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Abstract: This paper specifies, implements and experiments with a new psychologically-inspired 4voices algorithm
to be used by the units of a self-regulated system, whereby each unit learns to identify which of several
“voices” to pay attention to, depending on a collective desired outcome (e.g., establishing the ground truth, a
community truth, or their own “truth”). In addition, a regulator uses a standard Q-learning algorithm to pay
attention to the regulated units and respond accordingly. The algorithm is applied to a problem of continuous
policy-based monitoring and control, and simulation experiments determine which initial conditions produce
systemic stability and what kind of “truth” is expressed by the regulated units. We conclude that this synthesis
of Q-learning in the regulator and 4voices in the regulated system establishes requisite social influence. This
maintains quasi-stability (i.e. periodic stability) and points the way towards ethical regulators.

1 INTRODUCTION

A self-regulated system in cybernetics comprises a
designated agent (or agency) acting as regulator by
operating on some control variables, and a regu-
lated system which applies changes in those variables
(Ashby, 2020). Moreover, the units of regulated sys-
tem, as communicative agents themselves, can report
the effects of applying the changes amongst them-
selves, being inter-connected by a social network.

From this perspective, establishing the pathways
to requisite influence (Ashby, 2020) that would en-
sure timely feedback, responsive control and overall
systemic stability, has two requirements: firstly, ex-
pression by the regulator to the regulated system and
attention of the regulated system to the regulator (and
vice versa), and secondly, social influence within the
social network of the regulated system, with respect
to some overall goal (Nowak et al., 2019).

In this paper, we examine these requirements in
the context of a self-regulated system addressing a
problem of continuous policy-based monitoring and
control, where the regulator specifies a policy and the
regulated system applies the policy, and experiences
its effect. The regulator uses a standard Q-learning
algorithm to learn to pay attention to the regulated
units and responds (expresses a new policy) accord-
ingly. However, we also specify and implement a
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new psychologically-inspired 4voices algorithm for
the units of the regulated system, whereby in deter-
mining their expression to the regulator, each unit of
the regulated system learns to identify which of sev-
eral “voices” to pay attention to, depending on a de-
sired collective outcome.

The psychological motivation is threefold. First,
we start from Nowak’s Regulatory Theory of Social
Influence (Nowak et al., 2019) which proposes that,
for reasons of coherence and cognitive efficiency, in
social networks targets seek sources by whom to be
influenced, as well as sources seeking targets. Sec-
ondly, these targets actually have a polyphony of in-
ner voices (Fernyhough, 2017), which, thirdly, are
more or less activated by selective auditory attention
(e.g. the cocktail party effect (Driver, 2001)).

To test the effectiveness of the new 4voices algo-
rithm with respect to systemic stability, a set of sim-
ulation experiments are designed and executed, with
the regulator using a Q-learning algorithm and the
units of the regulated system using the 4voices al-
gorithm. Essentially this uses a set of coefficients to
learn how to distinguish between the inner voices de-
pending on the desired outcome (i.e., whether it is to
express the community truth, the ground truth or their
inner truth, cf. (Deutsch and Gerard, 1955)). We con-
clude that this synthesis of Q-learning in the regulator
and 4voices in the regulated system establishes req-
uisite social influence. This maintains stability and
points the way towards ethical regulators.

Mertzani, A. and Pitt, J.
Requisite Social Influence in Self-Regulated Systems.
DOI: 10.5220/0012310500003636
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 16th International Conference on Agents and Artificial Intelligence (ICAART 2024) - Volume 3, pages 133-140
ISBN: 978-989-758-680-4; ISSN: 2184-433X
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

133



2 PROBLEM SPECIFICATION

In this section, we identify the pathways to requisite
influence in a self-regulated system as the expression
of the regulator to the regulated units, and their atten-
tion to the regulator; and the expression of the reg-
ulated units to the regulator, and its attention to their
feedback; and finally social influence in the social net-
work of the regulated units. This is the ‘generic prob-
lem’, and we apply it to a specific problem of con-
tinuous monitoring and control. Note this is not nec-
essarily an ‘optimal’ solution to the specific problem:
instead we are establishing a test-bed for stability and
requisite social influence in self-regulated systems.

2.1 The Generic Problem

We refine Ashby’s (Ashby, 2020) exposition of a self-
regulated system by adding the 4voices model of at-
tention and expression to the regulated units, path-
ways to requisite influence, individual learning and
collective learning, as illustrated in Figure 1.

Specifically, following Ashby’s description of a
self-regulated system, the regulated units need to form
a reliable expression to make the regulator aware of
their state, and the regulator needs to find the appro-
priate way to attract the attention of the units to com-
municate the effects of the change of policy. This be-
comes then an iterative process starting from the side
of the regulator who is selecting a policy, commu-
nicates it to the regulated units and influences them
while it continues to the side of the regulated units
which have to attend to that change, distinguish be-
tween the voices of social influence, and form an ex-
pression that will make the regulator aware of the ac-
tual effect of the change.

Accordingly, the aim of this paper is to design
a model in which the group (the regulated system)
learns where to pay attention and how to express it-
self and the regulator learns to attend to that expres-
sion, change policy, and communicate this change.
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Figure 1: The Self-Regulated System.

2.2 The Specific Problem

The effectiveness of our 4voices model is tested in a
specific scenario of continuous monitoring and con-
trol: job scheduling in cloud computing. In more
detail, the system operates in epochs, in each epoch,
each agent i delegates a job to the cloud, and receives
a feedback whether the job will be processed in the
next epoch t. This specific problem was selected be-
cause it satisfies the necessary requirements of be-
ing dynamic and non-deterministic, since it comprises
heterogeneous networked units; the preferable policy
is a matter of context, opinion and self-adaptation;
while it is relatively easy to define some metrics that
describe its operation.

Specifically, the self-regulated system comprises
N agents connected over a social network which par-
ticipate in a cloud system. In every epoch t, each
agent i delegates a job with size ji ∈ {1,J} and ur-
gency ui ∈ {1,U} to the cloud, where J is the maxi-
mum job size and U is the maximum urgency. Based
on its policy, the regulator determines the number of
jobs to be processed m in the next epoch. Then, the
regulator orders all jobs based on urgency (descend-
ing) and size (ascending), selects the m first jobs to
process and informs the agents.

Next, the regulator processes those jobs based on
the described order, which results in a total cost C
equal to the cost J of each job of size ji aggregated
with a fixed cost F. C is equally distributed among
the m agents, resulting in the cost ci, and the average
cost C is equal to the total cost divided by the number
of jobs m. Also, jobs are processed with a delay qi.
The average delay Q equals the sum of the delays di-
vided by m, Q=

∑k∈{1,..,m} qk
m . The maximum delay QM

equals the sum of the delays of N jobs (assuming that
they were all accepted and processed according to the
described order), divided by N, QM =

∑k∈{1,..,N} qk
N .

3 THE 4VOICES ALGORITHM

This section provides the formal specification of the
4voices, the process of selection between those voices
as well as the learning of the regulated units and the
regulator. This section concludes with a specifica-
tion of the formal 4voices algorithm, which comprises
three components: processes for the specific prob-
lem, processes of attendance and selection between
the voices, and processes of learning.
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3.1 Voices of the Regulated System

Drawing inspiration from psychological insights sug-
gesting that people facing decision-making problems
often activate an internal monologue used as a dis-
tinct type of auditory thinking called “inner speech”
or “inner voice” (Fernyhough, 2017), we include this
polyphony in inner speech in our formal model. Fol-
lowing the identification in ergonomics of intimate,
personal, social and public distances (Osborne and
heat, 1979), we define four voices corresponding to
individual’s ‘own voice’ (Fernyhough, 2017), based
on direct personal experience; the ‘expert voice’, em-
anating from education or ‘trusted’ expertise (Horne
et al., 2016); the ‘foreground noise’, from the indi-
vidual’s social network (Nowak et al., 2019); and the
‘background noise’, coming from the community or
culture in which the individual is embedded (Deutsch
and Gerard, 1955).

Applying the 4voices algorithm to the problem of
job scheduling, depending on the delay, the cost, the
urgency and whether the job is accepted to be pro-
cessed or not, each agent i forms an opinion which is
reflected in its own voice no

i . As such, if the job of
agent i is accepted, then the absolute value of the own
voice no

i reflects the quality of service divided by the
cost, while the actual value is negated to reflect the in-
tuition that a higher noise corresponds to higher dis-
satisfaction while a lower noise reflects satisfaction,
and is given by Equation 1:

no
i =−QM −qi

ci
(1)

If the job of the agent is not accepted then, the own
voice no

i remains the same as in the previous epoch.
Being part of a group, the agents are also exposed

to the voices of other agents. Thus, apart from their
own voice no

i , they audit the noise generated by the
group nb

i (background noise), the noise from their so-
cial network n f

i (foreground noise) and the noise gen-
erated by the experts ne

i (experts voice).
This way, the expert voice ne

i which agent i might
audit reflects the actual state of the system, and is
equal to the average quality of service with respect
to the average individual cost aggregated with the ur-
gency factor U f . U f represents the trade-off between
trying to partially satisfying everyone (accepting all
the jobs regardless of the urgency resulting in high
average delay), and fully satisfying few (prioritising
the few the jobs of which are urgent resulting in small
average delay). Specifically, the urgency factor U f
equals the sum of the urgencies of the m accepted jobs
minus the sum of the urgencies of the N −m rejected

jobs, divided by the sum of urgencies of all N jobs.

U f =
∑k∈{1,..,m} uk −∑k∈{m+1,..,N} uk

∑k∈{1,..,N} uk

Overall, the expert voice is given by Equation 2,
where the first term corresponds to the ‘objective’
quality of service while the second corresponds to the
urgency multiplied by a normalising constant uc.

ne
i =−QM −Q

C
+(U f ∗uc) (2)

Note that the term “expert” refers to the agents ini-
tialised to have an overview of the system, expressing
not just an opinion based on their personal experience
(as the other agents do), but an objective opinion re-
flecting the actual state of the regulated system.

Furthermore, interconnected units comprising the
regulated system might be influenced by the opinion
(i.e. the noise) of their peers or they might seek for the
opinion of others if they are not confident about their
own opinion (or, in this case, voice), as depicted in
Nowak’s RTSI theory (Nowak et al., 2019). To reflect
the influence from the social network, we include the
foreground noise in the voices of our model. Specifi-
cally, every agent i is connected with at least one other
agent and can be influenced by them. The social net-
work SN is a Small-World Scale-Free (Klemm and
Eguı́luz, 2002) network resembling real life networks,
combining the properties of both ‘scale free’ (Watts
and Strogatz, 1998) and ‘small world’(Barabási et al.,
1999) networks, namely distribution of degree fol-
lowing the power low, high clustering coefficient,
small average shortest path. The network comprises
N nodes (agents), initialised to have mSN number of
fully connected nodes, and µ probability of adding an
edge to one of the fully connected nodes.

Following the formal specification of social influ-
ence in (Mertzani et al., 2022), each agent i has a
credence cri, j to each of its agents j in their social
network SNi. Consequently, each agent i orders its
neighbours with a descending order of credence. The
foreground noise corresponds to the own voice pro-
duced by the agent j, where j is selected according to
the following process: agent i selects the first agent
from the list CRi and with probability p− εnet uses
its own voice to produce the foreground noise. Other-
wise, the agent i selects a random agent. This stochas-
ticity in the selection of agent is used to restrict agent
from being always influenced by the same agent.

Accordingly, the foreground noise attended by
agent i is the own voice of the agent j from i’s social
network and is given by Equation 3:
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n f
i = no

j | max
j∈SNi

(cri, j), w.p. (p− εnet) (3)

= no
k |k ∈ random(SNi), w.p. εnet

The background noise corresponds to the noise
produced by the community and, thus, is defined as
the average of the own voices of a random sample of
the population, the size of which is ν = N

5 agents, as
presented in Equation 4:

nb
i =

∑i∈{1,..,ν} no
i

ν
(4)

3.2 Voice Selection for Individual &
Collective Expression

Each agent i has to select between the four voices
and form its individual expression ei. This decision
is made upon comparison of the values of attention
to the corresponding voices. Specifically, i has an
attention to each of the four voices, with atto

i be-
ing the attention to the own voice, atte

i the attention
to the expert voice, and attb

i and atte
i the attention

to the foreground and background noise respectively.
Therefore, in every epoch, the agent compares the
attentions and selects the greatest. For instance, if
max(atto

i ,atte
i ,att f

i ,attb
i ) is atto

i then i selects the own
voice and forms its individual expression (ei = no

i ).
Additionally, to encourage exploration and avoid

biasing the agents towards the voice selected during
the first epochs, we introduce a stochastic parameter
(following the approach used for the computation of
the foreground noise). Specifically, with probability
p− εvoice, the voice with the greatest attention is se-
lected, while with probability εvoice the voice is se-
lected randomly. Note that, the four attentions are ini-
tialised to be equal, so that each agent is neutral in
the beginning, and are updated throughout the epochs
based on the experience of each agent.

Having access to its own voice, the foreground
noise, the background noise and the expert voice, each
agent i can select between those four voices and form
its individual expression ei. The individual expres-
sions of the agents are aggregated and form the col-
lective expression V that is presented in Equation 5:

V = ∑
i∈{1,..,N}

ei (5)

3.3 Learning to Attend to Voices

For the update of the attention, we use the reinforce-
ment coefficient c which determines the amount of
positive or negative update occurring in every epoch.
Thus, depending on the value of the experimental pa-

rameter update either the agent learns to pay atten-
tion to the voice that deviates less from the experts
(update =‘Exp’), either learns to pay attention to the
voice that resembles the average expression of the
group (update =‘Col’) or learns to pay attention to
the voice that seems to have the best immediate effect
(update =‘Ind’) resulting in a lower own voice (agent
more satisfied) in the next epoch.

Specifically, in the first case, after attending all the
voices, the agent reinforces its attention to the voice
that deviates less from the expert voice, by increasing
the attention to this voice by c, and penalises the at-
tention to the voice the deviates the most, by decreas-
ing it by c. If an expert can be access by that agent,
the voice of which the attention is increased is simply
the expert voice, but if an expert cannot be accessed,
then the attention to one of the other voices will be
increased. In the second case (update =‘Col’), the
attention to the voice that deviates less from the av-
erage expression of the agents (corresponding to E

N )
is increased and the one that deviates the most is de-
creased. Finally, when update =‘Ind’ the update in
the attention is based on the comparison of the value
of each voice agent in epoch t with the own voice
of i in t + 1. So, the agent computes the values of
(no

i )
t − (no

i )
t+1, (n f

i )
t
− (no

i )
t+1, (nb

i )
t − (no

i )
t+1, and

(ne
i )

t − (no
i )

t+1 and the attention to the lower is in-
creased by c, while the one that is greater is decreased.

The process of updating the agents’ attention con-
stitutes a simple form of learning, where agents are
reinforcing their attention to the voices based on the
value of the information that they offer in evaluat-
ing the actions of the regulator. This process en-
ables agents to learn to which voice attention should
be paid, depending on what they consider more re-
liable to form their expression, based on their goal,
i.e. defined by the parameter update. Therefore, if the
agents consider that the regulator should be aware of
what the experts think, then they will reinforce atten-
tion to the expert voice in order to form their individ-
ual expression based on that voice. This reflects the
confirmation bias observed in human societies, since
often individuals tend to listen to the opinions that are
aligned with their beliefs, rather than the opinions that
are more appropriate.

3.4 Learning to Attend to Expressions

Moving from individual to regulator’s learning, here
we aim to design a regulator that has the required ra-
tional complexity to react effectively to the expres-
sions of the regulated system and produce systemic
stability. Therefore, instead of using reinforcement
coefficients, we use Reinforcement Learning (RL).
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In RL, such a learning process can be modeled as
a Markov Decision Process (MDP). The MDP is de-
fined as (S ,A ,P,R,γ) where A is a set of actions, S is
a set of states, and P is the state transition probability
function, R the reward function and γ is the discount
factor. Thus, s is a state from the set S , a is an action
selected from the set A , P(s,a) defines the probability
of a transition from state st to state st+1 when an agent
executes action a and r ∈ R is the immediate reward
received when agents performs an action.

A policy π maps from states to probability distri-
butions over actions and is denoted by π : S → p(A =
a|S). An agent’s goal is to learn a policy π that max-
imises its expected return Rt := ∑

∞
t=0 γtRt . To learn

that policy one can learn an action-value function that
is defined as Q : (S ×A), where Q(s,a) represents the
value of action a in state s. (Watkins, 1989) intro-
duced the Q-learning algorithm, as a way of learning
the optimal state-action value Q based on the Bellman
equation. According to the Q-learning algorithm, the
function Q is updated at each time step by:

Q(st ,at) = Q(st ,at)+α(rt + γmaxQ(st+1,at)−Q(st ,at))

where α is the step-size and (st ,at ,rt ,st+1) is the tran-
sition from state st to st+1 with reward rt and γ is the
learning rate.

To enable large scale RL, (Li, 2017) proposed the
use of deep neural networks (DNN). (Mnih et al.,
2015) introduced Deep Q-Learning Networks (DQN)
which are using DNNs for approximating the optimal
state-action function Q in Q-learning. At each time
step the DQN is using stochastic gradient descent to
minimise the loss between the learnt network θ and
the target θ−, described by:

1
2
(rt + γmaxQθ−(st+1,at+1)−Qθ(st ,a))

2 (6)

Here, we use a variant of Q-learning algo-
rithm (Watkins and Dayan, 1992) with Deep Q-
Learning Network (DQN) (Mnih et al., 2013), which
combines Double Q-Learning (van Hasselt et al.,
2015) to prevent overestimating with Dueling Net-
works (Wang et al., 2016) to generalise learning
across different actions without changing the under-
lying RL algorithm. We use the implementation of
DQN from (Raffin et al., 2021), and the model is
trained to minimise the loss in Equation 6.

The action space of the regulator has dimension
N × 1 and comprises a vector with all possible mt ∈
{1,N}, the state space has dimension N ×3 and com-
prises 3 vectors describing the jobsize of each agent
in this epoch ji, the urgency of this job ui and the sig-
nal si corresponding to whether the job of the agent
was accepted or rejected. The reward equals the neg-
ative of the collective expression i.e. R = −E to

reward positively low collective expression (satisfac-
tion) and negatively high collective expression (dis-
satisfaction). We use a Deep Q-Learning Network
(DQN) to increase the regulator’s complexity com-
pared to the regulated system and enable it to effec-
tively respond to the expressions of the agents. Fi-
nally, the process of training lasts 10000 epochs di-
vided into episodes of 2000 epochs, while the learn-
ing starts after the 1000 epoch. The exploration con-
stant ε is initialised to 1 and, during training, is being
progressively reduced to 0.1.

3.5 The 4voices Algorithm

Following to the description above, the algorithm
describing our 4voices model is presented in Algo-
rithm 1. The parts in green refer to the specific prob-
lem, i.e. job scheduling in cloud, the parts in blue refer
to the 4voices, and the parts in purple refer to learning.

while t < T do
Regulator Specifies Policy;
Agents Generate Jobs;
Job Scheduling According to Regulator’s Policy;
for each agent i,1 ≤ i ≤ N do

Attend Own Voice (Equations 1);
Attend Expert Voice (Equation 2);
Attend Foreground Noise (Equation 3);
Attend Background Noise (Equation 4);
Voice Selection for Expression (Section 3.2);

end
Collective Expression (Equation 5);
Regulator: Learns to Attend to Expression (Section

3.4);
for each agent i,1 ≤ i ≤ N do

Learn to Attend to Voices (Section 3.3);
end
inc t;

end
Algorithm 1: The 4voices model.

4 EXPERIMENTAL RESULTS

In this short paper, we describe only two experi-
ments: whether the 4voices establishes the pathways
for requisite influence, i.e. attention/expression both
ways between regulator and regulated units, and un-
der which initial conditions stability is produced.

We set εnet = εvoice = 0.3, c = 0.01, uc = 10, J =
U = 10, F = 500 and N = 100,µ = 0.5,mSN = N

10 .
The experiments were repeated for many runs and the
graphs present the outcome after averaging over 10
runs. However, the second experiment presents the
results of a single representative run to highlight the
emerging behaviour.
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Figure 2: The mean value and the standard deviation of the individual expressions for Random and RL regulator after averag-
ing over 10 runs.
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Figure 3: Expression of the Regulated Units when the Regulator is Random and when RL for Different updates of Attention
after averaging over 10 runs.

4.1 Pathways for Requisite Influence

This experiment focuses on the observation of
whether the 4voices establishes the pathways for req-
uisite influence. Figure 2 illustrates the mean value
and the standard deviation of the individual expres-
sions of the agents (y-axis) for different epochs (x-
axis), for different types of update of attentions of
the agents’ shown in different columns and for a ran-
dom and an RL regulator, presented in different rows.
Complementing the results of the individual perspec-
tive of the agents presented in Figure 2, Figure 3
provides the collective perspective, and specifically
shows the policy selected (i.e. number of agents to be
included in the next calculation) by the regulator in
y-axis at each epoch in x-axis. The different colours
of the dots represent the volume of noise, where the
blue correspond to comparatively low volume, while
the red correspond to comparatively high volume.

From Figure 2, we notice that when the regula-
tor selects a policy randomly, the agents’ noise differs
from epoch to epoch, reflecting the agents’ reaction
to the policy selected. In contrast, when the regulator
decides the policy based on a reinforcement learning

algorithm, the mean value of the agents’ noise is de-
creased for ‘Exp’ and ‘Col’ types of update of atten-
tion. This shows that the agents attend the expression
of the regulator and effectively adjust their individual
and collective expressions, depending on whether the
policy selected is desired or not.

The same observation (i.e. the pathways for requi-
site influence from the regulator to the regulated units
are established) can be seen in Figure 3 that illustrates
the collective expression with respect to the selected
policy by the regulator. Here, we notice that when
the policy includes multiple agents (more than 40) the
agents noise becomes lower, while when the regula-
tor includes only a few agents the group reflects the
dissatisfaction by increasing the volume of noise.

Additionally, when the agents’ update of attention
is based on ‘Exp’ or ‘Col’, their expression reflects
their satisfaction and dissatisfaction and establishes
the pathways for requisite influence from the regu-
lated units to the regulator. This can be observed in
the third and fourth columns of Figure 3, where the
regulator identifies the range of policies that is desired
by the agents’ and after some iteration selects a pol-
icy only from the 50-80 agents interval. The combi-
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Figure 4: The mean value and the standard deviation of the individual expressions for Random and RL regulator and the
policy selection and the corresponding collective expression of an RL regulator of a single run.

nation of the observations made above shows that in
any case the pathways for requisite influence from the
regulator to the regulated units are established, while
the pathways from the regulated units to the regulator
are established only for ‘Exp’ and ‘Col’ types of up-
date. This is important since it constitutes a way to
enable a collective (comprising the regulated system)
to have influence on the learning algorithm of the reg-
ulator, by feeding it with the data that forms policy
which helps them to achieve their goal (i.e. maximi-
sation of collective satisfaction), similarly to (Hardt
et al., 2023).

4.2 Initial Conditions & Stability

Moreover, looking in the graphs resulted from a sin-
gle run in Figure 4, we notice that the there is a trade-
off between diversity and congruence. Specifically,
moving from the own voice and the foreground noise
(selected when the update is ‘Ind’) to the expert voice
and background noise (selected when the update of
attention is equal to ‘Exp’ and ‘Col’) the standard de-
viation of the individual expressions is decreased (low
diversity). Moreover, the results in the second col-
umn of the third row of Figure 4 show that the experts
noise remains almost the same if the selected policy
remains in the 40-80 agents interval, whereas in the
third column we notice that there is a limited interval

of satisfying policies in the ‘Col’ case which is rele-
vant to the network properties and the agents affecting
more the others’ expressions.

In this experiment we aimed to observe which
initial conditions result in systemic stability, which
is crucial when addressing issues of sustainability
in socio-technical systems. As such, combining the
findings of both experiments, we conclude that sys-
temic stability is maintained when the regulator se-
lects a policy using RL and the agents’ update their
attention based on the divergence from the experts’
voice or collective decision (update is ‘Exp’ or ‘Col’).
This is because, referring back to the third and fourth
columns of Figure 3, we notice that the regulator, af-
ter enough iterations, identifies the appropriate range
of policies which results in comparatively low noise.
This produces systemic stability (reflected by the per-
sistent blue coloured volume of noise).

5 SUMMARY & CONCLUSIONS

This paper has essentially addressed two related prob-
lems in self-regulated systems. Firstly, ensuring that
pathways for requisite influence exist, in the form of
awareness (of the regulator) to the expression (of the
regulated units), in expression (by the regulator) and
attention (by the regulated units) to that expression,
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and in the form of social influence in the social net-
work of the regulated units. Secondly, to identify un-
der which initial conditions the self-regulated system
can maintain stability, and so establish what could be
called requisite social influence.

The solution proposed in this paper has been to
synthesise ideas from social influence and machine
learning to address the dual problems of requisite in-
fluence and stability in continuous monitoring and
control of a dynamic and non-deterministic system.
Specifically, the contributions of this paper are

• based on ideas from opinion formation, dynamic
social psychology and psychoacoustics, to intro-
duce the 4voices model for regulated units, which
identifies an own voice, expert voice, foreground
noise and background noise as possible sources of
social influence;

• to specify the 4voices algorithm, which com-
bines computation of a signal value for each of
the voices, with reinforcement of attention based
on the experience from past interactions with
the voices for the regulated units, and Deep Q-
learning for the regulator to learn the effect of its
actions; and

• experimental results which show that for control
processes in dynamic and non-deterministic sys-
tems, the 4voices algorithm establishes both the
required relational complexity and the pathways
for requisite influence, so that the systemic stabil-
ity is maintained.
Beyond this, according to Ashby (Ashby, 2020),

an ethical regulator is required not only to reach re-
liable decisions from potentially unreliable evidence,
but also to evaluate the consequences of its decisions,
which raises issues of transparency and accountabil-
ity in the regulator. Correspondingly, though, an ethi-
cally regulated unit should try to provide information
to the best of its knowledge and belief. The future
challenge lies in ensuring ethical behaviour with re-
spect to values, especially in systems with multiple
stakeholders with different priorities and preferences
with respect to those values.
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