
Contextual Online Imitation Learning (COIL): Using Guide Policies in
Reinforcement Learning

Alexander Hill, Marc Groefsema, Matthia Sabatelli, Raffaella Carloni∗ and Marco Grzegorczyk∗

Faculty of Science and Engineering, Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence,
University of Groningen, The Netherlands

Keywords: Machine Learning.

Abstract: This paper proposes a novel method of utilising guide policies in Reinforcement Learning problems; Contex-
tual Online Imitation Learning (COIL). This paper demonstrates that COIL can offer improved performance
over both offline Imitation Learning methods such as Behavioral Cloning, and also Reinforcement Learning
algorithms such as Proximal Policy Optimisation which do not take advantage of existing guide policies. An
important characteristic of COIL is that it can effectively utilise guide policies that exhibit expert behavior in
only a strict subset of the state space, making it more flexible than classical methods of Imitation Learning.
This paper demonstrates that through using COIL, guide policies that achieve good performance in sub-tasks
can also be used to help Reinforcement Learning agents looking to solve more complex tasks. This is a sig-
nificant improvement in flexibility over traditional Imitation Learning methods. After introducing the theory
and motivation behind COIL, this paper tests the effectiveness of COIL on the task of mobile-robot navigation
in both a simulation and real-life lab experiments. In both settings, COIL gives stronger results than offline
Imitation Learning, Reinforcement Learning, and also the guide policy itself.

1 INTRODUCTION

Imitation Learning (IL) is a technique of solving Re-
inforcement Learning (RL) problems where instead
of directly training an agent using the rewards col-
lected through exploration of an environment, an ex-
pert guide policy provides the learning agent with a
set of demonstrations of the form (s, πguide(s)) where
πguide(s) is the action the guide policy takes in state s
(Halbert, 1984). The guide policy πguide is defined
as any mapping from states in the environment to
actions that exhibit the desired behavior. The agent
then tries to learn the optimal policy by imitating
the expert’s decisions. In recent years, research in
the field of Imitation Learning has become very topi-
cal, with many new methods being developed such as
Confidence-Aware Imitation Learning (Zhang et al.,
2021) and Coarse-to-Fine Imitation Learning (Ed-
ward, 2021), and Jump-Start Reinforcement Learn-
ing (Uchendu et al., 2022), and Adversarially Ro-
bust Imitation Learning (Wang et al., 2022). Fur-
thermore, applications of Imitation Learning are very
broad, ranging from self-driving car software (Chen
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et al., 2019) and industrial robotics (Fang et al., 2019)
, to financial applications such as stock market trad-
ing (Liu et al., 2020). In general, Imitation Learning is
a powerful technique when one has access to an expert
guide policy able to show the desired behaviour in the
environment. Influential examples of this methodol-
ogy are Behavioral Cloning (Ross et al., 2011), DAg-
ger (Pomerleau, 1998), and Generative Adversarial
Imitation Learning (Ho and Ermon, 2016).

Imitation Learning methods can utilise expert
guide policies in many different ways, such as esti-
mating the underlying reward function of a task di-
rectly from guide policy demonstrations such as in
Inverse Reinforcement Learning, through minimiz-
ing a carefully crafted loss function representing the
relative distance between the learning policy and the
guide policy, or even through using the guide policy
for a more sophisticated sampling of states for the
learning agent (Uchendu et al., 2022). Contextual On-
line Imitation Learning (COIL) utilises the guide pol-
icy in a different way. Instead, the agent’s observa-
tions of the environment are modified to include the
guide policies ‘suggestions’ for what action to take
next. From here, the agent is able to learn complex re-
lationships between the guide policies actions and the
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underlying state of the environment. This allows for
the agent to extract value from the guide policy on a
state by state basis, which is fundamentally different
to most current methods of Imitation Learning (Osa
et al., 2018). In COIL, the agent can learn for itself
exactly how and where in the environment is advan-
tageous to mimic the guide policy. This potentially
allows researchers and engineers to use guide policies
that only offer high rewards in a strict subset of states
in the environment. Furthermore, COIL can be easily
generalised to using multiple guide policies.

In COIL, at each time step t and state s during
training of the agent, the action of the guide policy
πguide(s) is provided as an additional observation to
the agent, along with any other useful observations
that are given by the environment. This proposed
methodology is shown in Fig. 1.

Figure 1: Illustration of the Contextual Online Imitation
Learning (COIL) methodology.

Additionally, if we have a set of guide policies
πguide1 , . . . ,πguiden , then we can generalise this frame-
work to include the actions of all guide policies at
time step t as observations to the learning agent.

Now that the agent is able to see what the guide
policy would do given the current context of the en-
vironment, it is able to learn through exploration how
best to use this information in order to maximise its
expected future reward. In other words, the agent is
able to learn for itself in which states within the en-
vironment it should ‘listen’ to the guide policy’s sug-
gestion, and in which states within the environment
it should ‘ignore’ the guide policy’s suggestion. This
methodology is therefore a form of contextual Imita-
tion Learning, as the agent is not directly encouraged
to follow the actions of the guide policy in all possi-
ble states. Furthermore, this method is online as it is
trained using continuous interaction with the environ-
ment. Therefore, we named this method Contextual
Online Imitation Learning.

It is important to note that COIL makes no explicit
assumption about the type of Reinforcement Learning
algorithm equipped with this new observation to the

agent. COIL can be used equally well with Value-
based methods as with Policy-gradient methods.

A major advantage of COIL in comparison to
other methods of utilising guide policies is that there
is no requirement for the guide policy to be an expert
at all states within the learning environment. Even
if the guide policy is only able to exhibit success in
some strict subset of the total states within the envi-
ronment, the agent is able to learn this fact through
enough exploration of the environment, and then ap-
propriately use this information to its advantage. Ad-
ditionally, if the guide policy exhibits only moderate
success across all states in the environment, the agent
could also learn to fine-tune the actions of the guide
policy in order to maximise reward.

This method can therefore be seen from two per-
spectives. The first is that COIL allows us to take a
non-optimal hand-crafted guide policy, and use Rein-
forcement Learning methods to encode additional de-
sired behaviours into the policy via the reward func-
tion. The other perspective is that this method allows
us to utilise existing guide policies to aid the agent
during training, and in the process the agent can learn
to use the suggested actions of the guide policy in
whatever way maximises the total expected reward.
In COIL, there is no explicit penalty in deviating from
the guide policy, this gives the Reinforcement Learn-
ing agent complete flexibility to use the guide policy
in complex and situational ways.

2 CONTEXTUAL ONLINE
IMITATION LEARNING

In many tasks in Reinforcement Learning there are
multiple competing objectives that determine the
overall success of a given policy. Let Ω1, . . . ,Ωn be
the set of objectives that we want the agent to learn
during training, where n is the total number of objec-
tives.

Then let ΩI be the set of objectives that the guide
policy is capable of achieving near-optimal perfor-
mance. This guide policy could be hand-crafted or
extracted from data via Imitation Learning. We have
that I ⊂ {1, . . . ,n}.

Now, we shall denote the part of the reward func-
tion associated with the objective Ωi at time step t as
rΩi(st ,at) where st is the state at time t and at is the
action at time t. Then, the overall reward function
taking into account each objective is defined as:

r(st ,at) =
n

∑
i=1

Ci · rΩi(st ,at) (1)

and additionally the reward function that the guide
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policy achieves near-optimal performance is given by

rΩI (st ,at) = ∑
i∈I

Ci · rΩi(st ,at) (2)

where Ci is the coefficient which determines the prior-
ity of objective Ωi. Some objectives are more impor-
tant than others, therefore these coefficients are very
important for encoding the desired behavior for the
agent to learn.

So far, the policy of the agent π has been a func-
tion of the current state s and action a. In practice,
the state is represented by a finite dimensional vector
of data points s = {s1, . . . ,sm} which gives the agent
as much information about the context of the environ-
ment as possible. Therefore, we have

π(s,a) = π(s1, . . . ,sm,a) (3)

and in COIL we also provide the action taken by the
guide policy πguide in that same state:

π(s,a) = π(s1, . . . ,sm,πguide(s),a). (4)

Many modern policy-based Reinforcement Learn-
ing algorithms use neural networks to model the pol-
icy of the agent. A result of the universal approxi-
mation theorem is that neural networks are capable of
approximating any continuous function given enough
units within the hidden layers (Hornik et al., 1989).
It is consequently possible that a neural network with
sufficient training can learn the simple rule of ‘copy-
ing’ a single input parameter:

π(s,a) = π(s1, . . . ,sm,πguide(s),a)≈ πguide(s) (5)

where this approximation can become arbitrarily ac-
curate (Hornik et al., 1989). In this case the policy of
the agent trained via COIL πCOIL is capable of achiev-
ing at least the same performance as the guide policy
πguide. However, this result is not guaranteed as in
many cases training data can be sparse or access to an
adequate training environment can be limited. If Q-
learning is used, then it is guaranteed that if the guide
policy is not the optimal policy then the COIL agent
will surpass the guide policy in expected reward given
sufficient exploration of the environment. This is a
result of Watkins’ proof of Q-learning convergence in
1992 (Watkins and Dayan, 1992).

Following this, it is interesting to investigate
whether the policy learned via COIL can be shown
to achieve better results than the policy learned via
Reinforcement Learning methods that do not utilise
the guide policy. The success of COIL is likely de-
pendent on the environment, the task, and the quality
of the guide policy utilised. Later in this paper we
will apply COIL to various applications and clearly
demonstrate the capabilities of the new method.

3 EXPERIMENTAL SET UP

3.1 Simulation

A mobile robot simulation was designed in Python3
using the package Pygame in order to test the effec-
tiveness of COIL. In the simulation, the car is able
to drive around on a 2D plane where its movement
is governed by a dynamic model referred to as a bi-
cycle model. Within the simulation, left cones and
right cones specify the sides of a track for the car to
drive through. An example of such a track can be
seen in Fig. 2. In order to turn this simulation into a

Figure 2: Image of the mobile robot simulation pro-
grammed using Python.

Reinforcement Learning problem, an action set A , an
observation set O, and a reward function R must be
decided.

To construct the observation, a cubic spline was
first applied to both the left side and right side of the
car’s track. This cubic spline acts as a boundary es-
timation for each side of the track. This cubic spline
boundary estimation can be seen in Fig. 2 as grey dot-
ted lines between detected cones. For more informa-
tion on cubic splines the reader is directed to Durrle-
man and Simons paper on the topic (Durrleman and
Simon, 1989).

Finally, to turn the boundary estimates into a
fixed-size observation for the agent, we can take n
equidistant sample points along each side of the track.
For this practical implementation n = 5 was an ap-
propriate choice given the computational constraints.
Therefore, we end up with 10 sample points in total,
each of which is comprised of two pieces of informa-
tion; the distance to the car r, and the relative angle of
the sample point with respect to the car axis, θ. These
20 values are what we shall use as our observation to
the agent, thus we have

O = {r1,θ1, . . . ,r10,θ10}

where the first five (r,θ) pairs represent the boundary
sample points on the left side of the track, and the last
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five (r,θ) pairs represent the boundary sample points
on the right side of the track.

For the set of actions A we simply allow the agent
to decide the steering angle (in degrees) of the car in
the interval [−80,80]. Thus

A = [−80,80].

The mobile robot in our simulation has three main ob-
jectives: Ω1: Survival, Ω2: Speed, and Ω3: Smooth-
ness. Four properties were chosen in order to encode
these objectives within the reward function:

i) A positive reward for successfully progressing
along the track (Ω1)

ii) A negative reward for crashing (Ω1)

iii) A positive reward for driving fast (Ω2)

iv) A negative reward for unstable driving (Ω3)

Using these four motivations, our reward function
to impose these objectives can be:

• rΩ1 = 70 · 1{Car finishes track} − 100 ·
1{Car crashes}+2.5 ·1{New cone detected}

• rΩ2 =−0.8T ·1{Car finishes track}
• rΩ3 =− ∥ θ− θ̃ ∥

where 1 is the indicator function, T is the time taken
for the car to finish the track, θ is the direction the
car is facing, and θ̃ is a exponentially weighted mov-
ing average of previous car directions. The coeffi-
cients superseding the indicator functions in the re-
ward function (70, -100, 2.5, -0.8) were decided in
order to incentivise the agent to learn the desired be-
haviour with respect to the three competing objec-
tives. Our final reward function for the entire task is
then defined as

r =
3

∑
i=1

rΩi .

Following this, in order to use COIL with this
simulation, we needed a guide policy πguide. Conse-
quently, it was necessary to design a suitable guide
policy. Thus a guide policy was created that aims to
keep the car as ‘safe’ as possible at all times. The
guide policy first calculates an estimate for the cen-
tre path that goes through the middle of the track, and
then takes the steering angle best suited to follow this
path. We can call this guide policy the ‘safety policy’
as it encodes our safety objective Ω1.

This guide policy is a great example of a non-
expert guide policy as it achieves optimal perfor-
mance on only certain subsets of the state space. If the
track is straight, driving directly down the middle op-
timises all three objectives, but on corners it exhibits
sub-optimal performance for the speed objective Ω2
as ‘corner-cutting’ can reduce the lap time.

Proximal Policy Optimisation (PPO), designed in
2017 by OpenAI (Schulman et al., 2020), is a power-
ful Reinforcement Learning technique which has seen
significant success in solving Reinforcement Learn-
ing tasks with greater stability and reliability than pre-
vious state of the art algorithms (Wang et al., 2020; Yu
et al., 2021). For this reason PPO (with MLP network
architecture for both actor/critic networks, 2 layers of
64 each, Adam optimizer, learning rate of 10−5, and
tanh activation function) was chosen as the Reinforce-
ment Learning algorithm for our agent, and also when
applying the COIL methodology.

To train the RL and COIL agents, 10 tracks were
created in the simulation. For training, 7 of the tracks
were provided to the agent randomly during each
episode of the simulation, this was to ensure the agent
would not just learn memorise a single track. An
episode of our simulation is defined by 3 full laps
around the randomly selected training track. The re-
maining 3 tracks were reserved for testing generali-
sation ability. An example of one of the simulated
tracks can be seen in Fig 3.

Figure 3: Example of one of the seven tracks used to train
the Reinforcement Learning agent to drive autonomously.

As a final mobile robot navigation method to com-
pare with COIL, an Offline Imitation Learning (OIL)
method is applied to mimic the behavior of the guide
policy discussed previously, in particular, Behavioral
Cloning is applied. As the behavior of the guide pol-
icy is simple, well-defined, consistent across the en-
tire state space, and by design a non-expert policy, we
found that it is sufficient in this case to use Behav-
ioral Cloning over a more complex method. How-
ever, in future research more advanced Offline Imita-
tion Learning algorithms could also be compared to
COIL.

At each time step t, the observation (boundary es-
timate samples) (r1,θ1, . . . ,r10,θ10) is fed into a Ma-
chine Learning model, with the objective of predict-
ing the action of the guide policy πguide(s). In order to
train the model, a dataset of demonstrations was col-
lected by the guide policy driving around each of the
training tracks for 3 laps, and at each time step t the
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sample{
(r1(t),θ1(t), . . . ,r10(t),θ10(t)) , πguide(st)

}
was stored. In total, this generated a dataset with
16510 data points. The Machine Learning model
that we used was a Random Forest Regression model.
This was chosen as it offered a very low Mean
Square Error (0.01489) for this task compared to other
methods we tested. For details on Random Forests
the reader is directed to the original 2001 paper by
Breiman (Breiman, 2001).

The Python code for this mobile robot simula-
tion can be found on Github at: https://github.com/
alex21347/Self Driving Car. Furthermore, the simu-
lation was ran using a 2.3 GHz Intel Core i5 CPU, an
Intel Iris Plus Graphics card, and 8GB of RAM.

3.2 Mobile Robot

COIL was also tested on a real life mobile robot in
order to answer the following research questions:

i) Does COIL still work effectively with a mobile
robot with real sensors?

ii) How robust are the algorithms with regards to
transfer learning?

Transfer learning is the method of using a pre-trained
model on a different task than the one that was used
for training the model (Pan and Yang, 2009). Trans-
fer learning has become an important research topic
in recent years (Ruder et al., 2019; Wan et al., 2021;
Aslan et al., 2021), and in this paper COIL will be
also tested in its robustness to Transfer learning.

The robot can be seen in Fig. 4 below. On top
of the robot there is a single Lidar detector (RPLi-
dar A1M8) which is the only sensor available for au-
tonomous driving.

Figure 4: Photograph of the robot car used for comparing
autonomous driving algorithms.

Using only this robot and the Lidar sensor, the
self-driving algorithms trained in the simulation can
now be compared using the task of navigating a real-
life track made out of cones. This test track can be
seen in Fig. 5.

Figure 5: Photograph of the test track used for comparing
autonomous driving algorithms.

4 RESULTS

The COIL and RL agents were trained in the simu-
lation over 6 runs for 2 million time steps each, and
the maximum average episode reward1 achieved dur-
ing training was recorded for each run. The average
maximum reward for COIL and RL can be seen in
Table 1.

Table 1: Table of training results for Reinforcement Learn-
ing (RL) and Contextual Online Imitation Learning (COIL).

Method Mean Max Reward

COIL 477.6
RL 414.2

It can be seen in Table 1 that COIL achieves much
more advantageous policies during training, giving a
15.3% increase in the average max reward. A one-
sided t-test on the mean maximum reward between
COIL and RL gave p = 0.034, indicating statistically
significant improvement over regular RL during train-
ing.

An additional trait that was noticed during training
was that the COIL agent consistently trained ‘quicker’
than the Reinforcement Learning agent, especially in
the earlier stages of training. This can be seen in
Fig. 6.

Therefore, there is evidence that by providing the
actions of the guide policy to the agent during training
in COIL, we achieve both quicker training and with a
higher maximum reward. In the next step of our anal-
ysis, the different algorithms are tested on 3 unseen

1average over all training episodes in the given iteration.
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Figure 6: The first 200k timesteps of agents trained via PPO
with and without COIL. COIL can be seen to offer faster
increases in average reward in these early stages of training.
For clarity, only 3 runs of each algorithm were selected for
this figure.

test tracks in order to investigate generalisation capa-
bilities.

Table 2 contains the results for the different poli-
cies on the unseen test tracks (10 trials with 3 laps
each). It should be noted that for COIL and RL, the
policies that were chosen for testing were the policies
that achieved the highest average episode reward dur-
ing training. Table 2 shows that COIL achieved the
highest mean reward of all four methods when tested
on the test tracks. This provides evidence that COIL
has strong generalisation ability, as its performance is
highly competitive both on the training tracks and the
test tracks. A one-sided t-test on the mean reward be-
tween COIL and RL gave p = 4.79 ·10−8, indicating
statistically significant improvement over regular RL
on the unseen test tracks. COIL is also the fastest of
the policies, achieving the lowest average lap time of
the four methods. However, COIL is also the least
smooth of the policies. This might be because the
agent has learned to prioritise speed over smoothness
in order to achieve the higher rewards.

The smoothness is calculated by taking the aver-
age magnitude of all of the rΩ3 values generated dur-
ing the tests. To recap, we have that

rΩ3 =− ∥ θ− θ̃ ∥

where θ is the direction the car is facing, and θ̃ is a ex-
ponentially weighted moving average of previous car
directions. Therefore, the larger the average magni-
tude of rΩ3 , the less smooth the journey is.

Lastly, we will analyse how the four methods
hold up in a more complex situation and a significant
change in incoming sensor data using the robot re-
sults.

Table 2: Table of results for four mobile robot driving algo-
rithms tested in a Python simulation on 3 unseen test tracks.
For each track, 30 laps were completed by each algorithm.

Method Mean Mean Mean
Lap Time Smoothness Reward

Guide Policy 48.81s 0.121 609.4
OIL 48.82s 0.061 620.8
RL 48.58s 0.557 614.5

COIL 48.48s 0.606 632.9

The reward function designed for the simulation
cannot be directly applied in real life because we lack
the necessary information to calculate the reward at
each time step. Instead, the lap time of the robot on
the test track can be used and by recording the steering
angle of the car over time we can also determine the
smoothness of the cars journey. The smoothness of
the cars journey was calculated by the same method as
in the simulation, by taking the difference between the
current steering angle and the exponentially weighted
moving average of previous steering angles.

For each mobile robot algorithm, three attempts at
driving around the track were made and the lap times
and angular velocities were recorded. The results can
be seen in Table 3. Table 3 shows that COIL offers the
fastest and smoothest journey of all four mobile robot
algorithms. This provides evidence that COIL is ca-
pable of effectively solving more complex and diffi-
cult challenges. Despite the change of environment,
agent, and observations, COIL still achieves strong
results as a mobile robot algorithm.

Table 3: Table of results for four mobile robot driving al-
gorithms tested by a robot. The algorithms are judged on
speed, smoothness, and safety.

Method Mean Mean
Smoothness Lap Time

Guide Policy 0.265 43.67s
OIL 0.104 43.32s
RL 0.102 40.14s

COIL 0.082 39.53s

It must be noted that the success of the real-life
mobile-robot navigation algorithm is highly depen-
dent on how realistic the simulation is during train-
ing. Aligning the dynamics of a simulation to real-
ity is very important when testing algorithms. The
accuracy and complexity of the simulation was lim-
ited by the resources at hand and scope of the project,
and thus the results for the real-life robot have ad-
ditional components to consider. By switching from
simulation to reality, we are introducing a significant
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shift between the training data (from the simulation)
and the test data (from the Lidar sensor), therefore
these results allow us to examine the affect of trans-
fer learning on our algorithms. Given this additional
difficultly in the task, the results in this section are
indicative that each algorithm exhibits robustness to
transfer learning. Given more resources and time, the
alignment between reality and simulation can be fur-
ther improved, and the results will be more suitable
for direct comparison.

These results show that COIL offers a method
of effectively utilising guide policies even when the
guide policy is both non-expert, and when faced with
transfer learning. In this case, not only is the task
much more difficult because of the transfer learning,
but COIL is faced with the additional difficulty that
the actions from the guide-policy are also effected by
the transfer learning. Despite the degradation of the
guide policy, COIL remains the strongest algorithm at
the task, demonstrating that COIL is capable of utilis-
ing non-expert guide policies even when withstanding
the effect of transfer learning. Consequently, there is
evidence that COIL is a robust and flexible method
of effectively incorporating guide policies into Rein-
forcement Learning problems.

5 DISCUSSION

The computational cost of running the COIL agent in
the environment is greater than Reinforcement Learn-
ing methods that do not utilise the guide policy be-
cause it is necessary to compute the action of the
guide policy at each time step (on top of the other
computations in the Reinforcement Learning algo-
rithm). In practice, the computational cost of comput-
ing the guide policies action is lightweight and thus
using COIL is only marginally more computationally
expensive than Reinforcement Learning methods that
do not use the guide policy. However, in rare cases
where calculation of the guide policies action is com-
putationally heavy, the available computing power
should be taken into account when using COIL. In this
case, it might be more feasible for researchers to ap-
ply Imitation Learning techniques in order to achieve
a more lightweight approximation of the guide policy.

Additionally, a potential shortcoming of COIL is
the requirement of a present guide policy. If the guide
policy cannot be queried during the exploration of the
environment then it is not possible to use it in COIL.
However, there is a suitable alternative given a guide
policy that is not present. In this case researchers can
add a preliminary step of applying Imitation Learning
techniques to generate a corresponding present guide

policy as an approximation of the original non-present
guide policy. In theory, any Offline Imitation Learn-
ing algorithm could be used for this purpose. There-
fore, although the requirement of a present guide pol-
icy is certainly a limitation of the proposed COIL
method, given the successful implementation of Of-
fline Imitation Learning COIL can still be used. Fur-
thermore, as COIL does not require an expert guide
policy, it is still applicable even if this Offline Imi-
tation Learning approximation is limited in capacity.
Thus theoretically, even a non-present and non-expert
guide policy can still be utilised with COIL, which
reinforces the notion that COIL is a highly-flexible
technique.

On the basis of the discussed findings, first results
in the research of COIL seem very promising, how-
ever, a limitation in our present analysis of COIL is
that the scope of results in this initial paper are fo-
cused on the task of mobile-robot navigation. In fu-
ture research, COIL must be also tested on other Re-
inforcement Learning tasks in order to get a deeper
understanding of its capabilities.

6 CONCLUSIONS

Contextual Online Imitation Learning (COIL) offers
researchers a promising new method of incorporating
guide policies into the learning process of Reinforce-
ment Learning algorithms in a practical way. In this
paper, COIL has been demonstrated to provide signif-
icant improvement over other methods in the context
of mobile-robot navigation. In both the simulation
and real-life experiments this was the case. Addition-
ally, the results from the lab experiment demonstrated
that COIL also has the ability to withstand the ef-
fect of transfer learning. Furthermore, COIL demon-
strated consistently faster policy training than the cor-
responding agent trained without COIL.

This paper has introduced the COIL methodology
and two applications in which it offers improved re-
sults over competing methods. However, future re-
search must still be done to more thoroughly inves-
tigate this novel method. Future research on COIL
could focus on four interesting topics. Firstly, re-
search could be conducted to analyse the effect of us-
ing multiple guide policies with COIL. In particular, it
would be interesting to analyse the deviation between
the agents policy and the guide policies during explo-
ration of the environment to see which of the guide
policies are being ‘listened to’ and in which states.
Secondly, additional research could focus on compar-
ing the COIL methodology for different Reinforce-
ment Learning algorithms such as Deep Q-Networks
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(Mnih et al., 2016b) or A2C (Mnih et al., 2016a), to
see if similar success is achieved. Thirdly, the effect
of treating the parameters of the guide policy as addi-
tional trainable parameters within the Reinforcement
Learning algorithm in order to fine-tune the actions
of the guide policy might also be an interesting av-
enue for future research. Lastly, COIL could be fur-
ther tested and compared to other Imitation Learning
algorithms in various tasks in order to get a broader
understanding of how it compares to other existing
methods.
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