
A Branch-and-Bound Approach to Efficient Classification and Retrieval
of Documents

Kotaro Ii1, Hiroto Saigo1 and Yasuo Tabei2
1School of Information Science and Electrical Engineering, Kyushu University, Fukuoka, Japan

2Center for Advanced Intelligence Project, RIKEN, Tokyo, Japan

Keywords: Text Classification, Text Retrieval, Suffix Tree, Branch and Bound, SEQL, fastText.

Abstract: Text classification and retrieval have been crucial tasks in natural language processing. In this paper, we
present novel techniques for these tasks by leveraging the invariance of feature order to the evaluation results.
Building on the assumption that text retrieval or classification models have already been constructed from
the training documents, we propose efficient approaches that can restrict the search space spanned by the test
documents. Our approach encompasses two key contributions. The first contribution introduces an efficient
method for traversing a search tree, while the second contribution involves the development of novel pruning
conditions. Through computational experiments using real-world datasets, we consistently demonstrate that
the proposed approach outperforms the baseline method in various scenarios, showcasing its superior speed
and efficiency.

1 INTRODUCTION

Text classification has been an important task in nat-
ural language processing, where it is used for text re-
trieval, spam filtering, sentiment analysis and opinion
mining (Pang and Lee, 2008; Medhat et al., 2014).
Great recent advances have been made using neural
networks (Vaswani et al., 2017; Johnson et al., 2017).
Among text classification methods, linear classifiers
has long been popular due to their simplicity and
interpretability (Joachims, 1998; Fan et al., 2008).
Their properties are studied well, and known to of-
ten perform quite well if the correct features are pro-
vided (Wang and Manning, 2012). Moreover, they
can easily scale to very large corpora (Agarwal et al.,
2014). For instance, fastText has scaled linear classi-
fiers so that a billion of words can be trained (Joulin
et al., 2017). They also found that the use of N-
grams has a potential to improve the classification
accuracy by implicitly considering the local word or-
ders. Although the use of N-grams as features con-
fronts a combinatorial explosion problem, there exists
efficient implementations such as SEQL (Ifrim et al.,
2008; Ifrim and Wiuf, 2010).

In this paper, we introduce a simple yet efficient
approach for evaluating text classification models by
making use of the invariance of the feature order to
the evaluation results. The proposed method has var-

ious applications, but the most useful applications
would be; i) fast evaluation of document classification
model, and ii) fast retrieval of the relevant documents.
In computational experiments, we demonstrate the ef-
ficiency of our approach in evaluating new test doc-
uments in both classification and retrieval tasks. We
employ two existing methods for building text clas-
sification models; 1) SEQL is a logistic regression-
based classifier with L1/L2 norm regularization. A
notable ability of SEQL is its efficient extraction of
N-gram features by a branch-and-bound strategy. 2)
fastText is an another linear text classifier, but is able
to employ pre-trained word vectors in a similar way
as in word2vec (Mikolov et al., 2013). We utilized
three commonly used datasets (Review, Spam, EC)
for computational evaluation and confirmed the en-
hanced efficiency achieved by our approach in all
cases.

The contributions of our approach are the follow-
ings:

1. Proposal of an efficient way of traversing a search
tree.

2. Development of new bounding conditions for
information retrieval and classification.

3. Demonstration of the effectiveness in computa-
tional experiments using three real-world datasets.

Ii, K., Saigo, H. and Tabei, Y.
A Branch-and-Bound Approach to Efficient Classification and Retrieval of Documents.
DOI: 10.5220/0012310600003654
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 13th International Conference on Pattern Recognition Applications and Methods (ICPRAM 2024), pages 205-214
ISBN: 978-989-758-684-2; ISSN: 2184-4313
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

205

This paper is organized as follows. Section 2 gives
a brief background about linear models in text classifi-
cation. In Section 3, we describe details about our pro-
posed methods. In Section 4, we describe the datasets
used in the experiments, and experimental conditions.
Section 5 gives experimental results. Related works
and the differences from our approach are described
in Section 6. Section 7 summarizes the paper. Sec-
tion 8 overviews the possible impact of this work, and
Section 9 shows the limitation.

2 TEXT CLASSIFICATION WITH
BAG OF WORDS

The bag of words (BoW) is a simple and an effi-
cient approach for representing sentences, where a
text is represented as the collection of its words. Typ-
ically, linear models such as linear / logistic regres-
sion or SVM are trained on the BoW representation.
Consider a dataset be {(xxx1,y1),(xxx2,y2), ...,(xxxn,yn)},
where xxxi represents the i-th text represented in the bag
of features, and yi ∈ {0,1} is the corresponding class
label. After training linear models, we can obtain a set
of features www and the corresponding weights βββ. The
resulting model for predicting the response of a new
text xxxi can be represented as

f (xxxi) =
m

∑
j=1

β jI(w j ∈ xxxi), (1)

where I(w j ∈ xxxi) is an indicator function that returns
1 if w j appears in xi, and 0 otherwise. Here, m is the
number of learned features. Equation (1) is readily
used for regression or ranking problems, but can be
used for a classification tasks, since plugging it into
the sigmoid function σ(xxx) = exxx

1+exxx results in logistic re-
gression. This representation can accommodate word
embedding models of the form σ(WWWEEExxx)), where EEE
denotes a pre-trained word embedding matrix, WWW de-
notes the weight matrix specific to each task, and xxx
denotes a one-hot vector. We can observe that once
pre-trained word embedding EEE is obtained, then the
model is linear in WWW .

Below we consider a situation of evaluating the
test dataset D by a learned linear function f (.).

3 METHODS

In this section, we present our novel approach for effi-
ciently evaluating linear models. Firstly, we introduce
the proposed data structure based on a trie. Next, we

Figure 1: Illustration of a trie storing {a, ai, at, o, on, of}.
The order of traversing the tree is shown next to each node.

Figure 2: Illustration of our proposed trie. Apart from the
original trie, each node stores not only a string, but also a
real number γ. Based on the value of γ, the order of tree
traversal changes. The order of traversing the tree is shown
next to each node.

describe our novel algorithms designed for the effi-
cient evaluation of prediction models. Our focus is on
document classification and retrieval, where we pro-
pose distinct algorithms with different pruning condi-
tions.

3.1 A Modified Trie Data Structure

A suffix tree, also known as a trie, is a tree-shaped
data structure commonly used for string matching. In
a trie, each node represents a string, and all the chil-
dren of a node share a common prefix associated with
the parent node. The root of the trie corresponds to the
empty string. The basic trie data structure is shown in
Figure 1. In our approach, each node in a trie not only
stores a string but also a weight obtained from a clas-
sification algorithm (Figure 2). These weights play
a crucial role in efficient classification. During the
construction of a trie, we aggregate the weights of all
the descendant nodes, and record it as γ. Then, while
traversing the trie, we prioritize nodes with larger ab-
solute γ. In this manner, we can efficiently traverse
the part of a trie with the large weights, and terminate
the traversal before visiting nodes with small weights.
It therefore allows us to focus on the most relevant
parts of the trie and avoid unnecessary traversals.

3.2 Document Classification

A naïve document classification algorithm is shown in
Algorithm 1. For each data point, the algorithm exam-
ines whether each feature is present or not. If a feature

ICPRAM 2024 - 13th International Conference on Pattern Recognition Applications and Methods

206

is included, the corresponding weight is summed up,
as shown in Equation (1). At the end of evaluation,
classification results are determined by the signs of
the function values.

Data: DDD, www, βββ
Result: yyy
for i = 1, . . . ,n do

s = 0;
for j = 1, . . . ,m do

if w j ∈ xi then
// string matching

end
s += β j;

end
if s ≥ 0 then

yi = 1;
end
else

yi = 0;
end

end

Algorithm 1: Naïve document classifier.

An efficient document classifier is shown in Al-
gorithm 2, in which we employ a modified trie data
structure. The overall preprocessing step consists of
summing up the weights and sorting the weights, to-
gether requires O(m logm).

Next, we elaborate on our novel tree pruning con-
dition that can skip unnecessary search space. For
a notational simplicity, we call a function value as a
score s below, and the function value evaluated up to
the j-th feature in the i-th document as si j, such that

si j =
j

∑
k=1

βkI(wk ∈ xxxi)

.

Theorem 1. Suppose that up to the j-th features are
evaluated in the i-th document, and let the current esti-
mate of score be si j. If the lowerbound of si j is strictly
positive, then one can determine the prediction for the
i-th document as positive, and safely skip the evalua-
tion of the rest of the features, where the lowerbound
is given as:

si j + ∑
{k| j<k,βk<0}

βk. (2)

Proof. We split the score si j into the already evaluated
part and the not yet evaluated part.

si j + ∑
{k| j<k}

βk ≥ si j + ∑
{k| j<k,βk<0}

βk.

Data: DDD, www, βββ
Result: yyy
β− = ∑{k|βk<0} βk;
β+ = ∑{k|βk>0} βk;
for l = 1, . . . ,n do

γ−l = ∑{k|βk<0,k∈subtree(l)} βk;
γ+l = ∑{k|βk>0,k∈subtree(l)} βk;

end
for i = 1, . . . ,n do

for j = 1, . . . ,m do
needi j = True;

end
end
Sort(βββ, key = abs(γ−)+ γ+);
for i = 1, . . . ,n do

s = 0;
for j = 1, . . . ,m do

if needi j = False then
continue;

end
if w j ∈ xxxi then

s += β j;
if β j > 0 then

β+ −= β j;
end
else

β− += β j;
end

end
else

β+ −= γ+j ;
β− += γ−j ;
for k ∈ subtree(j) do

needk j = False;
end

end
if s ≥ 0 and Equation (2) holds then

yi = 1;
break;

end
if s < 0 and Equation (3) holds then

yi = 0;
break;

end
end

end

Algorithm 2: Efficient document classifier.

Then the lowerbound can be obtained by discarding
the positive weights. Once the lowerbound turns out
to be strictly positive, then it is guaranteed that the
prediction is positive without evaluating the rest of the

A Branch-and-Bound Approach to Efficient Classification and Retrieval of Documents

207

features.

Similarly, if the upperbound below is strictly neg-
ative, then the prediction of the i-th document is guar-
anteed to be negative.

si j − ∑
{k| j<k,βk>0}

βk. (3)

3.3 Document Retrieval

A naïve algorithm for document retrieval is shown in
Algorithm 3, where the goal is to retrieve the docu-
ment with the smallest score. For each data point, the
algorithm verifies whether a specific string (feature) is
included or not. If a string (feature) is included, then
the corresponding weight is summed up.

Data: DDD, www, βββ
Result: i∗

s = 0
for j = 1, . . . ,m do

for i = 1, . . . ,n do
if w j ∈ xxxi then

si += β j;
end

end
end
i∗ = arg min

i
s;

return i∗;

Algorithm 3: Naïve document retriever.

The proposed efficient document retrieval algo-
rithm is shown in Algorithm 4. Similarly to the doc-
ument classification case, we employ a modified trie
as a basic data structure (Figure 2), and restrict the
search space by employing pruning conditions.

Theorem 2. Suppose that up to the j-th features are
evaluated, and the current minimum score s∗l j is iden-
tified in the l-th document . If the following condition
is satisfied, then one can safely discard the document
i for further evaluation without losing the optimality;

s∗l j + ∑
{k| j<k,βk>0}

βk < si j + ∑
{k| j<k,βk<0}

βk. (4)

Proof. Similarly to the document classification case,
we split si j into the already evaluated part and the not
yet evaluated part, and estimate the lowerbound as:

si j + ∑
{k| j<k}

βk ≥ si j + ∑
{k| j<k,βk<0}

βk. (5)

On the other hand, the upperbound of the current min-
imum score s∗l j with respect to the i-th document can

Data: DDD, www, βββ
Result: i∗
β− = ∑{k|βk<0} βk;
β+ = ∑{k|βk>0} βk;
γ−l = ∑{k|βk<0,k∈subtree(l)} βk;
γ+l = ∑{k|βk>0,k∈subtree(l)} βk;
for i = 1, . . . ,n do

for j = 1, . . . ,m do
needi j = True;

end
end
Sort(βββ, key = abs(γ−)+ γ+);
s = 0;
I = {1,2, . . . ,n};
for j = 1, . . . ,m do

s∗ = ∞;
for i ∈ I do

if needi j = False then
continue;

end
else if w j ∈ xxxi then

si += β j;
if β j > 0 then

β+ −= β j;
end
else

β− += β j;
end

end
else

β+ −= γ+j ;
β− += γ−j ;
for k ∈ subtree(j) do

needk j = False;
end

end
if s∗ > si then

s∗ = si;
i∗ = i;

end
end
for i ∈ I do

if Equation (4) holds then
remove i from I;

end
end
if len(I) == 1 then

i∗ = i;
Break;

end
end
return i∗;

Algorithm 4: Efficient document retriever.

ICPRAM 2024 - 13th International Conference on Pattern Recognition Applications and Methods

208

be estimated in a similar fashion as:

s∗l j + ∑
{k| j<k}

βk ≤ s∗l j + ∑
{k| j<k,βk>0}

βk. (6)

If the lowerbound of si j turns out to be larger than
the upperbound of s∗l j, the it is guaranteed that the i-th
document never obtains smaller score than that of the
l-th document, so one can skip the further evaluation
of the i-th document without losing optimality.

The time complexity for the proposed approach
remains unchanged from that of text classification and
remains O(mlogm). Note that it is straightforward to
extend our approach to retrieve the top-k documents
instead of retrieving the best document.

4 EXPERIMENTS

In this section, we demonstrate the effectiveness of
the proposed approach in three real-world datasets.
Our proposed approach can be applied to any linear
model, and enjoy the improved efficiency, however, in
the experiments below, we employ SEQL (Ifrim et al.,
2008; Ifrim and Wiuf, 2010) 1 and fastText (Joulin
et al., 2017) 2 due to their public availability and rich
features in text modeling.

4.1 Text Modeling by SEQL

SEQL is a linear model, and its objective function is
given as

min
βββ

n

∑
i=1

ξ(yi,xi,βββ)+Cα∥βββ∥1 +C(1−α)∥βββ∥2, (7)

where C and α are regularization parameters, and ξ(.)
denotes a loss function chosen either from hinge loss
or logistic loss. In our experiments, we set C to 1 and
α to 0. In addition, we choose logistic loss.

4.2 Text Modeling by fastText

fastText is a popular library for text classification. In
fastText, the possibility that the i-th data is classified
to a class c is given as p(yi = c) = so f tmaxc(WWWEEExxxi),
where WWW is weight matrix and EEE is a pre-trained word
embedding matrix. The model is trained to minimize
the negative log-likelihood over the classes;

min
WWW

− 1
N

n

∑
i=1

ynlog(f (WWWEEExxxi)) (8)

1Available from https://github.com/heerme/seql-
sequence-learner

2Available from https://fasttext.cc/

4.3 Dataset

The first dataset used in the experiment is the IMDB
movie review dataset. The label indicates whether the
text is positive or negative. There are 25,000 movie
review texts with positive and negative contents, re-
spectively. The second dataset used in the experiment
is spam ham dataset available on Kaggle. The label
indicates whether the text is spam or ham. The data
size is 5171, and there are 1499 spam texts and 3672
ham texts. The third dataset used in the experiment
is EC dataset available on kaggle. The label indicates
whether the text is about household or books. The
data size is 31133, and there are 19313 texts about
household and 11820 texts about books.

4.4 Settings

For matching strings in texts, we employed a popu-
lar Boyer-Moore (BM) algorithm (Boyer and Moore,
1977). However, one can alternatively employ Knuth-
Morris-Pratt (KMP) (Knuth et al., 1977) as well. Ex-
periments were conducted to evaluate the pruning ef-
ficiency and time savings achieved by the proposed
method. So we investigate the extent to which the
method could efficiently prune branches within the
search space and quantify the resulting reduction in
processing time. In order to investigate the effect of
the size of the dataset, we fixed the number of features
to 1000, and selected {20, 40, 60, 80, 100} samples
randomly from each dataset. We ran the above proce-
dures 100 times in each condition, and the averages
are reported.

5 RESULTS

Table 1 summarizes the efficiency gained for docu-
ment classification problem. We can confirm that our
pruning strategy was effective in all the datasets. It
appears that fastText slightly benefits more from prun-
ing than SEQL. Table 2 summarizes the efficiency
gained for document retrieval problem. We can again
confirm the effectiveness of our approach in all the
datasets. By comparing Tables 1 and 2, we observed
that that the document retrieval task benefits slightly
more than the classification task.

In the following subsections, we discuss the re-
sults obtained by each method in each dataset into de-
tails.

A Branch-and-Bound Approach to Efficient Classification and Retrieval of Documents

209

Table 1: Pruning efficiency in document classification problem.

SEQL fastText
With Pruning Without Pruning With Pruning Without Pruning

Traversed[%] time[s] Traversed[%] time[s] Traversed[%] time[s] Traversed[%] time[s]
review 85.1 5935.8 100 6798.9 67.2 6770.2 100 9632.0
spam 73.8 374.1 100 485.9 68.4 765.5 100 984.9
EC 86.9 2282.9 100 2538.3 66.3 3831.7 100 5655.7

Table 2: Pruning efficiency in document retrieval problem.

SEQL fastText
With Pruning Without Pruning With Pruning Without Pruning

Traversed[%] time[s] Traversed[%] time[s] Traversed[%] time[s] Traversed[%] time[s]
review 71.6 5150.1 100 6717.8 59.6 6279.6 100 9911.8
spam 60.0 334.9 100 485.9 64.6 706.9 100 925.1
EC 82.8 2246.9 100 2500.8 57.0 3458.5 100 5636.6

Figure 3: Rise of the execution time in classifying doc-
uments modeled by SEQL with respect to the increase
in the dataset size in the review dataset (top), the spam
dataset (middle) and the EC dataset (bottom).

5.1 Document Classification

Figure 3 and Figure 4 shows the rise of the execution
time and the rise of the number of prunings, respec-

Figure 4: Rise of the number of the prunings in classify-
ing documents modeled by SEQL with respect to the in-
crease in the dataset size in the review dataset (top), the
spam dataset (middle) and the EC dataset (bottom).

tively, in classifying documents modeled by SEQL
with respect to the increase in the dataset size in three
real datasets. The corresponding results for fastText

ICPRAM 2024 - 13th International Conference on Pattern Recognition Applications and Methods

210

are shown in Figure 7 and Figure 8. We can observe
in all the case that our pruning approach was more effi-
cient than the brute-force method over varying dataset
sizes.

Figure 5: Rise of the execution time in retrieving the best
document modeled by SEQL with respect to the increase
in the dataset size in the review dataset (top), the spam
dataset (middle) and the EC dataset (bottom).

5.2 Document Retrieval

Figure 5 and Figure 6 shows the rise of the execu-
tion time and the rise of the number of prunings, re-
spectively, in retrieving documents modeled by SEQL
with respect to the increase in the dataset size in three
real datasets. The corresponding results for fastText
are shown in Figure 9 and Figure 10. We can ob-
serve in all the case that our pruning approach was
more efficient than the brute-force method over vary-
ing dataset sizes. This observation suggests that the
proposed method enjoys greater effectiveness when
applied to larger datasets.

Figure 6: Rise of the number of the prunings in retrieving
the best document modeled by SEQL with respect to the
increase in the dataset size in the review dataset (top), the
spam dataset (middle) and the EC dataset (bottom).

6 RELATED WORKS

In this subsection, we first give related works and elab-
orate on the difference from this work. Retrieval of
top-k documents has been studied in the information
retrieval (Ding and Suel, 2011; Dimopoulos et al.,
2013). In this context, our approach is close to a
Term-At-A-Time (TAAT) traversal with early termi-
nation. However, there exists substantial differences.
First of all, in information retrieval, the goal is to re-
trieve relevant documents as fast as possible, so the
documents are pre-processed such that the appearance
of key terms in each document is recorded in inverted
lists. Although it plays a key role in fast information
retrieval, not-yet processed documents are kept out of
the scope. On the other hand, our approach has a built-
in string matching engine, which enables us to handle
raw streaming data such as those in SNS. As a result,
one can pre-train a classifier using hate speech dataset,

A Branch-and-Bound Approach to Efficient Classification and Retrieval of Documents

211

Figure 7: Rise of the execution time in classifying doc-
uments modeled by fastText with respect to the increase
in the dataset size in the review dataset (top), the spam
dataset (middle) and the EC dataset (bottom).

then use it to identify suspicious posts quickly. In ad-
dition to the aforementioned contributions, we also
proposed an efficient method for classifying all the
documents, which sets our approach apart from exist-
ing methods in text retrieval.

7 CONCLUSION AND
DISCUSSION

In this paper, we have proposed efficient ap-
proaches for document classification and document
retrieval.Our approach encompasses two key contribu-
tions. The first one introduces an efficient method for
traversing a search tree, while the second one involves
the development of novel pruning conditions. Com-
putational experiments using the real world dataset
confirmed the effectiveness of the pruning consis-
tently over three real-world datasets. One of our fu-

Figure 8: Rise of the number of the prunings in classify-
ing documents modeled by fastText with respect to the in-
crease in the dataset size in the review dataset (top), the
spam dataset (middle) and the EC dataset (bottom).

ture work is to investigate the effectiveness of our ap-
proach when applied to pre-trained word embedding
model, especially in very large datasets. Lastly, our
approach is applicable to any linear model and its ex-
tensions. Examples include logistic regression (Har-
rell, 2001; Hosmer and Lemeshow, 2000; Chen et al.,
2017), linear SVM (Demiriz et al., 2002), naive
Bayes (Kim et al., 2000), decision tree, and boosted
linear model (Mamitsuka and Naoki, 1998; Schapire
and Singer, 2000).

8 IMPACT OF THIS WORK

The evaluation of a linear model is indeed a funda-
mental task in machine learning, and our approach
can be beneficial for various learning tasks. Exam-
ples of these tasks include regression, classification,
and ranking. Our method is particularly useful for lin-

ICPRAM 2024 - 13th International Conference on Pattern Recognition Applications and Methods

212

Figure 9: Rise of the execution time in retrieving the best
document modeled by fastText with respect to the increase
in the dataset size in the review dataset (top), the spam
dataset (middle) and the EC dataset (bottom).

ear models where the features have structures such as
texts, trees, and graphs, as evaluating such models re-
quires repeated matching of structures. The benefits
of our approach would be maximized when evaluat-
ing graphs, as it involves solving the subgraph isomor-
phism problem (Kudo et al., 2005).

9 LIMITATION

In this paper, the focus of the document classification
problem was restricted to a binary case. While it is
relatively straightforward to extend our approach to
handle the multi-class case, the efficiency benefits in
that scenario may be less pronounced. The same phe-
nomena would likely be observed for the top-k docu-
ment retrieval problem, especially when dealing with
a large value of k.

Figure 10: Rise of the number of the prunings in retrieving
the best document modeled by fastText with respect to the
increase in the dataset size in the review dataset (top), the
spam dataset (middle) and the EC dataset (bottom).

REFERENCES

Agarwal, A., Chapelle, O., Dudikib, M., and Langford,
J. (2014). A reliable effective terascale linear learn-
ing system. Journal of Machine Learning Research,
15:1111—-1133.

Boyer, R. and Moore, J. S. (1977). A fast string searching
algorithm. Comm. ACM. New York: Association for
Computing Machinery, 20(10):762—-772.

Chen, W., Xie, X., Wang, J., Pradhan, B., Hong, H., Bui,
D., Duan, Z., and Ma, J. (2017). A comparative study
of logistic model tree, random forest, and classifica-
tion and regression tree models for spatial prediction
of landslide susceptibility. Catena, 151:147––160.

Demiriz, A., Bennet, K., and Shawe-Taylor, J. (2002). Lin-
ear programming boosting via column generation. Ma-
chine Learning, 46(1-3):225–254.

Dimopoulos, C., Nepomnyachiy, S., and Suel, T. (2013).
Faster top-k document retrieval using block-max in-

A Branch-and-Bound Approach to Efficient Classification and Retrieval of Documents

213

dexes. In Proceedings of the ACM International Con-
ference on Web Search and Data Mining (WSDM).

Ding, S. and Suel, T. (2011). Faster top-k document re-
trieval using block-max indexes. In Proceedings of
the Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval
(SIGIR).

Fan, R., Chang, K., Hsieh, C., X.R., W., and Lin, C.
(2008). Liblinear: A library for large linear classifica-
tion. Journal of Machine Learning Research, 9:1871–
–1874.

Harrell, F. (2001). Ordinal logistic regres-
sion. (In Regression Modeling Strategies).
Springer:Berlin/Heidelberg,Germany.

Hosmer, D. and Lemeshow, S. (2000). R.X. Applied Logis-
tic Regression. John Wiley and Sons: Hoboken, NJ,
USA.

Ifrim, G., Bakir, G., and Weikum, G. (2008). Fast logistic
regression for text categorization with variable-length
n-grams. In Proceedings of the International Con-
ference on Knowledge Discovery and Data Mining
(KDD).

Ifrim, G. and Wiuf, C. (2010). Bounded coordinate-descent
for biological sequence classification in high dimen-
sional predictor space. In Proceedings of the Interna-
tional Conference on Knowledge Discovery and Data
Mining (KDD).

Joachims, T. (1998). Text categorization with support vector
machines: Learning with many relevant features. In
In Proceedings of the 10th European Conference on
Machine Learning, pages 137—-142.

Johnson, M., Schuster, M., Le, Q., Krikun, M., Wu, Y.,
Chen, Z., Thorat, N., Viégas, F., Wattenberg, M., Cor-
rado, G., Hughes, M., and Dean, J. (2017). Google’s
multilingual neural machine translation system: En-
abling zero-shot translation. Transactions of the As-
sociation for Computational Linguistics, pages 339–
351.

Joulin, A., Grave, E., Bojanowski, P., and Mikolov, T.
(2017). Bag of tricks for efficient text classification.
In In Proceedings of the 15th Conference of the Eu-
ropean Chapter of the Association for Computational
Linguistics.

Kim, Y., Hahn, S., and Zhang, B. (2000). Text filtering
by boosting naive bayes classifiers. In In Proceedings
of the 23rd Annual International ACM SIGIR Confer-
ence on Research and Development in Information Re-
trieval.

Knuth, D., Morris, J., and Pratt, V. (1977). Fast pattern
matching in strings. SIAM Journal on Computing,
6(2):323—-350.

Kudo, T., Maeda, E., and Matsumoto, Y. (2005). An applica-
tion of boosting to graph classification. In Advances
in Neural Information Processing Systems 17, pages
729–736. MIT Press.

Mamitsuka, H. and Naoki, A. (1998). Query learning strate-
gies using boosting and bagging. In Proceedings of the
Fifteenth International Conference on Machine Learn-
ing (ICML98).

Medhat, W., Hassan, A., and Korashy, H. (2014). Sentiment
analysis algorithms and applications: A survey. Ain
Sham Engineering Journal, 5:1093—-1113.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013).
Efficient estimation of word representations in vector
space. In In Proceedings of the 1st International Con-
ference on Learning Representations.

Pang, B. and Lee, L. (2008). Opinion mining and sentiment
analysis. Foundations and Trends in Information Re-
trieval, 2(1-2):1––135.

Schapire, R. and Singer, Y. (2000). Boostexter: A boosting-
based system for text categorization. Mach. Learn.,
39:135—-168.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A., Kaiser, L., and Polosukhin, I. (2017).
Attention is all you need. In In Proceedings of the
31th Conference on Neural Information Processing
Systems.

Wang, S. and Manning, C. (2012). Baselines and bigrams:
Simple, good sentiment and topic classification. In In
Proceedings of the 50th Annual Meeting of the Associ-
ation for Computational Linguistics, pages 90––94.

ICPRAM 2024 - 13th International Conference on Pattern Recognition Applications and Methods

214

