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Abstract: Action recognition is a well-established area of research in computer vision. In this paper, we propose S3Aug,
a video data augmenatation for action recognition. Unlike conventional video data augmentation methods that
involve cutting and pasting regions from two videos, the proposed method generates new videos from a single
training video through segmentation and label-to-image transformation. Furthermore, the proposed method
modifies certain categories of label images by sampling to generate a variety of videos, and shifts intermediate
features to enhance the temporal coherency between frames of the generate videos. Experimental results on the
UCF101, HMDB51, and Mimetics datasets demonstrate the effectiveness of the proposed method, paricularlly
for out-of-context videos of the Mimetics dataset.

1 INTRODUCTION

Action recognition is an active area of research in
computer vision and is used in a variety of applica-
tions. A major difficulty in developing action recogni-
tion methods is the need for a large amount of training
data. To address this, several large datasets have been
proposed(Kuehne et al., 2011; Soomro et al., 2012;
Kay et al., 2017; Goyal et al., 2017).

In certain tasks, it can be hard to collect a large
number of videos. To address this issue, data augmen-
tation has been employed (Cauli and Reforgiato Re-
cupero, 2022). This technique involves virtually in-
creasing the number of training samples by applying
geometric transformations, such as vertical and hor-
izontal flip, or image processing, such as cropping a
part of one image and pasting it onto another.

Various data augmentation techniques have been
proposed for both images (Shorten and Khoshgoftaar,
2019) and video tasks (Cauli and Reforgiato Recu-
pero, 2022). These video data augmentation meth-
ods are based on cutmix (Yun et al., 2019) and copy
paste (Ghiasi et al., 2021), which involve cutting
(or copying) regions of two videos to create a new
video. However, these approaches have two draw-
backs. First, the spatio-temporal continuity of the ac-
tor in the video may be compromised. Unlike gen-
eral image recognition tasks, the region of the ac-
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tor is essential for action recognition, and thus sim-
ple extensions of cutmix or copy-paste are not suit-
able since the actor region may be cut off or ob-
scured by augmentation. Second, action recognition
datasets are known to have considerable dataset biases
(Chung et al., 2022), therefore, simple augmentation
does not address the issue of out-of-context (or out-
of-distribution) samples.

Therefore, in this paper, we propose an alternative
to cutmix-based data augmentation methods, called
S3Aug (Segmentation, category Sampling, and fea-
ture Shift for video Augmentation). This method
produces multiple videos from a single training
video while maintaining the semantics of the regions
by using panoptic segmentation and image transla-
tion. We evaluated the effectiveness of our pro-
posed method using two well-known action recog-
nition datasets, UCF101 (Soomro et al., 2012) and
HMDB51 (Kuehne et al., 2011). Furthermore, we
evaluated its performance on out-of-context samples
with the Mimetics data set (Weinzaepfel and Rogez,
2021).

2 RELATED WORK

Action recognition is a long-standing and significant
area of study in computer vision (Hutchinson and
Gadepally, 2021; Kong and Fu, 2022; Ulhaq et al.,
2022), with a variety of models being proposed, in-
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Figure 1: A schematic diagram of the proposed S3Aug. The green component is a classifier that is trained, while the yellow
components are pre-trained segmentation and image translation components. The blue components are non-training processes.

cluding CNN-based (Feichtenhofer, 2020a; Feicht-
enhofer et al., 2019) and Transformer-based (Arnab
et al., 2021; Bertasius et al., 2021).

For this data-demanding task, video data augmen-
tation has been proposed (Cauli and Reforgiato Recu-
pero, 2022). The main approach is cutmix (Yun et al.,
2019) and copy-paste (Ghiasi et al., 2021), which cut
(or copy) a random rectangle or actor region from
frames of one video and paste it onto frames of the
other video. This approach is used by VideoMix (Yun
et al., 2020), ActorCutMix (Zou et al., 2022), and Ob-
jectMix (Kimata et al., 2022), however, it has the is-
sue of the spatial and temporal discontinuity of the
actor regions. To address this issue, Learn2Augment
(Gowda et al., 2022) and Action-Swap (Chung et al.,
2022) generate a background image by utilizing in-
painting to remove the extracted actor regions from
one video frame, and then paste the actors extracted
from the other video frame onto the background im-
age.

Another issue is background bias (Chung et al.,
2022; Weinzaepfel and Rogez, 2021; He et al., 2016),
where models tend to heavily rely on cues in appear-
ances of the scene (e.g., background or object) and
fail to predict the actions of out-of-context samples.
To address this, some simple methods generate var-
ious videos from samples in the given dataset. Ac-
tion Data Augmentation Framework (Wu et al., 2019)
stacks the generated still images, which does not pro-
duce a video with appropriate variations. Self-Paced
Selection (Zhang et al., 2020) treats a video as a sin-
gle “dynamic image”, resulting in the loss of tem-
poral information. Our approach is similar in spirit
but instead uses segmentation as a guide to generate
video frames to maintain the semantics of the original
source video.

Note that generating videos is still a difficult task
despite advances in generative models such as GAN
(Jabbar et al., 2021; Goodfellow et al., 2014; Yi et al.,
2019) and diffusion models (Rombach et al., 2022;
Ramesh et al., 2021). There have been some attempts
to generate videos using diffusion models (Ho et al.,
2022; Luo et al., 2023) and GPT (Yan et al., 2021), but
they require specific prompts to control the content of
the videos, which is an ongoing exploration. On the
contrary, our approach produces video frames from

segmented label frames, similar to Vid2Vid (Wang
et al., 2018a) and the more recent ControlNet (Zhang
and Agrawala, 2023). However, these methods are
computationally expensive and are not suitable for
this study. Therefore, we use a GAN-based method
(Park et al., 2019) as frame-wise image translation,
which is a compromise between speed and computa-
tional cost. Frame-wise processes are known to pro-
duce temporally incoherent results, so we propose
the shit feature, which was originally proposed for
lightweight action recognition models (Zhang et al.,
2021; Lin et al., 2019; Hashiguchi and Tamaki, 2022;
Wang et al., 2022).

3 METHOD

This section begins by providing an overview of the
proposed S3Aug (Fig.1), followed by a description of
key components such as category sampling and fea-
ture shift.

An input video clip v ∈ R T×3×H×W is a sequence
of T frames v(t)∈R 3×H×W , t = 1, . . . ,T , where H,W
are the height and width of the frame. y ∈ {0,1}La is
a one-hot vector of the action label, with La being the
number of action categories.

First, we apply panoptic segmentation to each
frame v(t) to obtain the corresponding label image
vl1(t) ∈ {0,1, . . . ,Ls}H×W , where Ls is the number of
segmentation categories. In addition, an instance map
I(t) ∈ {0,1, . . . ,N(t)}H×W is obtained, which assigns
a unique value to each detected instance in the frame,
with N(t) being the number of instances detected in
the frame. To obtain another label image vl2(t), some
of the pixels in vl1(t) are replaced by the proposed cat-
egory sampling (which will be discussed in sec.3.1).

Then the label image vl2(t) and the instance
map I(t) are used to generate the image v f1(t) ∈
R 3×H×W using the image translation with feature
shift (sec.3.2), and then the actors’ regions are pasted
to generate the final frame v f2(t).

3.1 Category Sampling

In the image translation stage, the frame generated
from a given frame v(t) would remain the same for
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Figure 2: Category sampling. (a) A frame of a label video
vl1 , (b) corresponding several frames of vl2 .

each epoch unless the method has a stochastic mech-
anism. Diffusion models have this, but we opted for
a deterministic GAN for this step for the aforemen-
tioned reason. To introduce variability in the gener-
ated frames even with deterministic methods, we pro-
pose replacing the segmentation label category in the
label images with a different category. We call this
process category sampling.

This is similar to introducing noise into the la-
tent variable (Zhu et al., 2017) to create a variety of
images; however, it is difficult to maintain frame-to-
frame temporal consistency. On the other hand, sim-
ply replacing the categories of labeled images can be
done very quickly, and it is possible to maintain tem-
poral continuity between frames when the categories
are replaced in the same way for all frames.

The importance of which categories are replaced
is a key factor in this work. We use the COCO dataset
(Lin et al., 2014), which is the de fact standard for seg-
mentation tasks. The idea is to maintain objects in the
scene that are essential for understanding the actions
and people-object interactions. Therefore, the COCO
things (Lin et al., 2014) categories, including the per-
son class, are kept as is, while the COCO stuff (Caesar
et al., 2018) categories are replaced. In the following,
we propose two methods, random sampling (for ran-
dom categories) and semantic sampling (for semanti-
cally similar categories).

3.1.1 Random Category Sampling

We use a segmentation model pre-trained on the
COCO panoptic segmentation (Kirillov et al., 2019).
The category set of segmentation {0,1, . . . ,Ls = 200}
is consists of the unlabeled class {0}, the things class
set Lthings = {1, . . . ,91}, the stuff class set Lstuff =
{92, . . . ,182}, and the merged stuff class set Lmstuff =
{183, . . . ,200} 1.

For each video, we use a permutation σ that repre-
sents replacement sampling, randomly replacing cat-

1https://cocodataset.org/#panoptic-eval

egories of the COCO stuff and merged stuff to one of
the categories of the COCO stuff.

σ =

(
92 · · · 200

σ(92) · · · σ(200)

)
, (1)

and each σ(c) is sampled by

σ(c)∼ Unif(Lstuff) ∀c ∈ Lstuff ∪Lmstuff, (2)

where Unif is a uniform distribution. Note that
{σ(c) | c ∈ Lstuff ∪ Lmstuff} ⊆ Lstuff holds due to the
replacement. The same permutation is used for each
video, and it is applied to all pixels in all frames to
create a new label image;

vl2(x,y, t) = σ(vl1(x,y, t)), (3)

where v(x,y, t) denotes the pixel values of the corre-
sponding frame of the video v.

3.1.2 Semantic Category Sampling

Rather than randomly selecting categories, a category
sampling that takes into account the similarity be-
tween them by using word embedding is expected to
generate more realistic frames than simply substitut-
ing categories randomly. We call this sampling se-
mantic category sampling.

First, the category name wc of each stuff category
c ∈ Lstuff is encoded into an embedding tc. Then, we
compute the cos similarity of the embedding tc of cat-
egory c to the embedding tc′ of other categories c′,

p(c′|c) = exp(tT
c tc′)

∑i∈Lstuff
exp(tT

c t i)
, (4)

and sample a new category

c′ ∼ p(c′|c) ∀c ∈ Lstuff. (5)

Similarly to random category sampling, we fix σ(c) =
c′ for all frames of each video to obtain a new label
image.

3.2 Feature Shift

It is known that frame-wise processing often results in
temporal incoherency; the resulting video exhibit arti-
facts such as flickering between frames. In this study,
we propose the use of feature shift, which has been
proposed to give the ability of temporal modeling
to frame-wise image recognition models (Lin et al.,
2019; Zhang et al., 2021; Hashiguchi and Tamaki,
2022; Wang et al., 2022). This approach inserts fea-
ture shift modules inside or between layers of a 2D
CNN or transformer model to swap parts of features
between consecutive frames. We use feature shift to
enhance coherency between frames.
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Figure 3: Effect of feature shift. (a) Label images Vl2 , and
(b) corresponding generated frames without feature shift
and (c) with feature shift.

A typical structure of image translation models
consists of a combination of an encoder and a de-
coder, both of which are composed of multiple blocks.
Assuming that there are no skip connections across
blocks, we write the ℓ-th decoder block as follows

zℓ = Dℓ(zℓ−1), (6)

where zℓ ∈RT×Cℓ×Hℓ×Wℓ are intermediate features and
Cℓ,Hℓ,Wℓ are the number of channels, height and
width. In this work, we insert a feature shift module
between the decoder blocks as follows;

z′ℓ = Dℓ(zℓ−1) (7)

zℓ = shift(z′ℓ). (8)

Let zℓ(t,c)∈ R Hℓ×Wℓ be the channel c of t-th frame of
zℓ, then the shift module can be represented as follows
(Hashiguchi and Tamaki, 2022);

zℓ(t,c) =


z′ℓ(t −1,c), 1 < t ≤ T,1 ≤ c <Cb

z′ℓ(t +1,c), 1 ≤ t < T,Cb ≤ c <Cb +C f

z′ℓ(t,c), ∀t,Cb +C f ≤ c ≤C
.

(9)

This means that the first Cb channels at time t are
shifted backward to time t −1, and the next C f chan-
nels are shifted forward to time t +1.

Note that we used a pre-trained image translation
model (Park et al., 2019) in which shifting was not
considered. However, it is expected to contribute to
the reduction of artifacts between frames, as shown in
Figure 3.

(a) (b)

Figure 4: Example of person paste. (a) From the labeled
moving image vl2 of Figure 2(b) The generated video v f1
and (b) Video image with person area pasted on it VF2 .

3.3 Person Paste

A pre-trained image translation model might work in
general; however, it does not guarantee to generate
plausible actors that are import to action recognition.
Therefore, we use the actor regions in the original
video frame and paste them into the generated frame
as shown in Fig. 4.

v f2(x,y, t) =

{
v(x,y, t) vl1(x,y, t) = “person”
v f1(x,y, t) otherwise

(10)

4 EXPERIMENTAL RESULTS

We evaluate the proposed S3Aug with two commonly
used action recognition datasets and an out-of-context
dataset. We also compare it with the conventional
methods.

4.1 Settings

4.1.1 Datasets

UCF101 (Soomro et al., 2012) is a motion recognition
dataset of 101 categories of human actions, consisting
of a training set of approximately 9500 videos and a
validation set of approximately 3500 videos.

HMDB51 (Kuehne et al., 2011) consists of a train-
ing set of about 3600 videos and a validation set of
about 1500 videos. HMDB51 is a motion recognition
dataset of 51 categories of human motions.

Mimetics (Weinzaepfel and Rogez, 2021) is an
evaluation-only dataset consisting of 713 videos with
50 categories, which is a subset of the category of
Kinetics400 (Kay et al., 2017). Videos are out-of-
context that does not align the usual context of action
recognition, such as surfing in a room or bowling on
a football pitch. After training on 50 categories of
the Kinetics400 training set, of which videos are nor-
mal context, we evaluated on the 50 categories of the
Mimetics dataset.
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4.1.2 Model

Mask2Former (Cheng et al., 2022) pre-trained on the
COCO Panoptic segmentation (Kirillov et al., 2019)
(80 things, 36 stuff, 17 other, 1 unlabeled classes) was
used for the segmentation of each frame of the video.

For the image translation model, we used SPADE
(Park et al., 2019) pre-trained on the COCO stuff
(Caesar et al., 2018) (80 things, 91 stuff, 1 unlabelled
classes). The number of channels Cb,C f to be shifted
was set to Cℓ/8 in every layer, where Cℓ is the number
of channels of the feature zℓ.

A pretrained BERT (Devlin et al., 2019) was used
for the word embedding model. For action recog-
nition, we used X3D-M (Feichtenhofer, 2020b) pre-
trained on Kinetics400 (Kay et al., 2017).

In the experiment, only the action recognition
model, X3D-M, was fine-trained, while the other
models were pre-trained and fixed. For feature shift,
a shift module was inserted into each decoder block
of the pre-trained SPADE with the weights fixed.

4.1.3 Training and Evaluation

We followed a standard training setting. We randomly
sampled 16 frames from a video to form a clip, ran-
domly determined the short side of the frame in the
[256,320] pixel range, resized it to preserve the aspect
ratio, and randomly cropped a 224× 224 patch. Un-
less otherwise noted, the number of training epochs
was set at 10, batch size at 2, and learning rate at 1e-4
with Adam optimizer (Kingma and Ba, 2015).

In validation, we used the multiview test (Wang
et al., 2018b) with 30 views; three different crops
from 10 clips randomly sampled.

We applied the proposed method to each batch
with probability 0 ≤ p ≤ 1. In the experiment, the
performance was evaluated from p = 0 to p = 1 in in-
crements of 0.2. Note that p = 0 is equivalent to no
augmentation.

4.2 Effects of Components

Table 1 shows the effect of category sampling, feature
shift (fs), and person paste (pp). Note that the results
are identical for p = 0.0.

The first row shows results without any proposed
modules. Performance decreases when p> 0, demon-
strating that a simple image translation only does not
work as a video data augmentation.

The second row shows the result of the person
paste, showing that the person paste consistently im-
proves performance for all p values. The performance
decrease for large p is less significant than when the

Table 1: Evaluation of top-1 performance on the UCF101
validation set for random (r) and semantic (s) category sam-
pling (cs), feature shift (fs), and person paste (pp).

cs fs pp 0.0 0.2 0.4 0.6 0.8 1.0
93.68 92.71 93.38 90.88 89.20 74.41

✓ 93.68 94.15 94.10 91.66 90.60 85.28
r ✓ 93.68 94.04 92.99 92.93 91.85 82.93
s ✓ 93.68 93.99 93.63 92.96 89.83 81.71
r ✓ ✓ 93.68 94.26 93.85 92.93 91.86 82.93
s ✓ ✓ 93.68 94.26 93.54 92.77 90.49 83.73

person paste is used, indicating that the effect of the
person paste is more pronounced.

Without feature shift, random sampling looks
slightly better than semantic sampling as shown in the
third and fourth rows. However, as shown in the last
two rows, semantic category sampling shows better
than or comparable performance with feature shift.
The best performances of the random and semantic
category sampling are the same at p = 0.2, while the
semantic category sampling performs slightly better
for other values of p.

Note that in all settings, performance decreases as
p increases and, in particular, performance decreases
significantly for p ≥ 0.6, regardless of which setting
was used. This indicates that the augmented sam-
ples clearly change the content of the frames and that
too much augmentation does not help the model to be
generalized.

4.3 Comparisons

The comparison with VideoMix (Yun et al., 2020)
and ObjectMix (Kimata et al., 2022) on UCF101 and
HMDB51 is shown in Table 2. The batch size was 16,
which is the same as in the previous work (Kimata
et al., 2022).

The results of the experiments vary depending on
the randomness of the training and the augmentation
applied. Therefore, we ran each setting three times for
each method, and the results are presented in a single
cell, along with the average performance of the cell.

The proposed S3Aug performs competitively on
UCF101 and significantly better on HMDB51, with
an average of 78.88% (p = 0.2), which is 2 points
higher than the best of VideoMix and ObjectMix. It is
likely that a similar performance of the three methods
is obtained on UCF101, as the data set is relatively
easy to predict, and the state-of-the-art methods ex-
ceed 98% (Wang et al., 2023).

Generally, VideoMix and ObjectMix appear to be
more effective when p is larger (around 0.6), while
S3Aug is most successful when p is around 0.2. This
discrepancy is due to the fact that the techniques
generate videos in the same or different contexts.
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Table 2: Performance comparison of the proposed S3Aug
with two previous work; VideoMix and ObjectMix. The
top one is on the validation set of UCF101 and the bottom
is HMDB51.

method 0.0 0.2 0.4 0.6 0.8 1.0
93.40 93.18 93.49 93.60 92.96 92.66

VideoMix 93.68 93.51 93.82 93.65 93.99 92.85
94.06 94.51 94.15 93.96 94.20 93.23

avg 93.71 93.73 93.82 93.74 93.72 92.91
93.40 94.07 94.10 93.68 94.10 92.74

ObjectMix 93.68 94.10 94.15 93.71 94.34 92.82
94.06 94.20 94.37 94.76 94.48 93.76

avg 93.71 94.12 94.21 94.05 94.31 93.11
93.40 93.29 93.21 92.07 90.19 83.54

S3Aug 93.68 94.04 93.54 92.77 90.49 83.73
94.06 94.15 94.76 93.38 90.74 84.45

avg 93.71 93.83 93.84 92.74 90.47 83.91

method 0.0 0.2 0.4 0.6 0.8 1.0
74.22 75.11 74.33 76.67 74.56 74.42

VideoMix 76.83 76.50 76.89 76.89 75.56 75.50
78.22 77.83 78.39 77.67 76.39 75.89

avg 76.42 76.48 76.54 77.08 75.50 75.27
74.22 76.33 75.56 75.33 72.17 74.72

ObjectMix 76.83 77.00 76.67 75.83 75.83 73.83
78.22 77.33 78.39 77.67 76.39 75.89

avg 76.42 76.89 76.87 76.28 74.80 74.81
74.22 77.00 77.72 76.17 72.22 70.11

S3Aug 76.83 79.81 77.89 76.50 75.83 73.94
78.22 79.83 78.22 79.17 77.22 74.11

avg 76.42 78.88 77.94 77.28 75.09 72.72

VideoMix and ObjectMix generate new videos by uti-
lizing two training videos, which share a similar con-
text in terms of the background. On the other hand,
S3Aug produces a video with a completely different
background from the original video. We compare
these methods in this paper, but our method is com-
plementary to them, and thus a synergistic effect can
be expected when they are used together.

4.4 Performance on Out-of-Context
Videos

One of the motivations of the proposed S3Aug is to
address the issue of the background bias by generat-
ing various background while keeping the semantic
layout of the action scene. Table 3 shows the perfor-
mance comparisons of the proposed method and other
two prior work. The top table shows performances
on the same 50 categories of Kinetics validation set,
which is in-context samples. Three methods are al-
most comparable while S3Aug is inferior due to the
reason mentioned above.

The motivation behind S3Aug is to tackle the
problem of background bias by creating a variety of
backgrounds while preserving the semantic layout of
the action scene. Table 3 compares the performance

Table 3: Evaluation of top-1 performance on 50 categories
of the Kinetics (top) and Mimetics (bottom) validation sets.

method 0.0 0.2 0.4 0.6 0.8 1.0
VideoMix 81.99 79.88 78.75 79.60 79.72 78.38

ObjectMix 81.99 78.30 78.55 78.30 77.41 79.07
S3Aug 81.99 81.63 80.54 79.60 77.22 66.72

method 0.0 0.2 0.4 0.6 0.8 1.0
VideoMix 16.72 16.09 16.09 15.61 16.72 17.98

ObjectMix 16.72 15.68 15.77 16.24 13.88 17.35
S3Aug 16.72 19.30 22.37 22.40 19.08 16.45

Figure 5: The score differences of 50 action categories of
the Mimetics datasets when S3Aug is used and when it is
not. Categories with no differences are not included in the
comparison.

of the proposed method with two prior works. The top
table displays the results on the same 50 categories
of the Kinetics validation set, which are in-context
samples. All three methods are quite similar, how-
ever S3Aug is slightly weaker due to the previously
mentioned reason.

The bottom table shows the results for the Mimet-
ics dataset, which clearly demonstrate the superiority
of the proposed method. This is likely due to the var-
ious background generated by the proposed method.
Figure 5 shows how scores of each category were im-
proved or deteriorated when S3Aug is used relative to
the case when it is not used (p = 0.0). The top four
categories are of sports, and training a model with
generated various background may help to handle
out-of-context videos of the Mimetics dataset. The
worst categories look involving objects (e.g. guitar,
leash for dogs, rope) that are not included as a cat-
egory of the COCO dataset, or are too small to be
detected by the segmentation model. This is a limi-
tation of the proposed approach and using more so-
phisticated segmentation models or datasets with fine
categories would be helpful.
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5 CONCLUSION

In this study, we proposed S3Aug, a video data
augmentation for action recognition using segmenta-
tion, category sampling, image generation, and fea-
ture shift. The proposed method is different from
conventional data augmentation methods that cut and
paste object regions from two videos in that it gen-
erates a label video from a single video by segmen-
tation and creates a new video by image translation.
Experiments using UCF101 and HMDB51 have con-
firmed that UCF101 is effective as a data augmenta-
tion method to suppress overfit during training.
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