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Abstract: The paper concentrates on designing an intra-city express system in a practical environment. In the target 
networks, flows of parcels are exchanged between branch offices via a less-than-truckload hub-and-spoke 
network in a stochastic environment. Hub and vehicle capacities are considered, and the flows between all 
pairs of branch offices are assumed to be stochastic variables. The problem is modelled as a multi-stage 
recourse model, named capacitated single-allocation hub location routing problem with stochastic demands 
(CSAHLRPSD). A sample average approximation (SAA) framework is proposed, in which two variants of 
adaptive large neighbourhood search algorithms are used to solve the SAA problem and to calculate the 
recourse cost. The SAA framework is tested on benchmark instances, proving that it can efficiently deal with 
the CSAHLRPSD. Also, the results indicate that employing the CSAHLRPSD can cut the operation cost in 
comparison with the deterministic model in the practical and stochastic environment. 

1 INTRODUCTION 

Express service network design is significant in urban 
logistics management as it can help reduce operation 
costs and improve service levels. With the 
development of e-commerce, intra-city express has 
become an increasingly essential segment in urban 
logistics systems. As a result, various cargo 
companies are offering “delivery within the same day 
in the city service”, “next day delivery service”, or 
“delivery within 24 hours service”, e.g., SF Express, 
Yamato Transport, Japan Post, and so on. For these 
companies, how to satisfy the intra-city express 
requests in a practical environment via a cost-efficient 
way arises as an important issue. Moreover, this issue 
is also significant for the urban management 
department, as the delivery of intra-city expresses has 
caused various social problems, e.g., traffic jams, air 
pollution, and so on (Zhao et al., 2019). 

In this study, we focus on the design of an intra-
city express system in a practical environment. 
Parcels are transported from the origin branch offices 
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to the destination branch offices, resulting a many-to-
many distribution system. As the parcel and mail 
flows are usually less-than-truckload (LTL), it is very 
costly to link them directly, both from the economic 
and social points of view (Gelareh & Nickel, 2011; 
Sun, 2013). Instead, one method is to use the network 
shown in Figure 1 to realize the flow exchange. 

 
Figure 1: Hub-and-spoke network for intra-city express 
systems. 

This network is a variant of hub-and-spoke 
networks specially designed for LTL transportation. 
The hubs and branch offices are connected by local 
tours instead of direct links, which is generally very 
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Figure 2: Hub-and-spoke network for intra-city express systems. 

 
Figure 3: Stochastic decision process for intra-city express systems. 

expensive (Kartal et al., 2017; Alumur et al., 2020). 
The parcels are picked up at the origin branch 

offices, sorted in the first hub, possibly transported to 
the second hub, and delivered to the destination 
branch offices. Moreover, the collection and 
distribution processes are conducted at the same time 
along local tours. 

Branch offices usually do not own enough sorting 
resources (e.g., labour, machines, spaces, and so on). 
Therefore, parcels are collected in a mixed status and 
have to be sorted based on their destinations in hubs 
for further delivery. Consequently, the flow cannot be 
exchanged directly, even along the same local tour. 
More specifically, in the current service cycle (for 
example, this morning), each vehicle leaves its 
corresponding hub and traverses a subset of branch 
offices, while distributing the parcels collected in the 
previous service cycle (for example, yesterday 
morning) and collecting the parcels to be distributed 
in the next service cycle (for example, tomorrow 
morning), i.e., the service system is a warmed-up 
transportation system. Furthermore, inter-hub 
transportation is conducted after the vehicles return to 
the hubs (for example, at night). The whole procedure 
is illustrated in Figure 2. Similar settings have been 
applied in various studies related to the intra-city 
express system design (such as in Sun, 2013; Karimi, 
2018; Wu et al., 2023). 

Based on the above descriptions, one can find that 
the main decisions of the planning problem for the 
referred system include hub location, allocation 

between branch offices and hubs, and vehicle routing, 
which should be resolved jointly. Moreover, the 
following three practical conditions are considered:  

(i) Capacity. Capacitated hubs and vehicles 
should be employed due to the limitation of land 
resources and the limitation of the use of large-
volume trucks in urban areas. 

(ii) Single-allocation. In practical applications, 
each branch office is usually served by precisely one 
hub, as branch offices generally do not have enough 
sort capacities. 

(iii) Stochastic demand. The express company 
might not know the parcel flows beforehand. For 
instance, business activities might result in the 
uncertainty of parcel flows, i.e., the intra-city express 
demands are stochastic rather than deterministic. One 
natural process to deal with the uncertainty is that the 
hub location and allocation between hubs and branch 
offices are decided before any random variable is 
revealed (before service cycles start) since changing 
these decisions for a warmed-up system is expensive. 
In each service cycle, the vehicle routing is 
determined with known distribution demand (since 
these parcels have been collected in the previous 
service cycle) and unknown collection demand. 
Finally, recourse operations and inter-hub 
transportation are conducted to finish the distribution 
procedure. This process is shown in Figure 3. 

With these considerations, we propose the 
planning problem for the intra-city express system, 
named capacitated single-allocation hub location 
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routing problem with stochastic demand 
(CSAHLRPSD), belonging to the field of the hub 
location routing problem (HLRP). This problem has 
been applied to the design of various many-to-many 
systems, such as postal service systems (Bostel et al., 
2015), communication systems (Catanzaro et al., 
2015), ship cargo systems (Fontes & Goncalves, 
2021), and so on. Please find more details of the 
HLRP in Section 2. 

The main contributions lay in three points: i) A 
multi-stage recourse model is introduced to formulate 
the CSAHLRPSD, which models the HLRP with 
stochastic demand for the first time. ii) A sample 
average approximation (SAA) framework, which is 
embedded with two variants of the adaptive large 
neighbourhood search (ALNS) algorithm, is 
introduced as the solution approach. iii) Numerical 
experiments are performed to prove the proposed 
framework’s efficiency. 

The remainder of the paper is structured as 
follows: Section 2 reviews the HLRP and compares 
our study with the existing ones. Section 3 defines the 
CSAHLRPSD via a multi-stage recourse model. 
Section 4 provides the solution methodology, whose 
efficiency is tested in Section 5. Finally, Section 6 
concludes the study. 

2 LITERATURE REVIEW 

This section mainly reviews the works on the single-
allocation hub location routing problem (SAHLRP), 
which is closely concerning to the CSAHLRPSD. 
Nagy and Salhi (1998) first proposed the SAHLRP 
with route length constraints to limit working hours. 
They proposed an integer linear programming 
formulation for this problem and utilised a locate 
first–route second heuristic algorithm to solve it on a 
single instance with 249 clients.  

So far, most studies related to the SAHLRP have 
concentrated on postal service networks, where the 
collection and distribution processes usually 
coincide. Bostel et al. (2015) focused on an SAHLRP 
where the length of each vehicle route is constrained 
by a maximum number of visited clients. A memetic 
algorithm (MA) was introduced to solve instances 
with up to 100 clients. Kartal et al. (2017) 
investigated the operational characteristics of a 
leading cargo company in Turkey. Three variants of 
formulations were introduced, and a multi-start 
simulated annealing algorithm and an ACO algorithm 
were introduced to solve the problem. Numerical 
results indicated that the proposed algorithms could 
find high-quality solutions for instances with up to 

200 nodes in reasonable computational time. Karimi 
(2018) studied a capacitated SAHLRP with 
simultaneous pickup and delivery for a warmed-up 
postal system. The study introduced a polynomial-
sized mixed integer programming formulation and 
several valid inequalities. Moreover, a tabu-search-
based heuristic was proposed to solve the problem. 
The results from computational tests showed that the 
proposed valid inequalities and algorithm worked 
well for their model. 

The pickup and delivery process can be distinct 
for logistical or scheduling reasons, e.g., the case for 
general freight forwarders. Sun (2015) investigated a 
problem similar to the one in Sun (2013), in which 
pickup and deliveries were assumed to be distinct. An 
endosymbiotic evolutionary algorithm was 
developed, simultaneously solving hub location and 
vehicle routing problems. The algorithm’s 
performance was tested on 20 instances with 100 and 
200 customers. Experimental results showed that the 
proposed algorithm could be used for supply-chain 
network planning. More recently, Yang et al. (2019) 
investigated the capacitated SAHLRP with distinct 
collection and delivery processes. Moreover, they 
proposed a new MILP model and developed a 
memetic algorithm (MA) to solve larger-sized 
problems. Numerical experiments showed that the 
MA could find high-quality solutions in acceptable 
computational time. 

Most studies have employed heuristic algorithms 
(Danach et al., 2019; Ratli et al., 2020; Pandiri & 
Singh, 2021), and there are only a few attempts to 
solve the problem exactly. de Camargo et al. (2013) 
introduced a new SAHLRP model with simultaneous 
collections and distributions. They assumed that a 
fixed cost was imposed upon the hubs and vehicles. 
Moreover, they decomposed the problem into two 
subproblems: a transportation problem and a 
feasibility problem. Then the problem was optimally 
solved by a tailored Benders decomposition 
algorithm. The results were compared to the CPLEX 
solver, proving that this method was able to find 
optimal solutions for instances with 100 clients. 
Later, Rodriguez-Martin et al. (2014) investigated a 
variant of SAHLRP in which a cyclical path 
connected the uncapacitated hubs. In the problem, 
each cluster of clients and assigned hub was 
connected by precisely one local route cycle. 
Furthermore, the number of visited clients of each 
local route cycle is limited as a length constraint. The 
problem was solved by a branch-and-cut algorithm. 
Wu et al. (2023) provided a branch-and-price-and-cut 
algorithm to solve the capacitated SAHLRP, which 
were tested on benchmark instances. Numerical 
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results proved that the branch-and-price-and-cut 
algorithm could efficiently deal with the capacitated 
SAHLRP. 

All the above works have focused on the 
deterministic HLRPs, and there is only one work on 
the stochastics HLRP. Mohammadi et al. (2013) 
investigated a multi-objective chance-constrained 
model of a stochastic green HLRP. In their problem, 
stochastic travel time and service time were 
considered. A multi-objective invasive weed 
optimisation was introduced to solve the problem, 
which was then compared with other multi-objective 
algorithms on randomly generated instances.  

As reviewed above, stochastic HLRP-related 
literature is extremely limited. Our study is the first 
one to investigate the HLRP with stochastic demands. 
Moreover, our work is the first attempt to model the 
stochastic HLRP via the recourse model. 

3 MODEL FORMULATION 

The CSAHLRPSD is defined on a complete 
graph  𝐺 = (𝑉, 𝐴) , in which  𝑉 and  𝐴 are vertex set 
and edge set, respectively. Vertex set 𝑉 consists of 
potential hub set 𝐻 and client (branch office) set 𝐶, 
while edge set  𝐴 consists of edges between all 
vertices. For each pair of clients  𝑖 ∈ 𝐶 and  𝑗 ∈𝐶, 𝑑௜௝ represents the flow to be transported from 𝑖 to 𝑗 through local tours and hubs, which is assumed to 
be a random variable with known and independent 
distribution. Without loss of the generality, we 
assume that all realizations of 𝑑௜௝ are greater than 0 
and they do not exceed the vehicle capacity. 
Moreover, the collection demand and distribution 
demand of client  𝑖 ∈ 𝐶 is denoted as  𝑂௜ = ∑ 𝑑௜௝௝∈஼  
and 𝐷௜ = ∑ 𝑑௝௜௝∈஼ , respectively. 

Each potential hub has a capacity 𝑄௞ and a fixed 
cost 𝐹௞. As in Ernst and Krishnamoorthy (1999), Hu 
et al. (2021) and Ghaffarinasab (2022), it is assumed 
that only receiving flows from clients consumes hub 
capacity since parcels are generally sorted in the 
origin hubs and then transported to destination hubs 
without further sorting operations. Local tours are 
operated by an unlimited fleet of identical vehicles, 
and each vehicle is associated with a capacity 𝑞 and a 
fixed cost 𝑓. Furthermore, inter-hub transportation is 
assumed to be realised by an unlimited fleet of 
identical trucks, and there is no capacity limitation 
and fixed cost of the trucks. 

Each edge  (𝑖, 𝑗) ∈ 𝐴 is addressed with a 
nonnegative travel distance 𝑐௜௝, satisfying the triangle 
inequality. Local tour cost is dependent on the sum of 

travel distances of the travelled edges, while inter-hub 
transportation cost is calculated based on travel 
distances and transferred flows (Karimi, 2018; Yang 
et al., 2019). In addition, the unit inter-hub 
transportation cost (¥/km.t) and unit local tour cost 
(¥/km) are denoted as 𝛼 and 𝛽, respectively.  

The CSAHLRPSD belongs to the field of 
stochastic programming, which is generally 
formulated by chance-constrained models and 
recourse models. Based on the descriptions in Section 
1, we model the CSAHLRPSD via a multi-stage 
recourse model as follows: 

i) In the first stage, the hub locations and the 
allocation between clients and hubs (long-term 
decisions) are determined before the random 
variables (𝑑௜௝|𝑖, 𝑗 ∈ 𝐶) are realised.  

ii) Then, in the second stage, the flows to be 
delivered to each client 𝑖 ∈ 𝐶 (𝑑௝௜|𝑗 ∈ 𝐶) are revealed 
first (since these parcels have been collected in the 
previous service cycle, as shown in Section 1), 
forming the distribution demands (𝐷௜|𝑖 ∈ 𝐶). After 
the distribution demands are known, the vehicles are 
routed to link the hubs and clients (short-term 
decisions) before knowing the collection demands 
(𝑂௜|𝑖 ∈ 𝐶). 

iii) In the third stage, the collection demands are 
revealed, and a predetermined recourse policy is 
applied when a failure occurs. The classical recourse 
policy is employed, in which the vehicles return to the 
hub, drop off the collected parcels, and continue their 
planned route at the point of failure. Furthermore, if 
the total collection demand assigned to a hub exceeds 
its capacity due to uncertainty, a penalty cost must be 
paid, representing the overwork cost. The unit 
overwork cost is expressed as ω. Note that the inter-
hub transportation costs are also calculated in this 
stage. 

In other words, after the hub location and the 
allocation between hubs and clients are determined, a 
VRPSDSP is solved for each installed hub and the 
clients assigned to it. Although these VRPSDSPs 
need to be solved multiple times for all the service 
cycles, we only model them once for simplicity, and 
the fixed costs are distributed into each service cycle 
to make long-term and short-term costs comparable.  

For each edge (𝑖, 𝑗) ∈ 𝐴, 𝑥௜௝ is a binary variable 
equal to 1 if there is a vehicle travelling directly from 
vertex  𝑖 to vertex 𝑗 . 𝑧௜௞(𝑖 ∈ 𝐶, 𝑘 ∈ 𝐻) is a binary 
variable equal to 1 if client 𝑖 is allocated to hub 𝑘. For 
each vertex 𝑖 ∈ 𝑉, let 𝑣௜ be the delivery load on the 
vehicle just after having served vertex 𝑖. 𝑏௞ is a binary 
variable equal to 1 if potential hub 𝑘 ∈ 𝐻 is open. 
Moreover,  𝑦௜௝௞௟ denotes the fraction flow from 
client  𝑖 ∈ 𝐶 to client  𝑗 ∈ 𝐶 passing hub  𝑘 ∈ 𝐻 and 
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hub 𝑙 ∈ 𝐻. Finally,  𝑒௞ denotes the overwork load of 
hub 𝑘 ∈ 𝐻. 

The CSAHLRPSD is modelled as (1)-(21), in 
which  𝑄ଵ(𝒃, 𝒛, 𝝃) and 𝑄ଶ(𝒙, 𝒃, 𝒛, 𝝃)  are the optimal 
value of the second stage problem and the third stage 
problem. Random vector 𝝃 contains the flow 𝑑௜௝ to be 
transported from client 𝑖 ∈ 𝐶 to 𝑗 ∈ 𝐶. 

 𝑆𝑡𝑎𝑔𝑒 1 𝑚𝑖𝑛 ෍ 𝐹௞𝑏௞௞∈ு + 𝐸[𝑄ଵ(𝒃, 𝒛, 𝝃)] (1)

𝑠. 𝑡. ෍ 𝑧௜௞௞∈ு = 1 ∀𝑖 ∈ 𝐶 (2)

𝑧௜௞ ≤ 𝑏௞ ∀𝑖 ∈ 𝐶, 𝑘 ∈ 𝐻 (3)𝑧௜௞ ∈ ሼ0, 1ሽ ∀𝑖 ∈ 𝐶, 𝑘 ∈ 𝐻 (4)𝑏௞ ∈ ሼ0, 1ሽ ∀𝑘 ∈ 𝐻 (5)

Objective function (1) minimises the operation 
cost, consisting of the hub fixed cost and expected 
recourse cost. Constraint (2) guarantees the single-
allocation between clients and hubs. Only open hubs 
can serve clients, which is ensured by Constraint (3). 
Constraints (4) and (5) are variable domains. 

 𝑆𝑡𝑎𝑔𝑒 2 𝑄ଵ(𝒃, 𝒛, 𝝃) = min ෍ ෍ 𝑓𝑥௞௝௝∈௏௞∈ு  

+ ෍ ෍ 𝛽𝑐௜௝𝑥௜௝௝∈௏௜∈௏ + 𝐸[𝑄ଶ(𝒃, 𝒛, 𝒙, 𝝃)] (6) 

𝑠. 𝑡. ෍ 𝑥௜௝ = 1 ∀𝑖 ∈ 𝐶 ௝ஷ௜∈௏  (7) 

෍ 𝑥௝௜ = ෍ 𝑥௜௝௝∈௏ ∀𝑖 ∈ 𝑉 ௝∈௏  (8) 𝑥௜௞ ≤ 𝑧௜௞ ∀𝑖 ∈ 𝐶, 𝑘 ∈ 𝐻 (9) 𝑥௞௜ ≤ 𝑧௜௞ ∀𝑖 ∈ 𝐶, 𝑘 ∈ 𝐻 (10) 𝑥௜௝ + 𝑧௜௞ + ෍ 𝑧௝௟௟ஷ௞∈ு ≤ 2 ∀𝑖 ∈ 𝐶, 𝑗 ≠ 𝑖 ∈ 𝐶, 𝑘 ∈ 𝐻 (11) 𝑣௜ − 𝐷௝ + 𝑞(1 − 𝑥௜௝) ≥ 𝑣௝ ∀𝑖 ∈ 𝑉, 𝑗 ≠ 𝑖 ∈ 𝐶 (12) 𝑣௜ ≤ 𝑞 ∀𝑖 ∈ 𝑉 (13) 𝑥௜௝ ∈ ሼ0,1ሽ ∀𝑖 ∈ 𝑉, 𝑗 ∈ 𝑉 (14) 𝑣௜ ≥ 0  ∀𝑖 ∈ 𝑉 (15) 

Objective function (6) minimises the vehicle fixed 
cost, local tour cost, and expected recourse cost. Each 
client should be visited by exactly one vehicle, which 
is guaranteed by Constraint (7). Constraint (8) 
balances the vehicle flow at each vertex. Constraints 
(9)-(11) link the allocation variables with routing 
variables. Constraint (12) describes the delivery load 
on vehicles. Vehicle capacity constraints are imposed 

via Constraint (13). Decision variables are defined by 
Constraints (14)-(15). 𝑆𝑡𝑎𝑔𝑒 3 𝑄ଶ(𝒃, 𝒛, 𝒙, 𝝃) = 𝑚𝑖𝑛 𝑅(𝒙, 𝝃) + ෍ 𝜔𝑒௞௞∈ு  

+ ෍ ෍ ෍ ෍ 𝛼𝑑௜௝𝑐௞௟𝑦௜௝௞௟௟∈ு௞∈ு௝∈஼௜∈஼  
(16)

𝑠. 𝑡. ෍ 𝑦௜௝௞௟ = 𝑧௜௞ ∀𝑖 ∈ 𝐶, 𝑗 ∈ 𝐶, 𝑘 ∈ 𝐻௟∈ு  (17)

෍ 𝑦௜௝௞௟ = 𝑧௝௟ ∀𝑖 ∈ 𝐶, 𝑗 ∈ 𝐶, 𝑙 ∈ 𝐻௞∈ு  (18)

𝑒௞ ≥ ෍ ෍ ෍ 𝑑௜௝𝑦௜௝௞௟ − 𝑄௞௟∈ு௝∈஼௜∈஼  ∀𝑘 ∈ 𝐻 (19)

0 ≤ 𝑦௜௝௞௟ ≤ 1 ∀𝑖 ∈ 𝐶, 𝑗 ∈ 𝐶, 𝑘 ∈ 𝐻, 𝑙 ∈ 𝐻 (20)𝑒௞ ≥ 0 ∀𝑘 ∈ 𝐻 (21)

Objective function (16) optimises the realised 
recourse cost (𝑅(𝒙, 𝝃)) and overwork cost. Also, the 
inter-hub transportation cost is calculated via the third 
term of it. Constraints (17)-(18) correlate the flow 
variables and allocation variables. Note that 
Constraints (17)-(18), along with Constraints (9)-
(11), connect the allocation variables  𝒛 , flow 
variables  𝒚 , and routing variables  𝒙 , ensuring the 
proper network flow assignment. Overwork cost for 
each hub  𝑘 ∈ 𝐻 is calculated via Constraint (19). 
Constraints (20)-(21) are variable domains. Since 
there is no simple way to formulate the computation 
of  𝑅(𝒙, 𝝃) via decision variables and linear 
relationships (Laporte et al., 2002), we do not provide 
a specific formulation here. However, one can find a 
way to calculate its expectation in Laporte et al. 
(2002) and Hernandez et al. (2019). 

4 SOLUTION METHODOLOGY 

4.1 Sample Average Approximation 

The key to solving model (1)-(21) is calculating 𝐸[𝑄ଵ(𝒃, 𝒛, 𝝃)], which is very difficult even under a 
discrete distribution. Thus, we present an SAA-based 
approach to approximate 𝐸[𝑄ଵ(𝒃, 𝒛, 𝝃)] . The SAA 
approach is presented by Kleywegt et al. (2002), 
whose principle is that sampling problems can 
approximate the numerical expectation. A random 
sample with size  𝑁 is generated first. Then the 
CSAHLRPSD can be approximated as below: 
 𝑆𝐴𝐴 𝑃𝑟𝑜𝑏𝑙𝑒𝑚: 𝑚𝑖𝑛 ෍ 𝐹௠𝑏௠௠∈ு + 1𝑁 ෍ 𝑄ଵ(𝒃, 𝒛, 𝝃𝒏)ே

௡ୀଵ  (22)

s.t. (2)-(5) (23)
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The obtained solution is evaluated on a larger 
sample with size  𝑁ᇱ ( 𝑁ᇱ ≫ 𝑁 ) by obtaining the 
approximate SAA gap and the variance of the gap 
estimator. If they are small enough, the solution is 
accepted as the CSAHLRPSD’s solution. Otherwise, 
the sample sizes should be increased. This process is 
shown in Algorithm 1. In the algorithm, 𝑧క೙(𝒃, 𝒛)  
and 𝑧ேᇲ(𝒃, 𝒛) denote the objective function values of 
the solution  (𝒃, 𝒛) on scenario 𝜉௡ and sample  𝑁′ , 
respectively. We define “sufficiently small” as: 𝜖ே,ேᇲ(𝒃, 𝒛)^/𝑧ேᇲ(𝒃, 𝒛)^ ≤ 3%  and 𝜎ఢಿ,ಿᇲ (𝒃, 𝒛)^/𝑧ேᇲ(𝒃, 𝒛)^ ≤ 5%. 

 
Input: the number of SAA replications 𝑀  and the sample 
sizes, 𝑁 and 𝑁ᇱ (𝑁ᇱ ≫ 𝑁) 
Step 1:  
For 𝑚 = 1,2, … , 𝑀, do: 

Generate a sample with size 𝑁 by realising 𝜉ଵ௠, 𝜉ଶ௠, …, 𝜉ே௠; 
Solve the SAA to get the solution  (𝒃, 𝒛)௠ and the objective 
value 𝑧ே௠; 
Obtain the statistical lower-bound 𝑧ே = ଵ௠ ∑ 𝑧ே௠ᇲ௠௠ᇲୀଵ ;  
Obtain the variance of the statistical lower-bound 𝜎ଶ(𝑧ே) =         ଵ௠(௠ିଵ) ∑ (𝑧ே௠ᇲ − 𝑧ே)ଶ௠௠ᇲୀଵ ; 

Generate a sample with size  𝑁ᇱ and get the upper-
bound 𝑧ேᇲ(𝒃, 𝒛)௠and a estimate of variance of upper-bound 𝜎ேᇲଶ (𝒃, 𝒛)௠ =  ଵேᇲ(ேᇲିଵ) ∑ (𝑧క೙(𝒃, 𝒛)௠ − 𝑧ேᇲ(𝒃, 𝒛)௠)ଶேᇲ௡ୀଵ ; 

Select the solution (𝒃, 𝒛)^ with best 𝑧ேᇲ(𝒃, 𝒛)^ then ontain the 
SAA gap 𝜖ே,ேᇲ(𝒃, 𝒛)^ = 𝑧ேᇲ(𝒃, 𝒛)^ − 𝑧ே; 
Calculate the variance of the SAA gap  𝜎ఢಿ,ಿᇲଶ (𝒃, 𝒛)^ =         𝜎ଶ(𝑧ே) + 𝜎ேᇲଶ (𝒃, 𝒛)^; 
If 𝜖ே,ேᇲ(𝒃, 𝒛)^ and 𝜎ఢಿ,ಿᇲଶ (𝒃, 𝒛)^ sufficiently small: 

    Go to Step 3; 
End 

End  
Step 2:  
If 𝜖ே,ேᇲ(𝒃, 𝒛)^ and 𝜎ఢಿ,ಿᇲଶ (𝒃, 𝒛)^ not sufficiently small: 

Increase the sample size 𝑁 and/or 𝑁ᇱ and go to Step 1 
End 
Step 3: Output: (𝒃, 𝒛)^ 
Stop 

Algorithm 1: SAA algorithm. 

The SAA problem is a special variant of the HLP. 
More complex, calculating  𝑄ଵ(𝒃, 𝒛, 𝝃) is NP-hard 
even when  𝑏௞(𝑘 ∈ 𝐻) and  𝑧௜௞(𝑖 ∈ 𝐶, 𝑘 ∈ 𝐻) are 
fixed. As a result, two ALNS algorithms are 
introduced as the solution approach for solving the 
SAA problem and getting  𝑄ଵ(𝒃, 𝒛, 𝝃), respectively. 
These two algorithms are designed according to the 
one used by Wu et al. (2022), which has been proven 
to solve the HLRP efficiently. For notation simplicity, 
we name them ALNS-SAA and ALNS-RECOURSE, 
respectively. 

4.2 Adaptive Large Neighbourhood 
Search 

The ALNS algorithm has been successful in solving 
various routing problems, e.g., vehicle routing 
problem, pickup and delivery problem, location 
routing problem, and so on. We follow the procedure 
in Ropke and Pisinger (2006) to present the ALNS-
SAA and ALNS-RECOURSE: In each iteration, a 
destroy method removes several clients from the 
current solution, and then a repair method inserts 
them into the destroyed solution to obtain a new 
solution. Each method is associated with a weight and 
is randomly selected based on their weights. The 
weights are adjusted adaptively based on their 
performance. The new solution is accepted is it is 
  

 
Figure 4: ALNS algorithm 
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Figure 5: Greedy algorithm. 

better than the current one. Otherwise, a simulated 
annealing mechanism is applied to determine whether 
the new solution is accepted. Although the ALNS-
SAA and ALNS-RECOURSE have the same 
procedures, their destroy/repair methods and initial 
solution generation methods are different, which will 
be presented in Section 4.2.1 and Section 4.2.2. 
Please refer to Wu et al. (2022) for the common parts 
(e.g., weight adjustment, destroy/repair method 
selection, and simulated annealing mechanism). 

4.2.1 ALNS-SAA 

a. Initial Solution Generation 
We use the following greedy algorithm (Figure 5) for 
the initial solution generation. The clients are 
allocated to the nearest open hubs one-by-one. If such 
hubs do not exist, a new hub is installed. The process 
continues until all clients are assigned. 
b. Destroy Method 
Random Hub Removal: This method randomly 
selects one open hub and closes it. All linked clients 
are deleted from the current solution and added into 
the client pool. 

Worst Usage Hub Removal: This method closes 
the open hub with the least utilisation ratio. All clients 
allocated to it are deleted and added into the client 
pool. 

Random Hub Opening: This method randomly 
selects one close hub and opens it. Then, several 
clients are randomly selected, deleted from the 
current solution, and then put in the client pool. 

Random Allocation Change: This method aims 
to optimise the allocation between clients and hubs. 
The randomly-selected clients are deleted from the 
current solution and inserted into the client pool. 

Worst Allocation Removal: This method delates 
some clients far from the hubs they are allocated to. 
The distance is randomised and normalised to avoid 
constantly selecting the same clients. 

 

c. Repair Method 
Greedy Insertion: The clients are inserted into 

the solution randomly, one after the other, into the 
position with minimum insertion cost. 

4.2.2 ALNS-RECOURSE 

a. Initial Solution Generation 
The following nearest-neighbour algorithm 

(Algorithm 2) is used to generate initial solutions for 
calculating 𝑄ଵ(𝒃, 𝒛, 𝝃). 
For each open hub 𝑘: 

While unlinked clients allocated to hub 𝑘 exist: 
        Initialise vertex 𝑣 = 𝑘 
        Initialize pickup capacity 𝑝 = 𝑞 
        Initialize delivery capacity 𝑑 = 𝑞 
        While available unrouted clients exist: 
                Select unrouted client 𝑖 nearest to 𝑣 
                𝑣 = 𝑖 
                𝑝 = 𝑝 − 𝐸[𝑂௜], 𝑑 = min(𝑝 − 𝑂௜, 𝑑 − 𝐷௜) 
         End 
End 

End 

Algorithm 2: Nearest-neighbour algorithm. 

b. Destroy Method 
Random Removal: This method chooses several 

clients randomly and adds them into the client pool.  
Worst Cost Removal: This method deletes some 

clients far from the vertexs visited just before and 
ahead of them.  

Shaw Removal: This method aims to remove 
clients similar to each other. 

Random Route Removal: This method deletes a 
randomly-selected route and adds its visited clients 
into the client pool. 
c. Repair Method 

The same Greedy Insertion is used. However, 
the clients can only be inserted into the routes 
departing from their assigned hub. 

5 NUMERICAL EXPERIMENTS 

5.1 Instance Generation 

The numerical experiments have been conducted on 
the instances with up to 25 clients used in Wu et al. 
(2023). These instances are generated from Australia 
Post (AP) benchmark, and each instance is associated 
with 5 potential hubs. In AP benchmark, two types of 
capacities and fixed costs, tight (T) and loose (L), are 
included. Hence, for each instance, four types of 
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Table 1: Experiment Results. 

Instance 𝐹௦௧௖ 𝐼𝑡𝑒 𝑇𝑖𝑚𝑒 𝐺𝑎𝑝ௌ஺஺ 𝐶𝑜𝑣ௌ஺஺ Hub 𝐹ௗ௧௖ 𝐺𝑎𝑝௦௧௖ 

10-L-L 222384.42 2 152.98 0.78 2.42 5 245590.46 9.45 

10-L-T 241054.01 2 139.45 1.97 3.05 2,4 264116.68 8.73 

10-T-L 248461.71 2 153.27 1.09 2.10 4,5 302806.87 17.95 

10-T-T 281902.80 2 188.32 1.32 2.38 2,3,4 342478.48 17.69 

15-L-L 287050.82 2 243.53 1.71 4.01 4,5 307109.76 6.53 

15-L-T 332315.13 3 342.98 1.87 2.12 1,3 377309.28 11.93 

15-T-L 348108.70 2 240.57 1.71 3.68 1,2,5 371482.83 6.29 

15-T-T 382314.72 2 251.31 2.56 3.32 1,4 424999.28 10.04 

20-L-L 333865.76 2 516.37 1.74 2.49 4,5 364298.63 8.35 

20-L-T 351368.10 3 718.51 1.62 3.65 3,4 409825.32 14.26 

20-T-L 392668.70 2 588.52 2.56 3.35 3,4,5 438775.19 10.51 

20-T-T 428306.20 2 595.87 1.19 2.21 1,2,4 435075.15 1.56 

25-L-L 346804.95 2 1011.23 2.05 1.70 2,5 372620.88 6.93 

25-L-T 372854.75 2 1403.59 1.54 2.58 2,3 406846.89 8.36 

25-T-L 415943.60 2 1236.84 1.63 4.43 2,3,4 427874.59 2.79 

25-T-T 441345.67 2 1238.92 2.41 1.88 2,3,4 487703.49 9.51 

problems (i.e., LL, LT, TL, and TT) can be created. 
The used instances are named as N-Q-F, where 𝑁 ∈ሼ10,15,20,25ሽ  denotes the number of clients, 
and  𝑄 and  𝐹 indicate the type of hub capacity and 
fixed cost (tight and loose), respectively. For 
example, 15-L-L means an instance with 15 clients, 
and its hub capacity and fixed cost are loose. 

We have adjusted these instances and applied the 
proposed SAA framework to them. The main 
adjustments are: 

(i) The flow  𝑑௜௝ of each pair of clients  𝑖 and 𝑗 (𝑗 ≠ 𝑖)  is assumed to be subject to a uniform 
distribution [0.6𝑑መ௜௝, 1.4𝑑መ௜௝], in which 𝑑መ௜௝ is the value 
provided by the generator.  

(ii) Vehicle capacity and fixed cost were set as 
850 and 3000 in all instances, respectively, ensuring 
that each client could be served by a single vehicle.  

The SAA framework is corded in Java, and a PC 
with Intel i5-13600KF CPU and 32 GB RAM is used 
to conduct the experiments. 

5.2 Computation Results 

In this section, the stochastic model and deterministic 
model are compared. For the stochastic model, we 
employ the SAA framework (𝑁 = 40, 𝑁′ = 2000, 

𝑀 = 10 ) for each instance. For the deterministic 
model, each instance is solved by the branch-and-
price-and-cut algorithm used in Wu et al. (2023), in 
which the values of the random variables are set as 
their mathematical expectations. After solving the 
stochastic model and deterministic model, a new 
sample with size 2000 (called evaluation sample) is 
generated to compare their solutions’ qualities. The 
comparison is concluded in Table 1. The definition of 
the notations in it is presented below: 

 

 𝐹௦௧௖ : the operation cost of the evaluation 
sample of the SAA framework. 

 𝐼𝑡𝑒: the number of SAA problems used to 
achieve sufficiently small gap and variance. 

 𝑇𝑖𝑚𝑒: computational times (second) for the 
SAA framework. 

 𝐺𝑎𝑝ௌ஺஺: the SAA gaps. 
 𝐶𝑜𝑣ௌ஺஺: the coefficient of variation (COV) 

of the SAA approximator. 
 𝐹ௗ௧௖ : the operation cost of the evaluation 

sample of the deterministic model. 
 𝐺𝑎𝑝௦௧௖: the gap between 𝐹௦௧௖ and 𝐹ௗ௧௖. 

It can be concluded in Table 1 that the SAA 
framework dealt with the CSAHLRPSD adequately: 𝐺𝑎𝑝ௌ஺஺ (1.74% on average and 2.56% in the worst 
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case) and 𝐶𝑜𝑣ௌ஺஺  (2.84% on average and 4.43% in 
the worst case) were small. Moreover, in 14 of 16 
instances, two SAA replications are needed to reach 
the small-enough 𝐺𝑎𝑝ௌ஺஺ and 𝐶𝑜𝑣ௌ஺஺, indicating that 
the sample size is chosen adequately. Furthermore, 
the column “Time” demonstrated that the SAA 
framework was able to solve the CSAHLRPSD in 
acceptable calculational times, and all instances were 
solved in less than 1500s. These computational times 
are acceptable as long-term decisions need to be 
determined only once for each network. Furthermore, 
for each service cycle, the short-term decisions can be 
determined in a very short time. Finally, one can find 
that considering stochastic factors can effectively cut 
down the cost: the average 𝐺𝑎𝑝௦௧௖ is 9.43%, while the 
best 𝐺𝑎𝑝௦௧௖ is 17.95%. 

6 CONCLUSIONS 

In this paper, we concentrated on the CSAHLRPSD 
problem. The aim of the problem is to design an intra-
city express system in a practical environment. 
Therefore, capacitated hubs and vehicles were 
employed, and the flows were assumed to be 
stochastic. The problem was formulated as a multi-
stage recourse model, and an SAA framework was 
introduced to solve the problem. In the framework, 
two variants of the ALNS algorithm were used to 
solve the SAA problem and to calculate the recourse 
cost. The proposed method was evaluated on the 
benchmark instances, proving that the SAA 
framework can solve the CSAHLRPSD in acceptable 
computational times and that considering stochastic 
factors can effectively decrease the operation cost (by 
9.43% on average). Future studies include proposing 
more efficient algorithms to calculate the recourse 
cost and to apply the framework to more instances. 
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