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Abstract: In today’s competitive manufacturing landscape, achieving operational efficiency and optimizing revenue gen-
eration are key objectives for make-to-order manufacturers. This paper presents a novel approach for integrat-
ing production scheduling and pricing decisions in a make-to-order manufacturing environment. We propose a
comprehensive mathematical model that addresses the complex interplay between production scheduling and
pricing strategies. By jointly optimizing these two critical aspects, manufacturers can enhance their competi-
tiveness and profitability. The objective of the scheduling decisions is to minimize the total tardiness penalties
of jobs on a non-preemptive parallel machine environment, a widely used measure of customer service. Pricing
decisions on the other hand aim at maximizing the total revenue. A mixed integer linear programming model
is formulated and an algorithm is developed based on the ε-constraint approach to conduct the experimental
analysis. The algorithm aims to find the best solutions, from the decision-maker’s perspective, by iteratively
adjusting production schedules and pricing decisions.

1 INTRODUCTION

In the dynamic landscape of make-to-order manu-
facturing, effective coordination between production
scheduling and pricing decisions is crucial for com-
panies to optimize their operational efficiency and
revenue generation. Traditionally, these two aspects
have been treated as separate entities, leading to sub-
optimal outcomes and missed opportunities. How-
ever, recognizing the inherent interdependencies be-
tween production scheduling and pricing strategies,
researchers and practitioners are increasingly focus-
ing on integrating these decisions to gain a competi-
tive advantage.

The integration of production scheduling and pric-
ing decisions presents a complex challenge due to
the dynamic nature of customer demands, evolving
market conditions, and limited production resources.
Manufacturers need to determine not only how to al-
locate production resources optimally but also how
to set prices that maximize revenue and satisfy cus-
tomer demand within specified delivery deadlines.
By jointly optimizing these decisions, companies can
enhance their ability to meet customer requirements
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while maximizing profitability.
To address this challenge, this paper proposes a

comprehensive mathematical model based on mixed-
integer linear programming that integrates production
scheduling and pricing decisions in a make-to-order
manufacturing environment. Our planning environ-
ment models the periodic ordering and scheduling de-
cisions that are commonly employed in the industry
(Russell and Taylor, 2006). In this context, orders are
typically accepted on a timely basis, with no new jobs
becoming available between consecutive orders. By
formulating the problem as a mathematical optimiza-
tion model, we aim to provide a systematic and rig-
orous approach for decision-making in this complex
environment.

Furthermore, the principle of ε-constraint is con-
sidered in order to find the right balance between the
two objective functions, that is minimizing the total
tardiness penalty of orders and maximizing the total
profit of the company. Leveraging mathematical pro-
gramming techniques and optimization methods, the
algorithm aims to find optimal solutions by iteratively
adjusting the priority for one objective over the other
depending on the company’s strategy, i.e. increasing
profit or improving customer satisfaction. By consid-
ering the dynamic nature of the environment, the al-
gorithm enables companies to adapt and respond to
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changing market conditions and customer demands
effectively.

To validate the effectiveness of the proposed
mathematical model and algorithm, computational
experiments were conducted using arbitrary chosen
data and based on probability distributions. The im-
plementation results confirm the effectiveness of the
proposed model, while the proposed algorithm pro-
vides a decision-maker-based-system able to help a
decision-maker determine the best compromise ac-
cording to their perspective between the two objective
functions and the executions time.

The remainder of this paper is organized as fol-
lows: Section 2 presents a brief literature review on
the integration of pricing and production scheduling
decisions in make-to-order manufacturing environ-
ment. The problem description along with the pro-
posed mathematical model are presented in Section
3. Section 4 presents an illustrative example to rep-
resent the solution structure provided by the model.
Then, computational experiments on the model using
a proposed algorithm are conducted in Section 5. Fi-
nally, conclusions and future directions are presented
in Section 6.

2 LITERATURE REVIEW

The close interplay between operational aspects such
as production planning and inventory policies, and
marketing decisions including demand management
and pricing strategies has long been acknowledged
in practical contexts (Chen. and Hall, 2022). Con-
sequently, it is essential to make coordinated mar-
keting and production decisions to maximize over-
all efficiency and profitability throughout the supply
chain. Extensive literature surveys were conducted by
Eliashberg and Steinberg (1993), Chen and Simchi-
Levi (2012), and Chen. and Hall (2022), show-
ing considerable research attention devoted to Coor-
dinated Pricing and Production Scheduling (CPPS)
over the past decades. Among the vast array of re-
search and advancements in this field, only a lim-
ited number of studies specifically addresses the de-
tailed scheduling of individual orders. Nevertheless,
as shown in (Chen. and Hall, 2022), many practical
examples can state the pertinence of coordinating pro-
duction scheduling and pricing decisions in make-to-
order systems. Driven by this practical relevance, two
categories of CPPS problems can be distinguished,
including problems with a single period pricing, and
problems with multiple periods pricing.

For the single-period pricing problem, orders
prices are decided at the beginning of the scheduling

horizon. Chen and Hall (2010) study the coordina-
tion of pricing and scheduling decisions in a make-to-
order environment. Assuming knowledge of a deter-
ministic non-increasing demand function, they study
three objective functions for the scheduling problem,
including the total work in progress, the total penalty
for orders delivered late, and the total capacity usage
while maximizing the total net profit of the company.
Moreover, they assume that a single price is used for
each product along with its respective demand over
the entire scheduling horizon. They examine three
degrees of coordinating pricing and scheduling deci-
sions in order to conclude on the advantage of coordi-
nation in this context.

Liu et al. (2020) study the problem with a sin-
gle machine environment, where the manufacturer re-
ceives order inquiries from customers and has to al-
locate a price for each enquiry. They consider a
probability associated with the acceptance of the al-
located price by a customer and aim at maximizing
revenue while minimizing the total tardiness. To solve
this problem, they propose an efficient heuristic after
proving that the problem is NP-hard.

Lu et al. (2013)’s work includes modeling cus-
tomer demand’s uncertainty. They focus on min-
imizing the expected production cost based on the
total weighted completion time. They design dy-
namic programming algorithms to solve the problem.
Their study highlights the advantage of coordination
in profit maximization.

Wang and Wang (2019) investigate the pricing and
scheduling decisions coordination on a parallel ma-
chines environment, where the objective is to maxi-
mize revenue and minimize the total weighted tardi-
ness of accepted orders. They propose a mixed integer
linear programming model where products prices are
decided at the beginning of the planning horizon.

For the multi-period pricing problem, Yue et al.
(2019) study a particular problem motivated by the
practical setting where a manufacturer makes multi-
ple customized products from a common base prod-
uct. They use dynamic pricing to match capacity with
demand over a multi period planning horizon. Hence,
at the beginning of each period, the price and the pro-
duction schedule are decided for incoming orders on a
single machine environment. They consider that due
dates are equal to the end of each period, meaning
that a common due date is fixed for orders arriving
at the beginning of each period. They propose dy-
namic programming algorithms to solve three variants
of the problem, including the total weighted comple-
tion time minimization, tardiness minimization with
rejection and without rejection.

In comparison to the existing literature, our
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work makes a distinct contribution by introducing a
novel perspective on the multi-period pricing prob-
lem within the context of coordinated marketing and
production decisions. While the literature, exempli-
fied by Yue et al. (2019), primarily considers a multi-
period setting where orders are scheduled based on
fixed end-of-period deadlines, our study extends this
paradigm by allowing each order to possess a flexi-
ble and arbitrary deadline, thereby reflecting the com-
plexities often encountered in real-world scenarios.
This departure from traditional scheduling definitions
permits a more accurate representation of practical
situations, where orders might be processed across
different periods depending on their individual dead-
lines. Furthermore, our proposed mathematical model
is designed not only to provide optimal solutions for
small instances but also serves as an initial step to-
wards tackling larger-scale instances using heuristics
and meta-heuristics.

3 PROBLEM DESCRIPTION

The problem under study involves scheduling orders
in an identical parallel machine environment taking
into account pricing decisions. The company pro-
poses a set of products and a range of prices for
each product and orders are received at specific arrival
times set by the company. The model then decides the
prices, the scheduling order and the machine assign-
ment for customers orders, so as to maximize revenue
and minimize production cost.

Following the Graham’s notation (Graham,
1966), the scheduling problem can be denoted as
Pm|r j|∑w jTj, where each order has a release date
r j at which it becomes available for scheduling,
a deadline d j at which it must be completed, and
a weight w j that refers to the penalty assigned to
an order if delayed. Furthermore, the objective
function is the total weighted tardiness of orders,
expressed as ∑w jTj, where the tardiness of an
order Tj = max{c j − d j,0}, such as c j refers to the
completion time of the order. Finally, the scheduling
environment is composed of m identical parallel
machines. These notations are employed to describe
the classical scheduling problem and will evolve
in the following sections to accurately describe the
specific problem under consideration, taking into
account the pricing integration.

The scheduling problem Pm|r j|∑w jTj is NP-
hard since even the problem without release dates
Pm||∑w jTj is NP-hard, as proved by Koulamas
(1994). The comparison between the latter and the
studied problem reveals their similarity, with the only

difference being the inclusion of the dynamic pricing
part in the studied problem. As a result, it is evident
that the studied problem is also NP-hard.

3.1 Assumptions

The mathematical model for the pricing and schedul-
ing decisions coordination takes into account the fol-
lowing assumptions inherited from the standard par-
allel machine scheduling problem with release dates
and due dates.

• Order preemption is not allowed, meaning that an
order can not be interrupted once it starts its pro-
cessing.

• Each order has a processing time.

• Each order has an arrival time and hence cannot
start processing before.

• Each order has a due date, and if that due date is
violated or not met, a penalty is incurred.

• Machines are identical.

• Each machine can process at most one order at a
time.

3.2 Notations

The proposed mathematical model is based on the fol-
lowing notations for sets and indices:

• M: set of m̄ identical parallel machines, with M =
{1, ..., m̄}.

• P: set of p̄ products proposed by the company,
with P = {1, ..., p̄}.

• T : set of t̄ orders arrival times, with T = {t1, ..., t̄}.
• Li: set of l̄i prices allowed for a product i∈P, with

Li = {1, ..., l̄i}.
• Di: set of d̄i orders of a product i ∈ P, with Di =
{1, ..., d̄i}, Dmax = maxi∈P Di

• pti: processing time of a product i, with i ∈ P.

• wi: tardiness penalty of a product i ∈ P.

• dt
i : deadline of an order of product i ∈ P made at

time t ∈ T .

• fi: decreasing demand function with respect to the
product’s price for a product i ∈ P.

• qil : price of product i ∈ P of index l ∈ Li, such as
fi(qil) is the associated demand.

• N: sufficiently large number.
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3.3 Decision Variables

• T t
i j: tardiness of an order j of a product i made at

time t, with j ∈ Di, i ∈ P, and t ∈ T .

• Ct
i j: completion time of an order j of product i

made at time t, with j ∈ Di, i ∈ P, and t ∈ T .

• xt
il : binary decision variable, which indicates the

price selected for a product order. This variable is
equal to 1 if price qil is fixed for product i ∈ P at
period t, with l ∈ Li, and 0 otherwise.

• zt
i j: binary decision variable, which indicates if an

order of a product is made. This variable is equal
to 1 if order j ∈ Di of product i ∈ P is made at
time t, and 0 otherwise.

• Ak
i jt : binary decision variable, which suggests the

orders assignments to machines. This variable is
equal to 1 if order j ∈ Di of product i ∈ P made
at time t ∈ T is assigned to machine k ∈M, and 0
otherwise.

• yk
i jtuvt ′ : binary decision variable, which indicates

the order of processed jobs. This variable is equal
to 1 if, on machine k ∈M, order j ∈Di of product
i ∈ P made at time t ∈ T is a direct predecessor of
order v∈Du of product u∈ P made at time t ′ ∈ T ,
and 0 otherwise.

3.4 Mathematical Model

The mathematical model (P0) presented here for the
problem of pricing and production scheduling was in-
spired from the Wang and Wang (2019)’s formulation.
Their model considers that prices are decided at the
beginning of the scheduling horizon and demand is
then fixed consequently. The pricing integration part
was adapted for this mathematical model while con-
sidering that pricing decisions are made dynamically
at multiple order arrival times. Hence, the scheduling
decision must be made taking into account the con-
straint regarding orders arrival times.

The mathematical model (P0) is formulated as in-
dicated through equations (1) to (15):

Minimize ∑
t∈T

∑
i∈P

( ∑
j∈Di

wiT t
i j −∑

l∈Li

qil fi(qil)× xt
il)

(1)
Subject to:

∑
l∈Li

xt
il = 1,∀t ∈ T, i ∈ P (2)

∑
j∈Di

zt
i j = ∑

l∈Li

fi(qil)× xt
il ,∀i ∈ P, t ∈ T (3)

∑
l∈Li

fi(qil)× xt
il− j ≥ Dmax× (zt

i j−1),∀i ∈ P,

j ∈ Di, t ∈ T (4)

∑
k∈M

Ak
i jt = zt

i j,∀i ∈ P, j ∈ Di, t ∈ T (5)

∑
u∈P

∑
v∈Du

∑
t ′∈T

yk
i jtuvt ′ ≤ Ak

i jt ,∀i ∈ P, j ∈ Di,

t ∈ T ,k ∈M (6)

∑
i∈P

∑
j∈Di

∑
t∈T

yk
i jtuvt ′ ≤ Ak

uvt ′ ,∀u ∈ P,v ∈ Du,

t ′ ∈ T ,k ∈M (7)

∑
i∈P

∑
u∈P

∑
j∈Di

∑
v∈Du

∑
t ′∈T

∑
t∈T

yk
i jtuvt ′ = ∑

u∈P
∑

v∈Du

∑
t ′∈T

Ak
uvt ′ −1,

∀k ∈M
(8)

Ct ′
uv ≥Ct

i j + ptu−N× (3− yk
i jtuvt ′ −Ak

i jt −Ak
uvt ′),

∀i,u ∈ P,v ∈ Du, j ∈ Di, t ∈ T, t ′ ∈ T,k ∈M
(9)

Ct
i j ≥ t+ pti−N×(1−zt

i j),∀i∈ P, j ∈Di, t ∈ T (10)

T t
i j ≥Ct

i j−dt
i ,∀i ∈ P, j ∈ Di, t ∈ T (11)

T t
i j ≥ 0,∀i ∈ P, j ∈ Di, t ∈ T (12)

Ct
i j ≤ N× zt

i j,∀i ∈ P, j ∈ Di, t ∈ T (13)

Ct
i j ≥ 0,∀i ∈ P, j ∈ Di, t ∈ T (14)

xt
il ,z

t
i j,A

k
i jt ,y

k
i jtuvt ′ ∈ {0,1},∀i,u ∈ P, j ∈ Di,

v ∈ Du, l ∈ Li, t, t ′ ∈ T,k ∈M (15)

The objective function (1) minimizes the total tar-
diness penalty of orders while maximizing the total
revenue.
Constraint (2) verifies that a single price is chosen for
each product ordered at a time t ∈ T .
Constraint (3) fixes the total number of orders to be
scheduled for each product at each arrival time t ∈ T
to be equal to the total demand made.
Constraint (4) sets zt

i j = 0 in case ∑l∈Li fi(qil)× xt
il −

j ≥ 0, i.e. the actual demand is less than the maxi-
mum demand. On the other hand, in case zt

i j = 1 the
inequality remains valid.
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Constraint (5) states that each order of a product made
at an arrival time t ∈ T is assigned to a single machine.
Constraints (6) and (7) verify that if an order is as-
signed to a machine, then it is succeeded and preceded
by at most one order.
Constraint (8) fixes the number of precedence rela-
tionships on each machine.
Constraints (9) and (10) set the completion time of
each order.
Constraints (11) and (12) set the tardiness of each
product.
Constraint (13) sets the completion times of unre-
quested orders to zero. Constraints (14) and (15) de-
fine the domains of the decision variables.

4 ILLUSTRATIVE EXAMPLE

In order to illustrate the solution structure, we con-
sider the following instance: A manufacturer has
two types of products and two parallel machines.
Orders are received at three different arrival times,
T = {2,5,17}, and a deadline is associated with each
product’s order associated with an arrival time. In-
spired by Yalaoui (2012), the deadlines are generated
following the uniform distribution U[t + pti, t + pti +
((∑i pti)/2)] with i ∈ P and t ∈ T. Table 1 presents
processing times, tardiness penalties, deadlines, and
the set of prices and demands for each product.

Table 1: Parameters of the illustrative example.

Product pti wi dt
i /Time Price/Demand

1 4 2

6 / 2 8 / 1
10 / 5 7 / 2
27 /17 6 / 3

5 / 4

2 8 1

14 / 2 5 / 1
18 / 5 4 / 2

30 / 17 3 / 3
2 / 4

The mathematical model was implemented in
IBM CPLEX solver version 22.1.1.0, on a Intel(R)
Core(TM) i5-8350U CPU @ 1.70 GHz of 8 GB RAM
machine.

An optimal solution for the input described in Ta-
ble 1 was found in 648 seconds. The optimal objec-
tive value obtained is −57. Moreover, the selected
price for the first product at times 2 and 5 is 7 with
two orders each, while at t = 17 the selected price of
this product is 6 with three orders. Moreover, for the
second product, the selected price is 5 for each of the
arrival times, resulting in a total of three orders.

As presented in Table 2, the selected price for the

Table 2: The selected price and demand for each product
and arrival time.

Product Time Price/Demand

1
2 7 / 2
5 7 / 2

17 6 / 3

2
2 5 / 1
5 5 / 1

17 5 / 1

Figure 1: Scheduling Process for Orders in Two Parallel
Machines.

first product at times 2 and 5 is 7 with two orders each,
and at t = 17 the price of this product is 6 with three
orders. But for the second product, the selected price
is 5 with the associated demand at all the arrival times.

Figure 1 displays the solution scheduling struc-
ture. The order colored in grey is considered late as
its completion time exceeds the due date. In this case,
the total tardiness penalty is equal to 4 and the actual
benefit is 61.

5 EXPERIMENTAL STUDY

The proposed model aims at minimizing the tardiness
penalty of the orders to improve service quality and
maximizing the total benefit of the company at the
same time. In order to find the best compromise be-
tween these two objectives, the ε-constraint method
Chankong and Haimes (2008) is considered. It con-
sists in optimizing one of the objective functions by
considering the other objective as an additional con-
straint. For the studied problem, we consider the min-
imization of the tardiness penalty, while considering
the following additional constraint on account of ben-
efit maximization:

∑
i∈P

∑
t∈T

∑
l∈Li

qil fi(qil)× xt
il ≥ α×MaxBene f it (16)

Such as, α ∈ [0,1] represents a coefficient fixed by
the decision-maker indicating the minimum amount
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of benefit they are expecting to receive, while
MaxBene f it denotes the maximum benefit that can be
obtained using the following equation:

MaxBene f it = t×∑
i∈P

max
l∈Li

(qil× fi(qil)) (17)

Figure 2: Resolution algorithm.

The ε-constraint based algorithm is depicted in
Figure 2. The algorithm starts by calculating the max-
imum benefit following Equation (17). The α coeffi-
cient is then fixed by the decision-maker. Next, the
model for the total tardiness penalty (TTP) is solved,
subject to the same constraints of problem (P0), in ad-
dition to Inequality (16). Finally, the optimal solution
associated with the chosen value of α is obtained and
the decision-maker decides whether to accept the so-
lution or choose another value for α.

By applying this algorithm to the illustrative ex-
ample presented in the previous section, the maxi-
mum benefit obtained following Equation (17) is 87.
Table 3 presents the results for different values of α

and a limited execution time.
It must be noted that α = O.7 refers to the optimal

solution obtained by implementing the initial model
(P0) where the objective functions are expressed as a

Table 3: Implementation results of the algorithm on the il-
lustrative example.

α Orders Delayed
orders TTP GAP(%) Time(s)

0.1 6 0 0 0 0.7
0.2 6 0 0 0 0.8
0.3 6 0 0 0 0.8
0.4 6 0 0 0 0.8
0.5 8 0 0 0 1.3
0.6 9 0 0 0 3.6
0.7 10 1 4 0 15
0.8 13 5 34 70.16 > 1800
0.9 16 7 128 100 > 1800
1 21 14 312 98 > 1800
0.7 10 1 4 0 15

single objective function, this result was obtained in
648 seconds, as stated earlier. However, using the ε-
constraint algorithm, for α= 0.7 the result is obtained
within 15 seconds. Furthermore, Figure 3 displays the
Pareto front of non-dominated solutions for α rang-
ing from 0.1 to 0.7, with solutions for α = 0.8 to 1.0
representing the best outcomes obtained after an ex-
tended execution time of 1800 seconds. As depicted
in the figure, the two objectives, namely minimizing
TTP and maximizing benefit, exhibit a conflict, signi-
fying that optimizing one objective comes at the ex-
pense of the other.

Figure 4 presents the mean computational time of
the algorithm for each alpha value over 10 arbitrary
generated instances, taking into account two products,
with four possible prices and demands each. The pro-
cessing times and the tardiness penalties for these in-
stances are generated following a uniform distribution
U[1,8]. Moreover, three arrival times for the incom-
ing orders are considered, and the deadlines are gen-
erated following the same uniform distribution as pre-
viously used in the illustrative example.

The results show that the algorithm quickly pro-
vides an optimal solution for the associated coeffi-
cient α between 0.1 and 0.7. However, for α greater
than 0.7, no optimal solution is obtained even after
half an hour of execution. In fact, for higher values of
α, the algorithm prioritizes fulfilling orders to achieve
minimal benefit, which in turn prolongs the schedul-
ing process on the parallel machines.

6 CONCLUSION

This research contributes to the field by providing a
comprehensive framework for integrating production
scheduling and pricing decisions in a make-to-order
manufacturing environment. By considering the inter-
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Figure 3: Pareto front of non-dominated solutions for α val-
ues (0.1 to 0.7) and best solutions (0.8 to 1.0) after a fixed
execution time.

Figure 4: Mean Computational time of 10 arbitrary in-
stances with respect to different values of the coefficient α.

dependencies between these decisions, manufactur-
ers can achieve better coordination, improve customer
satisfaction, and enhance their overall competitive-
ness in a dynamic market environment. In this pa-
per, a new mathematical model is proposed for pric-
ing and scheduling coordination on a parallel ma-
chine environment where arrival times are associated
with customers orders. A computational study is pre-
sented to confirm the effectiveness of the proposed
mixed integer linear programming model. Using
the ε-constraint principle to conduct the experimen-
tal analysis, we provide insight for decision-makers
to find the best compromise between revenue maxi-
mization and improving customer service. In future

work, it is important to focus on developing efficient
algorithms that can effectively address large-scale in-
dustrial instances. In this regard, a promising resolu-
tion method lies in the application of Benders decom-
position, specifically tailored for tackling the multi-
objective nature of the integrated problem. Addition-
ally, drawing inspiration from the well-established lit-
erature on the mono-objective scheduling problem, a
method based on Tabu Search shows promise. As evi-
denced by Lara et al. (2016), Tabu Search has demon-
strated effectiveness in addressing the basic schedul-
ing problem. Extending its application to the in-
tegrated pricing and scheduling context could yield
valuable insights and solutions. Finally, more com-
plex machine environments can be studied in the fu-
ture.
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