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Abstract: A central challenge in quantum machine learning is the design and training of parameterized quantum circuits
(PQCs). Similar to deep learning, vanishing gradients pose immense problems in the trainability of PQCs,
which have been shown to arise from a multitude of sources. One such cause are non-local loss functions,
that demand the measurement of a large subset of involved qubits. To facilitate the parameter training for
quantum applications using global loss functions, we propose a Sequential Hamiltonian Assembly (SHA)
approach, which iteratively approximates the loss function using local components. Aiming for a prove of
principle, we evaluate our approach using Graph Coloring problem with a Varational Quantum Eigensolver
(VQE). Simulation results show, that our approach outperforms conventional parameter training by 29.99%
and the empirical state of the art, Layerwise Learning, by 5.12% in the mean accuracy. This paves the way to-
wards locality-aware learning techniques, allowing to evade vanishing gradients for a large class of practically
relevant problems.

1 INTRODUCTION

One of the most promising approaches towards
an early quantum advantage is quantum machine
learning based on parameterized quantum circuits
(PQCs) (Cerezo et al., 2021a). PQCs are gener-
ally regarded as the quantum analog to artificial neu-
ral networks, as they resemble arbitrary function ap-
proximators with trainable parameters (Schuld et al.,
2021). Mathematically, PQCs are parameterized lin-
ear functions that live in an exponentially high di-
mensional Hilbert space with respect to the number of
qubits involved. In essence, the ability to efficiently
execute specific computations in this large space al-
lows for provable quantum advantage (Grover, 1996;
Deutsch and Jozsa, 1992).

A core difference in a gradient based training
process of classical ANNs with PQCs, is the effi-
ciency: While the gradient calculation is invariant
in the number of parameters in classical ANNs, its
runtime complexity evidently scales linearly with the
number of parameters for PQCs (Mitarai et al., 2018).
As a gradient is merely the expectation value of the
probabilistic measurement from a quantum circuit,
its error-dependent runtime scaling is O (1/ε) com-

pared to the classical O (log(1/ε)) (Knill et al., 2007).
This disadvantage manifests substantially in case of
vanishing gradients, which are a common problem
in PQCs (McClean et al., 2018), especially as the
gradients can vanish exponentially in the number of
qubits (McClean et al., 2018), as opposed to the num-
ber of layers in the classical case (Bradley, 2010; Glo-
rot and Bengio, 2010).

Subsequently, much attention was devoted to ex-
ploring causes of vanishing gradients for PQCs by the
scientific community, which identified the four fol-
lowing possible causes of vanishing gradients:

1. Expressiveness: The larger the reachable sub-
space of the Hilbert space, the more likely gra-
dients can vanish (Holmes et al., 2022).

2. The locality of the measurement operator associ-
ated with the loss function: The more qubits have
to be measured, the more likely gradients can van-
ish (Cerezo et al., 2021b; Uvarov and Biamonte,
2021; Kashif and Al-Kuwari, 2023).

3. The entanglement in the input: The more en-
tangled or random the initial state, the more
likely gradients can vanish (McClean et al., 2018;
Cerezo et al., 2021b).
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4. Hardware noise: The more noise and the more
different noise types present in hardware, the
more likely measured gradients can vanish (Wang
et al., 2021; Stilck França and Garcia-Patron,
2021).

More recently, mathematical approaches unifying the
theory underlying causes were proposed, allowing for
a quantification of the presence of vanishing gradi-
ents in a given PQC (Ragone et al., 2023; Fontana
et al., 2023). Similar to the vanishing gradients prob-
lem in classical machine learning, many techniques
are being investigated in related work (see (Ragone
et al., 2023) for an overview). Some concrete exam-
ples to this are clever parameter initialization (Zhang
et al., 2022) and adaptive, problem informed learning
rates (Sack et al., 2022).

In this article we propose another approach to fa-
cilitate efficient parameter training in PQCs coined
Simulated Hamiltonian Assembly (SHA), which is
targeted towards the issue of locality. In essence, we
propose to exploit the structure of most practically
employed measurement operators Ĥ, i.e., Ĥ = ∑i Ĥi
where Ĥi is a local Hamiltonian for all i. In this
context, locality means that the given operator only
acts non-trivially on a small subset of all qubits, such
that the loss is merely influenced by the outcome of
a small subset of qubits. An important class of prob-
lems exemplifying the property of having a local de-
composition while also being a promising contender
towards quantum advantage are combinatorial opti-
mization problems (Lucas, 2014; Albash and Lidar,
2018; Pirnay et al., 2023).

Inspired from iterative learning approaches like
layerwise learning from (quantum) machine learning
and iterative rounding from optimization, SHA starts
with a partial sum of the measurement operator Ĥ
(e.g., simply Ĥ1) and iteratively adds more terms un-
til it completely assembled the original measurement
operator Ĥ. This iterative approximation of the loss
function allows to start with a local measurement op-
erator, which increases the ease of finding good initial
parameters outside potential barren plateaus (i.e., ar-
eas in which the gradient vanishes), and subsequently
aims to continually evade barren plateaus until the
complete, typically global, measurement operator is
used.

As a proof of principle, we conduct a case study
for the problem of graph coloring using the state of
the art PQCs based approaches to do so: The Varia-
tonal Quantum Eigensolver (VQE) and the Quantum
Approximate Optimization Algorithm (QAOA). The
problem of graph coloring is chosen, as it has a com-
plex loss function which challenges standard param-
eter training approaches and furthermore allows for

a comparison of different assembly approaches. Our
evaluation shows a significant improvement in solu-
tion quality when using SHA compared to standard
gradient descent based training, as well as compara-
ble state of the art approaches from related work.

2 BACKGROUND

In this section, we present the fundamental theory be-
hind training parameters in PQCs, and also introduce
the algorithms used for evaluation.

2.1 Training Parameterized Quantum
Circuits

Similar to classical machine learning, most prac-
tically employed parameter training techniques for
PQCs rely on gradient based methods. The corner-
stone for calculating the gradients of a PQC U (θ,x),
where U is a unitary matrix acting on all n qubits,
x ∈ Ck denotes the data input and θ ∈ Rm the param-
eters, is the Parameter Shift Rule. Exploiting that
all PQCs can be decomposed into possibly parame-
terized single qubit gates and non-parameterized two
qubit gates (Nielsen and Chuang, 2010), the param-
eter shift rule takes advantage of the periodic nature
of single qubit gates. Similar to how d/dx sin(x) =
sin(x+ π/2), one can show that ∀i:

∂

∂θi
U (θ,x) |ψ⟩= U (θ+,x) |ψ⟩−U (θ−,x) |ψ⟩

2
, (1)

where |ψ⟩ denotes an arbitrary initial state and
θ± := (θ1, ...,θi−1,θi ± π/2,θi+1, ...,θm) (Mitarai
et al., 2018; Schuld et al., 2019). This allows utilizing
the original PQC U to calculate the gradient as
efficiently as the forward pass for each parameter,
which can be parallelized using multiple QPUs to
achieve the same runtime complexity as the backward
pass in classical ANNs, when neglecting error.

2.2 The Variational Quantum
Eigensolver

The Variational Quantum Eigensolver is a quantum
optimization algorithm that utilizes a PQC U (θ) to
approximate the ground state of a given Hamilto-
nian Ĥ, i.e., an eigenvector of Ĥ corresponding to its
smallest eigenvalue (Peruzzo et al., 2014). The VQE
stems from the variational method, which describes
the process of iteratively making small changes to a
function (in our case f : θ 7→ U (θ) |0⟩) to approx-
imate the argmin of a given function (in our case
g : |ϕ⟩ 7→ ⟨ϕ| Ĥ |ϕ⟩) (Lanczos, 2012).
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While the original proposition of the VQE is fo-
cused on solving chemical simulation problems, the
algorithm can more generally be used to solve arbi-
trary combinatorial optimization problems by execut-
ing the following steps:

1. Encode the domain space of the given combina-
torial optimization function h : X → R in binary,
i.e., define a map e : X →{0,1}n. This allows for
the equality h(x) = ⟨e(x)| Ĥ |e(x)⟩ by defining Ĥ
as a diagonal matrix with eigenvalues h(x) cor-
responding to the eigenvectors |e(x)⟩, such that
finding the the ground state of Ĥ corresponds to
finding the global minimum of h.

2. Select a quantum circuit architecture defining the
function approximator U (θ).

3. Choose an initial state |ψ⟩ (typically |0⟩ to avoid
additional state preparation) as well as initial pa-
rameters θ (e.g., θi = 0 ∀i).

4. Specify an optimizer for parameter training.

In practice, even though much scientific exploration
has already been conducted (Du et al., 2022; Sim
et al., 2019a), the selection of a suitable and effi-
cient circuit architecture appears to be most challeng-
ing step.

2.3 The Quantum Approximate
Optimization Algorithm

The Quantum Approximate Optimization Algorithm
can be regarded as a special instance of the VQE, that
utilizes the principles of Adiabatic Quantum Comput-
ing (AQC) to construct provably productive circuit ar-
chitectures (Farhi et al., 2014). AQC is a quantum
computing paradigm that is equivalent to the stan-
dard quantum gate model (Aharonov et al., 2004) and
is motivated by the adiabatic theorem. The adia-
batic theorem essentially states, that a physical sys-
tem remains in its eigenstate when the applied time
evolution is carried out slowly enough (Born and
Fock, 1928). Exploiting the equivalence of solving a
ground state problem and combinatorial optimization
described in section 2.2, AQC can be used to solve
combinatorial optimization problems.

Mathematically, a computation in AQC can be
described by a time dependent Hamiltonian Ĥ(t) =
(1− t) ĤM + tĤC, where time t evolves from 0 to 1,
ĤM denotes the Hamiltonian whose ground state cor-
responds to the initial state, and ĤC is defined such
that it corresponds to the given optimization problem.
As it is straightforward to prepare an initial state cor-
responding to the ground state of a Hamiltonian (e.g.,
|+⟩⊗n wrt. ĤM := −∑

n
i=1 σx

i ), and as the Hamilto-

nians ĤC corresponding to practically relevant com-
binatorial optimization problems can be decomposed
into a sum of at most polynomially many local Hamil-
tonians, AQC can be utilized to efficiently solve many
optimization problems.

In essence, the QAOA simulates the continuous
time evolution of AQC described above by using dis-
cretization techniques, as computations in the stan-
dard model of quantum computing are conducted us-
ing purely discrete quantum gates. As implied by the
adiabatic theorem, the maximally allowed time evo-
lution speed merely depends on the difference be-
tween the smallest and the second-smallest eigen-
value of Ĥ(t) at each point in time t. Aiming to ex-
ploit this possibility of accelerating the time evolu-
tion beyond the maximally possible constant speed,
the QAOA introduces parameters that can essentially
vary the speed of time evolution. A careful mathe-
matical derivation of these ideas yields the following
PQC:

U (β,γ) =UM(βp) ·UC(γp) · . . . ·UM(β1) ·UC(γ1) ·H⊗n

where UM(βi) := e−iβiĤM , UC(γi) := e−iγiĤC , and p ∈
N, such that U (β,γ) approaches AQC for p → ∞, and
constant speed, i.e, βi = 1− i/p, and γi = i/p.

In practice, the QAOA (incl. slight adaptations
of it) often yields state-of-the-art results compared to
other quantum optimization methods (Blekos et al.,
2023). Nevertheless, its runtime complexity strongly
depends on how many, and how local the Hamiltoni-
ans Ĥi composing ĤC = ∑i Ĥi are, as well as how na-
tively they fit on the given hardware topology. Due to
the repetitive application of UC, this restricts the num-
ber of usable discretization steps p significantly, and
therefore the solution quality, as it grows proportional
to p. For this reason, other VQE-based PQCs can reg-
ularly outperform the QAOA on near term quantum
computers, in spite of its property of provably find-
ing the optimal solution when given enough time (Liu
et al., 2022; Skolik et al., 2021).

3 RELATED WORK

To allow for a comparison of our approach with other
methods to enhance parameter training in (VQE-
based) PQCs, we now provide a short introduction
into two prominent techniques: Layerwise learning
and Layer-VQE. To the best knowledge of the au-
thors, no other baselines have been proposed, that are
more similar to our methodology in terms of itera-
tively guiding the parameter learning process while
aming to evade barren plateaus.
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3.1 Layerwise Learning

Inspired by classical layerwise pretraining strategies
used in deep learning (for reference, see (Bengio
et al., 2006)), (Skolik et al., 2021) showed, that itera-
tively training a subset of the parameters in PQCs can
significantly improve the solution quality. As an input
to their approach, they assume a layered-structure of
the PQC, which is common in most of the literature.
The training is then performed in two phases. In the
first phase, the parameters are trained while sequen-
tially assembling the PQC in a layerwise manner:

1. Start with a PQC consisting of the first s-layers of
the given PQC, while initializing all parameters to
zero, aiming to initialize close to a barren-plateau-
free identity operation1.

2. Train the parameters for a predefined number of
maximal optimization steps.

3. Add the next p-layers to the PQC and fix the pa-
rameters of all but the last added q-layers, while
initializing all new parameters to zero.

4. Train the parameters of the last added q-layers
for a predefined number of maximal optimization
steps.

This process is repeated until the addition of new lay-
ers does not improve the solution quality or a spec-
ified maximal depth is reached. Note, that all intro-
duced variables (i.e., s, p and q) are hyperparameters
that potentially need to be trained in order to fit the
specific requirements of the problem instances of in-
terest.

In the second phase, another round of parameter
training is conducted, now with the fully assembled
circuit. Here, a fixed fraction of layers r is trained in
a sliding window manner, while fixing the rest of the
circuits parameters. Each contiguous subset of layers
is trained for a fixed number of maximal optimization
steps.

By choosing the number of optimization steps for
each part of the training sufficiently low, overfitting
can be obviated, while also bounding the overall train-
ing duration from above. In subsequent papers, it has
been shown that there is a lower bound on the size
of the subset of simultaneously trained layers in lay-
erwise learning, to allow for effective training (Cam-
pos et al., 2021). Nevertheless, there are relevant ap-
plications such as image classification, for which ex-
perimental results indicate significantly lower gener-
alization errors when using layerwise learning (Skolik
et al., 2021).

1A barren plateau is a region in the parameter land-
scape, in which the gradients vanish.

3.2 Layer-VQE

Building upon the insights gained in (Skolik et al.,
2021) and (Campos et al., 2021) (see section 3.1),
(Liu et al., 2022) proposed the iterative parameter
training approach Layer-VQE, that essentially resem-
bles a special case of layerwise learning. The core
idea for Layer-VQE is that each layer must equal
an identity operation when setting the parameters to
zero. This ensures that the output state of the circuit
does not change when adding a new layer, so that the
search in the solution space of the given optimization
problem continues from the previously optimized so-
lution. The other fundamental specification of layer-
wise learning in Layer-VQE is that the second phase
is omitted (i.e., r = 0), as q is chosen to be cover all
previously inserted layers. This means that instead
of merely training the q last layers, all inserted lay-
ers are trained simultaneously. To limit the number of
new parameters in each step, only one layer is added
in each iteration (i.e., p = 1). Beyond these substan-
tive specifications of layerwise learning, a small detail
is added in Layer-VQE: An initial layer consisting of
parameterized Ry rotations on every qubit.

Based on the large scale evaluation conducted in
(Liu et al., 2022), Layer-VQE can outperform QAOA
in terms of solution quality and circuit depth for spe-
cific optimization problems, especially on noisy hard-
ware.

4 SEQUENTIAL HAMILTONIAN
ASSEMBLY

We now propose our core contribution in this article:
The Sequential Hamiltonian Assembly (SHA) ap-
proach, targeted towards facilitating parameter train-
ing of PQCs on global cost functions. Inspired by
the concept of iteratively guiding the learning process
by sequentially assembling the quantum circuit of a
VQE layer by layer, as done in layerwise learning, we
propose to instead assemble the often global Hamil-
tonian Ĥ = ∑

N
i=1 Ĥi (i.e., the cost function), by iter-

atively concatenating its predominantly local compo-
nents Ĥi. A significant motivation of this approach are
similar, very successful strategies proposed in combi-
natorial optimization, that start with a relaxed version
of the cost function and iteratively remove imposed
relaxations to reassemble the original cost function
(for a review on one of these approaches called itera-
tive rounding, see (Bansal, 2014)).

In the following, we provide steps concretizing the
proposed concept of SHA for a given PQC and a de-
composable Hamiltonian Ĥ = ∑

N
i=1 Ĥi:
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1. Select a strategy on which Hamiltonians should
be added in which iteration, i.e., a partition
P = {P1, ...,PM} where Pi ⊆ {1, ...,N} such that⋃M

j=1 Pj = {1, ...,N}.

2. Choose a maximal number of parameter optimiza-
tion steps per iteration s j, optimally low enough to
avoid overfitting.

3. Iteratively optimize the parameters of the given
PQC wrt. the Hamiltonian ∑i∈

⋃k
j=1 Pj

Ĥi for each

k ∈{1, ...,N} in ascending order for max. sk steps.

As shown in the evaluation section, the assem-
bling strategy can have a significant impact in the so-
lution quality. For properly evaluating this, we pro-
pose three different approaches:

• Random: Use equally sized, non-overlapping
partitions, while the partition assigned to each Ĥi
is random.

• Chronological: Use equally sized, non-
overlapping partitions, while assigning the
Hamiltonians in the order specified upon input.

• Problem Inspired: Use a problem inspired parti-
tioning, where the terms in each partition share a
common, problem specific, property.

Note that in practice, given Hamiltonians Ĥ can be di-
vided into many sub-Hamiltonians ∑

N
i=1 Ĥi, such that

it might take too long to progress with one Ĥi at a
time. For our purposes, and computational restric-
tions, M ≤ 10 already showed decent results. We
choose these three approaches, as they provide dif-
ferent degrees of information on the problem instance
at hand: While random does not provide any infor-
mation, chronological does do so in many cases (see
examples in (Lucas, 2014)). Finally, in the prob-
lem inspired approach, all available knowledge of the
problem instance can be used to solve it in an itera-
tive manner, as shown in the following example using
graph coloring.

Graph coloring is a satisfiability problem concern-
ing the assignment of a color to each node, such that
no neighboring nodes share the same color. While
there also exists an optimization version of it, i.e.,
finding the smallest number of colors, so that such a
color assignment is still possible, we focus on the sat-
isfiability version, as it already inherits complex struc-
tural properties and is easier to evaluate. To save com-
putational resources, we employ the Hamiltonian for-
mulation proposed in (Tabi et al., 2020), which needs
the least amount of informationally required qubits to
solve this problem:

∑
(v,w)∈E

∑
a∈Bm

m

∏
l=1

(
1+(−1)al σ

z
v,l

)(
1+(−1)al σ

z
w,l

)

Note, that this formulation only works when consid-
ering problems where the number of colors k equals
a power of two (i.e., ∃m ∈ N : 2m = k), which we do
in our evaluation ensuring minimal requirements re-
garding computational resources.

This Hamiltonian can be decomposed into at most
|E| ·k different Pauli terms with at most |E| ·

(m
l

)
many

l-local terms, where l ∈ {1, ...,m}. To decompose
this substantial number of local sub-Hamiltonians, we
propose a nodewise approach, i.e., |V | many parti-
tions Pj that contain all Pauli term indices involving
the node v j ∈ V . The results for this approach sub-
sequently show, that the increase in problem instance
information can improve the solution quality signifi-
cantly. Therefore SHA demonstrates an example of
how the problem of training with respect to global
cost functions can be approached by iteratively as-
sembling them from local subproblems in a problem
informed manner.

5 EXPERIMENTAL SETUP

In this section, we motivate and describe our choice
of problem instances, PQC architectures, and hyper-
parameters, which are used in the subsequently fol-
lowing evaluation.

5.1 Generating Problem Instances

To generate bias-free, statistically relevant, problem
instances, we take the standard approach of using
random graphs from the Erdős-Rényi-Gilbert model
(Gilbert, 1959). This model conveniently allows for
the generation of graphs with a fixed number of nodes
while varying the number of edges, such that graphs
of different hardness can be generated. Generally, the
hardness of solving the graph coloring problem for a
fixed number of colors in a random graph is propor-
tional to the number of edges: The more edges, the
harder (Zdeborová and Krząkała, 2007). To quantify
the hardness, we straightforwardly use the percentage
of correct solutions in the search space, as commonly
done for satisfiability problems.

The dataset resulting from these considerations is
displayed in table 1, where p denotes the probability
of arbitrary node pairs to be connected by an edge,
r the percentage of correct solutions in the search
space, and s is the absolute number of correct solu-
tions in the search space. To achieve a sensible trade-
off between computational effort needed for simula-
tion and reasonably sized graphs, all instances consid-
ered involve 8 nodes, and 4 colors, which amounts to
8 · log2 (4) = 16 qubits and a reasonably large search
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Table 1: Utilized graph problem instances, generated us-
ing the fast_gnp_random_graph function from networkx
(Hagberg et al., 2008). Every graph was checked to be fully
connected.

Graph id p r s seed
1 0.30 1.025% 672 7
2 0.55 1.501% 984 8
3 0.40 1.025% 672 9
4 0.40 1.428% 936 10
5 0.35 3.369% 2208 11
6 0.30 2.051% 1344 12
7 0.35 3.223% 2112 13
8 0.50 0.879% 576 14
9 0.90 0.037% 24 15

10 0.40 0.659% 432 16

space of size 48 = 65535. As tested in course of the
evaluation and in line with previously mentioned the-
oretic arguments, these graphs vary in their difficulty
according to p and s, with graph 9 being the hardest
by far, and 5 being the easiest.

5.2 Selecting Suitable Circuit Layers

Aiming to test our approach for a wide variety of dif-
ferent PQC architectures, we draw from the extensive
list provided in (Sim et al., 2019b), which contains
many structurally differently PQCs. To extend these
architectures to the required number of 16 qubits, the
underlying design principles are identified and ex-
tended to cover all 16 qubits (i.e., ladder, ring, or tri-
angular entanglement layers, as well as single-qubit
rotation layers). As testing all 19 proposed circuit ar-
chitectures for such a large amount of qubits would
exceed the computational simulation capacities avail-
able to the authors, we conducted a small prestudy
to select a suitable subset according to the following
criteria: (1) significantly better-than-random perfor-
mance, (2) limited number of parameters (to reduce
training time), and (3) variance in the architectures.
Eliminating circuit 9 for reason (1), circuits 5 and 6
for reason (2) and dropping circuits (2 & 4), (8, 12
& 16), and (13 & 18) for reason (3)2, circuits 1, 3, 8,
12, 13, 16 and 18 are used in our evaluation. A small
prestudy to the evaluation showed, that these circuits
display roughly similar solution qualities when aver-
aged over all problem instances, only with circuit 12
performing slightly worse, which might be induced
by its layers’ non-identity property when zeroing all
parameters.

2For the elimination of all but one circuit with respect to
reason (3), the one with the best performance was selected.

5.3 Hyperparameters

As outlined in sections 2, 3, and 4, the baselines, as
well as SHA possess important hyperparameters, for
which we now specify concrete values. Almost all
approaches require layerwise structured PQCs, lead-
ing us to conduct a small prestudy on the number of
circuit layers needed for solving the given problem in-
stances. As a result of this, we choose to conduct our
case study using three layers, as more layers did not
improve the solution quality significantly. For layer-
wise learning, we thus choose s = 1, p = 1, q = 1, to
train only a single layer at a time in the first phase and
r = 1 to train the full PQC in the second phase. Any
higher values for s, p and q would hardly be sensible,
as the number of layers is merely three. With r = 1,
we use the most potent approach according to (Cam-
pos et al., 2021).

For all approaches, we employed the COBYLA
optimizer (Gomez et al., 1994), due to its empiri-
cally proven, highly efficient performance for simi-
larly sized problems (Joshi et al., 2021; Huang et al.,
2020). While setting the number of maximally pos-
sible optimization steps to 4000 for all runs, we limit
the maximum learning progress for the training steps
in which only a subset of the parameters were trained,
by setting the least required progress in each opti-
mization step to 0.8. For the final steps, in which
all parameters are trained concurrently, this variable
is set to 10−6, as overfitting is not a concern here any-
more. Finally, a shot-based circuit simulator was used
to account for shot-based, imperfect estimation values
present when using quantum hardware. For all circuit
executions, the number of shots was set to 200, which
already allowed for reasonably good results.

6 EVALUATION

To evaluate our approach, we first compare the pro-
posed assembly strategies and then review the so-
lution quality of SHA. Further, we show that SHA
can be productively combined with the other dis-
cussed quantum learning methods layerwise learning
and Layer-VQE. Finally, we compare the time com-
plexity of all discussed approaches. To guarantee suf-
ficient statistical relevance, all experiments are aver-
aged over five seeds.

6.1 Comparing Assembly Strategies

As indicated in section 4, SHA depends on the chosen
Hamiltonian assembly strategy. Depending on the in-
formation available on the specific problem instance
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and Hamiltonian sum, we now evaluate the three dif-
ferent strategies proposed: (1) random, (2) chrono-
logical, and (3) problem inspired. Examining the re-
sults displayed in figure 1, we can see that random
(RD i) performed the worst, when partitioning into
i ∈ {2,4,6,10} many equally sized partitions. The
chronological approach (SQ i) performed reasonably
better and even came close to the performance of the
problem informed, nodewise (NW j) strategy, where
j ∈ {2, ...,8} denotes the number of connected sub-
graphs used in the assembly. From the presented
results, we can clearly observe, that a problem in-
formed strategy leads to better results. Based on the
results of the chronological approach, we can also see
an explicit progression in the sense that, the more
pronounced the structure of the partitions, the better
the results. Beyond these results, we motivate future
work to investigate higher values for i, which we ex-
pect to show even better values, continuing the evi-
dent trend in the plot, especially for larger problem
instances. However, to ensure comparability between
SHA and the selected baselines regarding their run-
times, we conduct the rest of this evaluation using the
nodewise approach.

Figure 1: Accuracy over all graphs and circuit architectures
per used assembly strategy.

6.2 Solution Quality

To evaluate the solution quality, we examine two
properties: The overall accuracy, and the accuracy
of the most likely solution. While most literature
typically restricts its evaluation to the overall accu-
racy, additionally investigating the most likely solu-
tion has the advantage of revealing the focal point of
the identified solution set. Interestingly, our exper-
iments show that these two properties do not auto-
matically coincide, i.e., a comparatively good accu-
racy for one of both does not indicate a comparatively
good accuracy for the other, as shown in figure 2 and

discussed in the following. Note, that the choice to
average over the last couple of optimization steps in
figure 2b allows to see how stable the most likely shot
at solving the problem does yield a correct result.

Starting with a closer examination of the results
plotted in figure 2a, we observe, that all methods ex-
ceed the standard VQE baseline (SVQE) significantly,
with SHA8 showing an enormous 29.99% improve-
ment. Furthermore, SHA consistently outperforms
Layer-VQE (L-VQE) and layerwise learning (LL) in
terms of raw accuracy, when selecting enough parti-
tions. More concretely, SHA8 displays a 17.58% bet-
ter mean accuracy than LL and performs 5.12% bet-
ter than L-VQE in the mean, which strongly shows
the effectiveness of our proposed approach. However,
while it does not influence the results and meaningful-
ness of this paper, the QAOA baseline still performs
significantly better than all VQE-based approaches.

Interestingly, QAOA consistently performs the
worst when focusing on the most likely shot (see fig-
ure 2b), while a clear trend of increasing accuracy is
visible for the SHA approaches. These results indi-
cate, that while the resulting state vector of the QAOA
has many superposition states resembling correct so-
lutions, they are more widespread among the incor-
rect ones, with a significantly less pronounced peak
than the VQE based approaches. While L-VQE and
LL strongly focus on such a peak, SHA behaves more
volatile.

Concluding these results, we assess that the deci-
sion which approach performs the best depends on the
practical use case and the available hardware capa-
bilities. When the hardware restrictions allow it, the
QAOA can be used and then clearly performs the best
in terms of overall accuracy in our low layer depth
case study. Otherwise, training a VQE with SHA
yields the best overall accuracy. If it is of essence
that the distribution of identified solutions has a pro-
nounced, stable, peak at a correct solution, the layer-
wise learning based VQEs perform almost perfectly,
while the QAOA shows significantly worse perfor-
mance. Future work will have to investigate how this
scales for deeper PQCs.

6.3 Combining SHA with Other
Quantum Learning Methods

As the learning technique employed in SHA is re-
stricted to changes in the cost function, it can be com-
bined with the layerwise learning approaches, which
only alter the PQC or the set of trainable parame-
ters. In this section, we evaluate the most straightfor-
ward approach to combine SHA with LL and L-VQE,
i.e., using SHA for training each newly added circuit
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(a) Ratio of correct solutions. (b) Ratio of correct solutions of the most likely shot, averaged
over the last 2% of optimization steps.

Figure 2: Solution quality averaged over all graphs and circuit architectures for all considered approaches.

layer. Analogously to the previous evaluation on solu-
tion quality, we examine the overall accuracy as well
as the accuracy of the most likely shot, as displayed
in figure 3.

In terms of the overall accuracy (aside from
the QAOA), the combination of SHA8 and L-VQE
achieve the best results with a median accuracy
improvement of 35.5% against the standard VQE
(SVQE). This reveals a powerful synergy of combin-
ing SHA and L-VQE, as L-VQE performs worse than
LL when not coupled with SHA, but does so for their
hybrid variants. Overall the SHA+L-VQE hybrid out-
performs the previous empirical state-of-the-art VQE
approach (i.e., LL), by 5% in the mean. Examining
the results for the most likely shot, displayed in fig-
ure 3b, we can see that the SHA+L-VQE hybrid also
performs the best overall, while improving 8.31%
over the previous best mean result (L-VQE). Interest-
ingly, the SHA+LL hybrid does only perform slightly
better than SHA (1.63%), but is worse than LL in this
metric. While the exact reasons for this performance
difference remain unclear based on the conducted ex-
periments, this shows that hybrid approaches do not
automatically improve the overall performance, but
can also even have negative effects on it.

6.4 Time Complexity

Aside from solution quality, the training duration is
a crucial performance indicator in practice. The less
optimization steps are needed, the faster the training
process in practice (i.e., when considering a similar
amount of parameters). The similarity in the num-
ber of parameters is important, because the quantum
gradient calculation scales linearly in this entity (see
section 2.1). As the actual number of concurrently
trained parameters is generally smaller in the layer-

wise approaches, this must be accounted for in an ex-
act runtime analysis. On average, our implementation
of LL trains only about half the number of parame-
ters in the full PQC, while L-VQE trains roughly 2/3.
As the circuit depth also changes in layerwise learn-
ing approaches (and with that, the time needed to exe-
cute the circuits), this too influences the training time
complexity. Using our choice of hyperparameters, LL
executes 3/4 of the full PQC on average, while L-VQE
only executes 2/3.

However, due to the small absolute number of pa-
rameters and layers in our setting, we softly neglect
these complicating factors and inspect the raw dif-
ference in the number of optimization iterations as
displayed in figure 4. When comparing SHA to the
standard VQE, we observe a close to doubled number
of optimization iterations, which indicates, that the
significant improvement in solution quality comes at
the cost of longer training time. However, real world
applications exist, in which the better achievable so-
lution quality outweighs the increase in runtime, as,
e.g., when benchmarking for the best possible perfor-
mance of a given VQE while aiming to show early
quantum advantage on a given QPU. Following the
considerations above, L-VQE and LL will have faster
wallclock times than SHA, even though they are on
par in the number of optimization iterations. For the
hybrid approaches, a significant increase in runtime
can be observed, limiting their practical use cases in
spite of the qualitative improvements. When compar-
ing the SHA+LL hybrid to the SHA+L-VQE hybrid,
it becomes apparent that the approach with the bet-
ter solution quality (SHA+L-VQE) also trains faster,
which indicates, that the parameter landscape is eas-
ier to navigate through. Finally, it has to be ac-
knowledged, that a comparison of the VQE-based ap-
proaches to the QAOA baseline is especially hard,
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(a) Ratio of correct solutions. (b) Ratio of correct solutions of the most likely shot, averaged
over the last 3% of optimization steps.

Figure 3: Solution quality averaged over all graphs and circuit architectures when combining different approaches.

since QAOA’s PQC only has six parameters, acceler-
ating the optimization routine immensely. Neverthe-
less, this even underscores, the tremendously faster
trainability of the QAOA, at least in the regime of
short PQCs.

Figure 4: Number of optimization iterations.

7 DISCUSSION

These empirical findings display a valuable counter-
part to the ongoing theoretical efforts towards charac-
terizing the reasons for barren plateaus. This is partic-
ularly relevant, as current theoretical approaches as-
sume specific mathematical requirements for the cir-
cuit structure, the initial state and the measurement
operator, that are not necessarily given in practice
(Ragone et al., 2023). While the constraint that the
initial states or observables must lie in the circuit’s
Lie algebra (Ragone et al., 2023) has recently been
relaxed by focusing on matchgate circuits (Diaz et al.,
2023), results for arbitrary circuits are still to be ex-

plored. It is even possible that our results are no arti-
fact of locality, but rather an even deeper underlying
phenomenon (possibly generalized globality as intro-
duced in (Diaz et al., 2023)). Nevertheless, our find-
ings support further research in this direction, as they
represent additional evidence towards the exploration
of the influence of the cost function on trainability.

8 CONCLUSION

The goal of this contribution was the development of
a novel quantum learning method, that facilitates the
parameter training for VQEs. Stemming on the fact
that increased locality in the cost function decreases
the risk of encountering vanishing gradients, we pro-
posed the sequential Hamiltonian assembly (SHA)
technique, that iteratively approximates the possibly
global cost function by assembling it from its local
components. In our experiments, we showed that our
approach improves the mean solution quality of the
standard VQE approach by 29.99% and outperforms
the empirical state of the art Layer-VQE by 5.12%
in certain applications. This demonstrates a prove of
principle and motivates further research on parame-
ter training approaches, that iteratively approximate
the original cost function to guide the learning pro-
cess. To extend this case study analysis of our ap-
proach, other problems beyond graph coloring should
be tested. An interesting candidate might be Max-
Cut, as it also offers a graph structure, allowing to ex-
amine the performance the proposed nodewise assem-
bly strategy. Beyond this, exploring new strategies for
graph and non-graph problems motivates future work.
As SHA slightly increases the wallclock training time
in its evaluated form, a more extensive hyperparame-
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ter search should be conducted to explore better qual-
ity/time tradeoffs. Having seen that combinations of
existing layerwise learning approaches with SHA can
increase the solution quality even further, gathering
more information on their interplay might open up
new approaches of quantum learning methods that
are especially targeted towards attacking multiple is-
sues of vanishing gradients concurrently, as, in our
case locality and expressiveness. In conclusion, our
contribution uncovers a new, locality based, approach
towards efficiently learning parameters in parameter-
ized quantum circuits.
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