).
Model Selection. Deep-learning-based methods
(CNN, RNN, RCNN) have significantly better results
in general confirming the complexity of data and the
necessity for advanced predictive models. The best
results seem to be obtained by RNN. However, the
recurrence in these is not within the following flows,
but instead, it is involved in the features in one flow
caused by the missing time information in the NIDS,

making it impossible to order the flows and evalu-
ate the dependencies among them. Therefore, we
selected CNN as the best model, it slightly over-
performs RCNN and we do not confirm the benefits
claimed in (Kim and Cho, 2018). As to the simple
NN and simple NN HC, our hypothesis with an in-
sufficient capacity of simple NN was not confirmed
as simple NN HC had significantly worse results and
the necessity of advanced learning methods was con-
firmed.

5 CONCLUSION

In conclusion, our study underscores the vital role of
deep learning models in cybersecurity anomaly detec-
tion, surpassing traditional methods that prove insuf-
ficient in the face of increasing cyber threats. The
adaptability of deep learning to evolving attacks is
crucial, enabling the processing of unstructured data,
uncovering dependencies, and enhancing attack de-
tection.

For syslog anomaly detection, key findings in-
clude segmenting log sequences into windows for in-
sightful evaluation. Preference leans towards super-
vised over semi-supervised approaches, with LSTM
models excelling in the latter. While Log2Vec em-
beddings and sophisticated parsing techniques show
uncertain benefits, CNN models prove superior in su-
pervised scenarios, demonstrating suitability for real-
world applications. Optimizing hyperparameter val-
ues is crucial for performance.

In net flow anomaly detection, dataset selection is
pivotal, favoring NIDS over CTU-13 for its richer fea-
tures and diverse data sources. Upsampling anoma-
lies provides no benefit, and dataflow preprocessing
should focus on categorization and normalization, ex-
cluding IP2Vec. Deep learning methods, particularly
CNN, enhance prediction results effectively.

Our general analysis identifies CNN models as
highly effective for both syslog and dataflow datasets,
demonstrating versatility in network data anomaly
detection. The reusability of these models in real-
life systems bodes well for practical implementation,
though further research with realistic datasets is es-
sential to enhance accuracy and efficiency. Leverag-
ing deep learning strengthens cybersecurity models,
safeguarding sensitive information and business pro-
cesses against evolving threats.
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