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Abstract: Steel plays important roles in our daily lives, as it surrounds us in the form of various products. Blast furnace,
one of the main facility in steel production process, is traditionally monitored by skilled workers to prevent
incidents. However, there is a growing demand to automate the monitoring process by leveraging machine
learning. This paper focuses on investigating the suitability of unsupervised learning methods for detecting
anomalies in blast furnaces. Extensive benchmarking is conducted using a dataset collected from blast fur-
naces, encompassing a wide range of unsupervised learning methods, including both traditional approaches
and recent deep learning-based techniques. The computational experiments yield results that suggest the ef-
fectiveness of traditional methods over deep learning-based methods. To validate this observation, additional
experiments are performed on publicly available non time series datasets and complex time series datasets.
These experiments serve to confirm the superiority of traditional methods in handling non time series datasets,
while deep learning methods exhibit better performance in dealing with complex time series datasets. We
have also discovered that dimensionality reduction before anomaly detection is beneficial in eliminating out-
liers and effectively modeling the normal data points in the blast furnace dataset.

1 INTRODUCTION

Steel plays important roles in our daily lives, as it
surrounds us in the form of various products such as
automobiles, electrical appliances, bridges, pipes and
railroad. The production facility of steel requires sig-
nificant investment, making it profitable to improve
production efficiency. A key component of the facil-
ity is blast furnace, which is used for extracting iron
and other metals. Since any accidents in blast furnace
can lead to substantial production loss or delays, pre-
venting such incidents by anomaly detection is neces-
sary.

Anomaly detection in blast furnace is tradition-
ally done manually by skilled workers who analyze
the data obtained through pressure sensors. However,
the level of expertise can vary among individuals,
highlighting the need for an automated process. This
paper explores the applicability of machine learning
methods for detecting anomalies in blast furnaces and
evaluates their performance using a collected dataset.
The dataset are obtained from the pressure sensors
equally arranged inside the blast furnace at certain
time intervals. The resulting data can be stored in a

Figure 1: The blast furnace has 196 evenly distributed sen-
sors that provide pressure readings at regular intervals. An
anomaly is defined as a large pressure deviation, which is
simply labeled as normal or not by calculating the variance.
Normal (left) and anomalous (right) data point consist of 16
× 16 measurements.

sequence of matrices, or a tensor. Figure 1 displays
examples of normal data and anomalous data mea-
sured at a specific time point, respectively.

Due to the nature of the dataset, anomalies are rare
compared to normal data. Furthermore, manually an-
notation is hard if we consider the size of the dataset.
These facts motivates us to make use of unsupervised
learning, with which we do not need to model anoma-
lousness, but only need to model normality. As a re-
sult, the anomalies can be detected by the deviations
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Figure 2: Categorization of anomaly detection models.

from normality. In general, anomaly is considered as
an observation that deviates significantly from some
normal concept. Anomaly detection or outlier de-
tection, is the research area that studies the detection
of such anomalous observations through methods and
models. In this paper we examine various anomaly
detection algorithms, ranging from traditional ones to
recent ones. To get an overview, we introduce the
categorization, originally introduced in (Ruff et al.,
2021). Figure 2 summarized the anomaly detection
methods used in this paper, and their categorization.

We compared various anomaly detection methods
in terms of detection performance in the blast furnace
dataset, where we found that traditional methods per-
formed better than recent ones based on deep learn-
ing. In order to confirm this observation, we have
also run the same methods on two types of bench-
mark datasets, that is, non-time series datasets and
complex time series datasets, where we have corrob-
orated that the traditional methods performs better in
non-time series datasets, while the deep methods per-
formed better in complex time series datasets. We
have also found that dimensionality reduction could
boost the performance of most of the methods when
we have sufficiently large training dataset. Our con-
tributions are as follows:

1. Extensive benchmarking of anomaly detection
methods both in the blast furnace dataset and pub-
lic benchmark datasets.

2. Empirically understanding the types of data that
each method excels at and struggles with.

3. Effectiveness of dimensionality reduction when a
training dataset includes both normal and anoma-
lous data points.

The rest of the paper is organized as follows. In Sec-
tion 2, we review anomaly detection methods by their
categories. Section 3 describes the experimental set-
tings and discusses the obtained results. Section 5
concludes the paper with discussion.

2 ANOMALY DETECTION
METHODS

In this section, we review anomaly detection methods
based on the categories given in Figure 2. The method
described in Figure 2 is explained below.

2.1 Classification Models

Binary classification is an elementary problem in
supervised learning settings, and the correspon-
dent in unsupervised settings are one-class clas-
sification models. Examples include One Class
SVM (OCSVM) (Schölkopf and Smola, 2002) and
Support Vector Data Description (SVDD) (Tax and
Duin, 2004). As their names imply, they have the
same spirit as SVM (Huang and LeCun, 2006) for
binary classification, and aim at directly finding the
separating hyperplane that discriminates normal data
from anomalous data, instead of estimating distri-
bution of normal data. Both of them can handle
non-linearity through the use of non-linear kernels.
DSVDD (Ruff et al., 2018) is deep learning version of
SVDD. GOAD (Bergman and Hoshen, 2020) is self-
supervised learning that uses affine transformations
of the data as labels. ICL (Shenkar and Wolf, 2021)
learns mappings that maximize the mutual informa-
tion between each sample and the part to be masked
in order to capture the structure of the samples in a
single training class. Likewise, NeuTraL (Qiu et al.,
2021) uses self-supervised learning to detect anoma-
lies.

2.2 Probabilistic Models

Probabilistic models are those involve estimating the
probability distribution of normal data. The degree
of anomaly of a test data point is measured by the
distance from the normal data distribution. Classi-
cal density estimation methods such as Kernel Den-
sity Estimators (KDE) (Latecki et al., 2007) or his-
tograms (Goldstein and Dengel, 2012) are therefore
examples of probabilistic models. Gaussian Mix-
ture Model (GMM) (Aggarwal et al., 2015) also es-
timates distributions by maximizing the sample pos-
terior probabilities. ECOD (Li et al., 2022) estimates
the distribution of input data by computing an em-
pirical cumulative distribution for each dimension of
data. COPOD (Li et al., 2020) constructs an empir-
ical copula and predicts the tail probability for each
given data set. SOD (Kriegel et al., 2009) takes the
deviation in the subspace along the axis as the degree
of anomaly.
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Figure 3: A schematic figure that illustrates reconstruction
models. In the training phase, the encoder and decoder are
trained to reconstruct the training data, specifically focus-
ing on learning the low-dimensional representation Z of the
training data. In the test phase, anomalous data that was not
encountered during the training phase cannot be effectively
reconstructed, leading to a significant discrepancy between
the input and its corresponding reconstruction. This dis-
crepancy is referred to as the reconstruction error, which
serves as a measure of anomaly.

2.3 Reconstruction Models

Models based on reconstruction are most common
and have long history. In this model, normal data are
assumed to be correctly reconstructed, and anoma-
lous data are those fail to reconstruct. Principal Com-
ponent Analysis (PCA) (Shyu et al., 2003) is one
of the earliest method. Kernel PCA (KPCA) (Hoff-
mann, 2007) is a kernelized version of PCA, and can
detect anomaly in non-linear space through the us-
age of non-linear kernels. Autoencoders (AE) (Ag-
garwal et al., 2015) uses deep learning for encoding
and decoding of data, and considered as a deep learn-
ing version of PCA. Variational Autoencoder (VAE)
(Kingma and Welling, 2013) is a probabilistic ver-
sion of AE. Generative Adversarial Networks (GAN)
(Goodfellow et al., 2014), like VAE, is a well-known
generative model, consisting of a generator and a dis-
criminator. The generator learns to map from latent
space to data space, and the discriminator learns to
distinguish between real data and samples generated
by the GAN. Adversarially Learned Anomaly Detec-
tion (ALAD) (Zenati et al., 2018) evaluates how far
away the sample is from the reconstruction by the
GAN. RCA (Liu et al., 2021a) obtained robustness by
training multiple autoencoders and discarding sam-
ples with large reconstruction errors. RDP (Wang
et al., 2019) trains a neural network to predict data
distances in a randomly projected space. Prototype
methods such as k-means (Hartigan and Wong, 1979)
can also be considered as reconstruction model, since
reconstruction errors are calculated by the distance
from data points to nearest prototypes, similarly to
PCA.

2.4 Distance Models

If we can assume that the data points in high-density
regions to be normal and the data points in low-
density regions to be anomalous, then the distance
based models are available. For example, Local Out-
lier Factor (LOF) (Breunig et al., 2000) is a method
for estimating density, CBLOF (He et al., 2003) com-
bines LOF with clustering, COF (Tang et al., 2002)
assigns a degree of outlier to each data. Feature bag-
ging (FB) (Lazarevic and Kumar, 2005) is trained
on various subsamples of the data with LOF to sup-
press overfitting and increase prediction accuracy.
A simple and popular approach, K-nearest neigh-
bor (KNN)(Ramaswamy et al., 2000) can also be used
for anomaly detection by considering data points far
from the neighbors as anomalous. Isolation-based
Anomaly Detection Using Nearest-Neighbor Ensem-
bles (INNE) (Bandaragoda et al., 2018) divides the
data space into regions using subsamples, determines
an isolation score for each region, and uses the near-
est neighbor ensemble. This detects both global and
local anomalies. Figure 4 displays a schematic fig-
ure that illustrates the way how distance models can
be used for anomaly detection. The Isolation For-
est method (Liu et al., 2008) uses the characteristic
that the number of data splits increases in a high-
density region. REPEN (Pang et al., 2018) learns low-
dimensional representations of ultrahigh-dimensional
data for distance-based outlier detectors.

2.5 Transformer Models

Transformer (Vaswani et al., 2017) is a model that
can handle sequential information such as sentence
and time series. Unlike RNN and LSTM, it does
not have recursion and learns time series by posi-
tion encodings. Reformer (Kitaev et al., 2020) and
Informer (Zhou et al., 2021) have reduced Trans-
former’s drawbacks such as high computation and
memory usage, while Autoformer (Wu et al., 2021)
proposed an Auto-Correlation mechanism instead of
a self-attention mechanism. FEDformer (Zhou et al.,
2022) used Fourier and wavelet transforms to perform
the attention operations in the frequency domain.
Pyraformer (Liu et al., 2021b) realized O(N) com-
plexity by using pyramidal attention modules (N is
the input time series length). Crossformer (Zhang and
Yan, 2022) has a hierarchical encoder-decoder that
captures not only temporal dependence but also inter-
variable dependence. Timesnet (Wu et al., 2022), on
the other hand, uses the Fast Fourier Transform (FFT)
to transform a one-dimensional time series into a two-
dimensional one, thereby capturing complex depen-
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Figure 4: A schematic figure that illustrates distance mod-
els. In the training phase, the normal data are clustered. In
the test phase, the distance between each test data point and
the center of its nearest cluster is calculated, then the dis-
tance is used as the measure of abnormality.

dencies more effectively.

3 EXPERIMENTS

3.1 Dataset

3.1.1 Blast Furnace Dataset

The first dataset we use is collected from blast fur-
nace, and we use 5000 data points as test set. Each
data point corresponds to a 16 × 16 pressure mea-
surement taken every minute. We prepared three dif-
ferent training datasets, and named them as BF1, BF2
and BF3, respectively. BF1 contains no anomalous
data, and only consists of 2000 normal data points.
BF2 contains 7 anomalous data points, and 1993 nor-
mal data points. BF3 contains 39 anomalous data
points, and 19961 normal data points. The relation-
ship among each training dataset and test dataset is
illustrated in Figure 5.

3.1.2 External Benchmark Datasets

In order to ensure that we have correctly conducted
experiments, we have run the same approaches in two
kinds of datasets. One is a non-time series dataset
introduced in (Campos et al., 2016). The 16 multi-
variate datasets utilized in this study are listed in Ta-
ble 2. AR in the table represents the Anomaly Ratio
(%). Since these datasets contain a mixture of anoma-
lous and normal data, we randomly selected 50% of
the normal data and used as a training set, following
the experimental settings in literature (Bergman and
Hoshen, 2020). The test set consists of the remaining
normal data and all anomalous data.

The another dataset is a collection of five time
series datasets shown in Table 3. MSL and SMAP
(Hundman et al., 2018) represent data obtained from
ISA (Incident Surprise, Anomaly) reports provided by
NASA’s Mars Curiosity (MSL) and Soil Moisture Ac-
tive Passive (SMAP) satellite. PSM (Pooled Server

Figure 5: Training / test split of the blast furnace dataset.

Metrics) (Abdulaal et al., 2021) is collected from mul-
tiple application server nodes at eBay. SMD (Server
Machine Dataset) (Su et al., 2019) is a dataset ob-
tained from the server machine with metrics such
as CPU load, network usage, memory usage, etc.
SWaT (Secure Water Treatment) (Mathur and Tippen-
hauer, 2016) is obtained from sensors of the infras-
tructure system.

3.2 Anomaly Detection Software

The anomaly detection and outlier detection libraries
we used are PyOD (Python Outlier Detection) (Zhao
et al., 2019), DeepOD (Xu et al., 2023), TSlib (Time
Series Library) (Wu et al., 2022), Scikit-learn (Pe-
dregosa et al., 2011). Basically, the implementation
in the library is used with default parameters. How-
ever, some parameters, such as the dimensions of the
hidden layer of the autoencoder, are set manually.

3.3 Settings for Transformer Models

In order to make use of the ability of Transformer
models to handle time series inputs, we concatenate
the training data points without allowing overlapping.
In the blast furnace data, the window size was set to
10. It results in the decrease in the number of avail-
able training data points to 1/10 th, in comparison
to non-time series anomaly detection methods. The
window size for the public time series data was set to
100.

3.4 Effect of Dimensionality Reduction

We also investigated the effect of dimensionality re-
duction to anomaly detection performance. In this
experiments, six dimensionality reduction methods
(PCA, KPCA, AE, VAE, t-SNE (Van der Maaten
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Figure 6: Using dimensionality reduction for anomaly de-
tection.

and Hinton, 2008), and UMAP (McInnes et al.,
2018)) are compared, and the anomaly detection per-
formance in combination with unsupervised learning
methods are investigated. Figure 6 illustrates the pro-
cedure of this experiments.

Both t-distributed Stochastic Neighbor Embed-
ding (t-SNE) and Uniform Manifold Approximation
and Projection (UMAP) have been developed for di-
mensionality reduction for visualization purposes. t-
SNE consists of a two-step algorithm. First, a prob-
ability distribution is constructed in such a way that
data point pairs with high similarity are selected,
while the data points with low similarity are unlikely
to be selected. Next, it defines a similar probability
distribution on a low-dimensional map and finds the
location of the point in the low-dimensional map that
minimizes the amount of Kullback-Leibler informa-
tion between the two distributions.

UMAP is based primarily on manifold theory and
topological data analysis. UMAP uses local mani-
fold approximations and their local fuzzy simplical
set representations are stitched together to construct a
topological representation of high-dimensional data.
Given a low-dimensional representation of the data,
a similar process can be used to construct an equiv-
alent topological representation. UMAP then opti-
mizes the layout of the data representation in the low-
dimensional space to minimize the cross-entropy be-
tween the two topological representations.

The dimensionality of PCA and KPCA after di-
mension reduction is set to 12. AE and VAE con-
sist of four hidden layers, where each layer having
dimensions of [128, 63, 32, 16]. The dimensionality
of t-SNE is set to 2, while that of UMAP set to 15.

3.5 Evaluation Metrics

In general, the data used for anomaly detection con-
sists mostly of normal data, with a small amount
of anomalous data. Therefore, if all the test data
were predicted as normal, it would result in an unex-
pectedly high accuracy. To address this, we employ
Precision-Recall Area Under the Curve (PRAUC),
since it can ignore the effect of the large number of
true negatives. PRAUC takes values between 0 and 1,

Table 1: Anomaly detection performance in the blast fur-
nace datasets in terms of PRAUC. For models with † in the
model name, the average of 10 trials is reported because the
results vary from trial to trial. The best score in each dataset
is highlighted in bold fonts.

Type Model BF1 BF2 BF3

Classification

DSVDD .326 .145 .350
ICL .00766 .136 .529

NeuTral .0230 .0126 .00862
GOAD .774 .634 .186

Probabilistic

KDE .930 .529 .253
GMM .654 .633 .865
ECOD .0173 .0162 .0196

COPOD .0285 .0212 .0209
HBOS .0142 .00850 .0157
SOD .0512 .0472 .0500

Reconstruction

kmeans† .486 .00488 .456
PCA .174 .151 .137

KPCA .853 .528 .667
AE .175 .153 .137

VAE .230 .198 .138
ALAD† .0121 .00637 .00733

RCA .593 .622 .543
RDP .462 .138 .801

Distance

KNN .773 .345 .666
LOF .715 .228 .253

CBLOF .291 .299 .328
COF .0215 .0279 .0112
IF† .0266 .0134 .0320
FB† .739 .278 .185

INNE† .508 .434 .723
REPEN .358 .603 .501

Timeseries

Transformer .556 .561 .609
Autoformer .388 .388 .448
Crossformer .568 .563 .579
FEDformer .387 .388 .456

Informer .557 .564 .608
Pyraformer .575 .576 .613
Reformer .550 .558 .607
Timesnet .162 .160 .280

with higher values closer to 1 indicating better perfor-
mance.

4 RESULTS

4.1 Training Without Anomalous
Samples

Column BF1 in Table 1 displays the results of
anomaly detection, where anomalous samples are not
used during training. Among the methods evaluated,
KDE achieved the highest score (.930), followed by
KPCA (.853). Several methods that utilize the dis-
tance from training data as an anomaly measure, such
as KNN, LOF, and FB, also turned out to be effec-
tive. Autoencoder-based methods (AE, VAE, RCA)
performed reasonably well, while GAN-based meth-
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Table 2: Statistics of non time series datasets.

Train Test(ano) AR Dim
Arrhythmia 122 328(206) 62.8 259

Cardio 827 1299(471) 36.3 21
HeartDisease 75 195(120) 61.5 13

Hepatitis 33 47(13) 27.7 19
InternetAds 1405 1859(454) 24.4 1555
Ionosphere 112 239(126) 52.7 32
KDDCup99 30193 30439(246) .808 41

Lymphography 71 77(6) 7.79 19
Pima 250 518(268) 51.7 8

Shuttle 500 513(13) 2.53 9
SpamBase 1394 3207(1813) 56.5 57

Stamps 154 186(31) 16.7 9
Waveform 1671 1772(100) 5.64 21

WBC 222 232(10) 4.31 9
WDBC 178 189(10) 5.29 30
WPBC 75 123(47) 38.2 33

ods (ALAD) failed. Transformer models that incor-
porate time series data exhibited fair performance.

4.2 Training with Anomalous Samples

Column BF2 in Table 1 presents the results anomaly
detection when training dataset includes anomalous
samples. In comparison to training without anoma-
lous samples, the performance of many models de-
creased from that of BF1. However, models that in-
corporate time series, such as the Transformer mod-
els, exhibit less performance degradation, suggesting
their robustness in handling anomalous data. Among
the models evaluated, GOAD achieved the highest
score of .634.

4.3 Large Scale Training with
Anomalous Samples

Column BF3 in Table 1 displays the results of
anomaly detection when training is done with large
datasets including anomalous samples. The highest
score of .865 was achieved by GMM. There was no
clear overall trend in performance compared to those
from BF2, suggesting a small impact of the data set
size on the anomaly detection performance. On the
other hand, all the transformer models have shown
a clear trend that the performance increases with re-
spect to the increase in the dataset size.

4.4 Benchmarking with Public Datasets

4.4.1 Non Time Series Data Sets

The anomaly detection performance of various unsu-
pervised methods are shown in Table 4. KPCA per-

Table 3: Statistics of time series datasets.

Training Test AR Dim Length
MSL 58317 73729 .105 55 100
PSM 132481 87841 .278 25 100

SMAP 135183 427617 .121 51 100
SMD 708405 708420 .042 38 100
SWaT 495000 449919 .018 51 100

formed best, followed by KNN and KDE. We can ver-
ify that methods that performed good in blast furnace
datasets also performed good in these benchmark
datasets. Ionosphere dataset has the highest rank cor-
relation coefficient (.748) with the blast furnace data,
suggesting the similarity of the two datasets.

4.4.2 Time Series Datasets

The anomaly detection performance of various meth-
ods in time series datasets are presented in Table 5.
Due to the large data size of the time series dataset, we
could not run all the methods due to memory problem
or time restriction. Traditional models such as KDE,
KNN and KPCA were not effective in terms of both
feasibility and performance. In contrast, models that
take into account the time series property, such as the
Transformer models, obtained excellent scores in the
entire time series dataset. It suggests the necessity of
large number of data points for training Transformer
models.

4.5 Effect of Dimensionality Reduction
on Anomaly Detection Performance

Table 6 shows the anomaly detection performance
after dimensionality reduction in the blast furnace
dataset BF3. Due to the space restriction, we omit the
results for the BF1 and BF2 dataset, but only sum-
marizes the statistics in Table 7. Underlined cells in
the table highlight the improvement of performance
in terms of mean AUC or mean ranks. We can ob-
serve that 30 out of 34 models gained performance
improvement after dimensionality reduction. The per-
formance improvements were notable with PCA and
KPCA in the transformer models, and with UMAP
in the rest of the models. We can also observe in
Table 7 that the performance gain was obtained with
BF1 and BF2 as well, suggesting the effectiveness of
dimensionality reduction in general, in the blast fur-
nace dataset.
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Table 4: Anomaly detection performance of various unsupervised methods in non time series datasets in terms of PRAUC.
Type Model BF1 Arr Car Heart Hapa Inter Ion KDD Lym Pima Shu Spam Stamp Wave WBC WDBC WPBC Mean(Rank)

Classification

DSVDD .33 .84 .52 .85 .45 .70 .95 .27 .87 .55 .087 .75 .25 .12 .52 .50 .38 .538(22)
ICL .0077 .75 .36 .81 .32 .61 .93 .74 .72 .62 .59 .82 .31 .11 .17 .55 .37 .549(21)

NeuTral .023 .77 .45 .77 .30 .74 .96 .28 .35 .55 .70 .77 .19 .41 .12 .053 .41 .489(23)
GOAD .77 .71 .41 .57 .21 .50 .98 .55 .42 .49 .71 .54 .15 .048 .045 .43 .40 .448(24)

Probabilistic

KDE .93 .85 .70 .89 .57 .80 .98 .54 1.0 .74 .71 .88 .61 .24 .76 .71 .36 .709(3)
GMM .65 .86 .67 .89 .69 .80 .98 .58 .77 .70 .55 .84 .55 .07 .85 .66 .35 .676(8)
ECOD .017 .85 .66 .68 .49 .61 .78 .46 .91 .64 .074 .67 .41 .079 .93 .63 .32 .575(20)

COPOD .029 .86 .54 .77 .61 .61 .8 .47 .91 .70 .094 .69 .49 .11 .93 .81 .36 .610(17)
HBOS .014 .86 .56 .89 .67 .28 .63 .31 .94 .74 .11 .82 .56 .096 .82 .76 .35 .587(18)
SOD .051 .82 .38 .68 .34 .38 .92 .11 .3 .61 .12 .64 .26 .084 .55 .3 .36 .428(26)

Reconstruction

kmeans† .49 .88 .69 .86 .52 .60 .96 .54 1.0 .72 .67 .85 .58 .19 .68 .77 .34 .678(7)
PCA .17 .88 .73 .86 .71 .59 .92 .53 1.0 .70 .32 .84 .54 .093 .88 .71 .34 .665(11)

KPCA .85 .88 .70 .88 .59 .79 .98 .73 1.0 .72 .70 .87 .58 .22 .75 .72 .36 .717(1)
AE .18 .88 .77 .84 .69 .59 .93 .53 1.0 .67 .31 .84 .54 .093 .89 .66 .32 .660(12)

VAE .23 .88 .73 .86 .71 .59 .93 .53 1.0 .70 .32 .84 .54 .093 .89 .72 .33 .666(10)
ALAD† .012 .71 .47 .72 .27 .38 .67 .025 .059 .52 .034 .67 .34 .052 .17 .27 .51 .367(27)

RCA .59 .88 .69 .87 .67 .60 .98 .53 1.0 .70 .71 .84 .55 .11 .77 .68 .35 .683(6)
RDP .46 .86 .68 .89 .68 .79 .97 .62 1.0 .68 .79 .88 .51 .096 .78 .45 .36 .690(4)

Distance

KNN .77 .88 .66 .88 .67 .62 .98 .65 1.0 .71 .71 .87 .57 .23 .91 .70 .36 .713(2)
LOF .72 .88 .71 .86 .72 .63 .96 .088 .97 .67 .62 .84 .50 .26 .87 .75 .36 .668(9)

CBLOF .29 .88 .63 .86 .52 .59 .97 .53 1.0 .67 .36 .84 .53 .18 .89 .65 .34 .653(13)
COF .022 .79 .36 .69 .23 .23 .92 .53 .91 .57 .10 .55 .24 .098 .11 .30 .30 .433(25)
IF† .027 .87 .73 .90 .49 .25 .92 .46 .97 .72 .07 .86 .51 .10 .91 .75 .35 .616(16)
FB† .74 .88 .71 .87 .73 .52 .96 .39 .97 .68 .67 .80 .51 .26 .094 .77 .36 .636(14)

INNE† .51 .88 .74 .88 .42 .76 .97 .55 .96 .70 .90 .86 .58 .17 .63 .69 .34 .689(5)
DIF† .75 .87 .66 .80 .62 .59 .90 .51 1.0 .66 .24 .79 .54 .12 .84 .50 .36 .625(15)

REPEN .36 .83 .61 .78 .45 .50 .78 .32 1.0 .60 .12 .82 .43 .18 .87 .66 .30 .578(19)
RCC - .40 .39 .36 .35 .41 .75 .42 .48 .32 .65 .43 .49 .40 -.062 .24 .13

Table 5: Anomaly detection performance of various un-
supervised methods in time series data sets in terms of
PRAUC. Methods which did not run due to out-of-memory
problem or did not finish in 12 hours are marked by ’-’.

Type Model BF1 MSL PSM SMAPSMD SWaT

Classification

DSVDD .326 .156 .447 .105 .0560 .315
ICL .00766.136 .416 .0948 - -

NeuTral .0230 .152 .459 .134 - -
GOAD .774 .154 .369 - - -

Probabilistic

KDE .930 .157 .540 .110 - -
GMM .654 .140 .549 .107 .163 .247
ECOD .0173 .144 .398 .103 .107 .757

COPOD .0285 .154 .417 .119 .124 .758
HBOS .0142 .131 .438 .148 .125 .728
SOD .0512 .141 .312 - - -

Reconstruction

kmeans† .486 .132 .515 .110 .115 .713
PCA .174 .140 .472 .105 .107 .726

KPCA .853 - - - - -
AE .175 .140 .472 .105 .108 .726

VAE .230 .140 .460 .105 .108 .726
ALAD† .0121 .113 .332 .108 .0567 .215

RCA .593 .134 .544 .107 - -
RDP .462 .150 .467 .132 - -

Distance

KNN .773 .193 .543 .166 .181 -
LOF .715 .124 .439 .177 .0768 .709

CBLOF .291 .140 .508 .106 .112 .729
COF .0215 - - - - -
IF† .0266 .135 .466 .165 .158 .736
FB† .739 .126 .440 .177 - -

INNE† .508 .185 .483 .199 .136 .207
DIF .753 .126 .502 .113 .119 .763

REPEN .358 .151 .539 .170 - -

Timeseries

Transformer .556 .839 .937 .751 .724 .862
Autofomer .388 .840 .937 .815 .725 .849
Crossformer .568 .841 .946 .758 .727 .909
Fedformer .387 .841 .935 .757 .725 .848
Informer .557 .841 .938 .751 .725 .862

Pyraformer .575 .840 .954 .815 .726 .858
Reformer .550 .836 .938 .751 .726 .865
TimesNet .162 .837 .978 .755 .849 .931

5 CONCLUSION

In this paper, we compared various methods for
anomaly detection in the blast furnace dataset, where
traditional models such as KDE and KPCA turned out
to be effective, while deep learning models turned out
not so. The same trend was observed when we per-
formed extensive comparison on the public non time
series datasets. We have also found that training with
anomaly samples was harmful for building an accu-
rate anomaly detection models. This observation was
corroborated by the experiments with dimensional-
ity reduction, where most of the anomaly detection
methods could boost their performance after dimen-
sionality reduction. In the future, we plan to interpret
the results obtained by the anomaly detection experi-
ments for the purpose of understanding the system of
anomaly in the blast furnace.
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