Concept of Automated Testing of Interactions with a Domain-Specific
Modeling Framework with a Combination of Class and Syntax Diagrams

Keywords:

Abstract:

Vanessa Tietz®? and Bjoern Annighoefer®®

Institute of Aircraft Systems, University of Stuttgart, Pfaffenwaldring 27, Stuttgart, Germany

Domain-Specific Modeling, Safety-Critical, Avionics, Certifiability, Testability.

Domain-specific modeling (DSM) is a powerful approach for efficient system and software development.
However, its use in safety-critical avionics is still limited due to the rigorous software and system safety re-
quirements. Regardless of whether DSM is used as a development tool or directly in flight software, the
software developer must ensure that no unexpected misbehavior occurs. This has to be proven by defined
certification processes. For this reason, DOMAINES, a DSM framework specifically adapted to the needs
of safety-critical (avionics) systems, is currently being developed. While it is possible to create and process
domain-specific languages and models, the challenge lies in ensuring that the framework consistently performs
as intended, providing the foundation for certification. For this purpose, a novel approach is employed: the
introduction of a meta-meta-modeling language that combines syntax diagrams with a class diagram. This
language serves as a comprehensive reference for the generation of test cases and the formal linking of gram-
mar, meta-modeling language and implementation. This allows the implementation to be tested with every
conceivable command. In addition, mechanisms ensure that this set of commands to be tested is a closed set.

1 INTRODUCTION

Domain-specific modeling (DSM) enables the effi-
cient development and design of systems as well as
software and is to be considered as state-of-the-art in
many engineering domaines. Avionics is a domain
that has only relied on DSM methods to a small ex-
tent. Here, DSM is mainly used to assist development
processes. The complete development of avionics
systems often fails because DSM tools either have to
be qualified or the output generated from these tools
has to be verified and validated in an time-consuming
way. In our previous study (Tietz et al., a), the reasons
for this are analyzed and suggestions are made as to
what a DSM tool would have to look like. Within
our own DSM tool DOMAINES (presented in (Tietz
et al., b)), it is possible to create and edit domain-
specific languages and domain-specific models with
simple command line inputs. The proof that this im-
plementation can be used in the safety-critical avion-
ics domain has not yet been provided and is the sub-
ject of this paper. To be allowed to use a tool in a
safety-critical environment such as avionics, it must

https://orcid.org/0000-0002-5942-5893
5@ nttps://orcid.org/0000-0002-1268-0862

108

Tietz, V. and Annighoefer, B.

be proven that this tool behaves correctly and that
its output cannot lead to unexpected misbehavior in
flight operations. For this purpose, evidence must be
provided as defined in standards and norms. The ex-
act manner in which this evidence is provided is left
to the discretion of the developer. One conceivable
way to provide this evidence is to confront the frame-
work with every conceivable input and verify that it
behaves as intended. At first glance, the set of all
conceivable commands seems infinite. However, by
selecting suitable algorithms, a filtering effect can be
achieved that reduces the number of commands to be
considered and thus enables this approach. The most
effective way is to implement a parser that can deter-
mine, whether a command can proceed or not. This
requires a suitable grammar that contains information
about the implemented meta-modeling language. To
achieve this, a meta-meta modeling language is pro-
posed which combines syntax diagrams with a class
diagram. This new language can serve as a single-
source-of-truth for deriving test cases, and to establish
aformal connection between grammar, model and im-
plementation. One advantage of this approach is that
the grammar and the test cases can be automatically
adapted if the modeling language is changed.

Concept of Automated Testing of Interactions with a Domain-Specific Modeling Framework with a Combination of Class and Syntax Diagrams.

DOI: 10.5220/0012307400003645
Paper published under CC license (CC BY-NC-ND 4.0)

In Proceedings of the 12th International Conference on Model-Based Software and Systems Engineering (MODELSWARD 2024), pages 108-116

ISBN: 978-989-758-682-8; ISSN: 2184-4348

Proceedings Copyright © 2024 by SCITEPRESS — Science and Technology Publications, Lda.

Concept of Automated Testing of Interactions with a Domain-Specific Modeling Framework with a Combination of Class and Syntax

2 FUNDAMENTALS

2.1 Avionics Software Development

Avionics software always operates within a larger sys-
tem. Aviation standard ARP 4754A (SAE, 2010) out-
lines suitable methods for demonstrating compliance
with airworthiness regulations during aircraft system
development. The process model in ARP 4754A is a
V-model. The software life cycle is divided into a de-
velopment process and a verification process, which
are represented by the left and right branches of the
V-model, respectively. In the verification process, it
must be tested that the implementation meets defined
requirements. The software’s influence on aircraft
safety and criticality determines its assigned soft-
ware development assurance level (DAL). The soft-
ware level outlines the objectives and activities of
the software life cycle. At the foundational level of
the avionics software development process resides the
source code. As per DO-178C (referenced by the
ARP 4754A), the source code for DAL C software
must possess the traits of being traceable, verifiable,
consistent, and correctly implementing low-level re-
quirements (RTCA, 2011).

2.2 Domain-Specific Modeling Wording

Due to differing interpretations of terms and levels
within the DSM field, a brief explanation of the ter-
minology used will be provided here:

* MO: A real world application.

* M1 - User model: Digital representation of a real
world application.

* M2: Domain-specific language: Blueprint of a
specific application enabling the modeling of a
domain-specific model.

* M3: Meta-modeling language: Language en-
abling the modeling of a domain-specific lan-
guage. Typically part of a software framework.

* M4: Meta-meta-language: Language of the
meta-language.

3 DOMAINES

With DOMAINES (Domain-Specific Modeling for
Aircraft and other Environments), we are developing
a domain-specific modeling framework that is specif-
ically designed for the use in the avionics domain. It
is intended to be used in the systems development, as
well as in flying software. For the purposes of this pa-
per, only the core of DOMAINES remains of interest.

Diagrams

3.1 The DOMAINES Core

The basis of the DOMAINES Core is the simpli-
fied meta MODeling Language (MOD) operating on
M3 level, which is implemented with the program-
ming language Ada in the RUNtime ModelDataBase
(RUNMDB), as depicted in Figure 1. The model in-
teraction, i.e., the creation as well as the editing of
domain-specific languages and user models is con-
ducted through the interface with the Basic Model
Interaction (BMI) interface. The BMI is part of
a generic interface following the Essential Object
Query (EOQ) formalism (Annighoefer et al., 2021)
which is a model query language. The purpose of
this interface is to translate complex model requests
and model operations (queries) received from other
peripheral technology into BMI suitable commands.
Peripheral technology could be for example a model
transformation engine or a graphical editor.

Q Interface
l:l Component

,,,,,,,,,,,,,,,,,,,,
MODeling Language
(MOD)

| ‘\ Language

ModelDataBase
(RUNMDB)

|

|
|

|
|

|
]]
i RUNtime }
I

|
|

|
|

|
|

|

Basic Model
Interaction
(BMI)

EOQ3

} Formalism

I

I
L

Peripheral Technology

Figure 1: DOMAINES Core.

Our initial step is to ensure that RUNMDB is certi-
fiable. For this, the interface between BMI and RUN-
MDB is crucial. Everything that happens from this
interface onwards must be free of unexpected misbe-
havior. This proof must be provided to authorities.
This also means that the interface as well as the RUN-
MDB itself must be designed in such a way that the
required evidence can be provided as easily as possi-
ble.

3.2 Runtime Model Database
(RUNMDB)

The RUNMDB is basically the implementation of
MOD and thus allows to create, edit, read, and delete
elements of models on M2 and M1 level. The struc-
ture of the RUNMDB is depicted in Figure 2.

The elements shown in green are external data
needed for command processing. A command sent
from BMI to RUNMDB is first processed by a Parser,
which decides whether a command is valid or not ac-

109

MODELSWARD 2024 - 12th International Conference on Model-Based Software and Systems Engineering

SpuBWIWO)

Commands,

LL(1) Grammar %—‘—» LL(1) Parser
Modeling
’ Banglage «‘7—‘» Lookup Table

CRUD Model Processor

RUNMDB

Figure 2: Overview RUNMDB.

cording to a given Grammar. The syntactically cor-
rect commands are then decomposed and processed
into command objects in the Lexer. Afterwards,
these commands are checked for semantic correct-
ness using Meta-Modeling Language information in
the Semantic Checker. Subsequently, the expected
set of commands processed in the ModelProcessor
will only comprise semantically and syntactically cor-
rect commands assuming that the Parser and Seman-
tic Checker behave correctly. The ModelProcessor
is solely responsible for processing the commands.
This is the usual functionality that is also covered by
other modeling frameworks such as EMF, GME, or
the Mathworks System Composer. The unique sell-
ing point of our approach is the certifiability and thus
the unconditional applicability in the area of safety-
critical (avionics) systems.

4 ON REACHING
CERTIFIABILITY OF RUNMDB

Software certification requires demonstration of its
intended functionality and absence of unexpected er-
rors during flight. Since the primary goal is to know
and correctly catch any possible misbehavior, the idea
is to test the behavior of every conceivable command
within the different parts of the RUNMDB. At first
glance, this seems an infinite number of commands,
and therefore, impossible. However, by choosing ap-
propriate mechanisms and definitions, a filtering ef-
fect can be achieved, which can reduce the number of
commands to be considered. This turns an infinite set
of commands to be considered into a significantly re-
duced manageable set. In the following, requirements
are formulated for the components in terms of their
testability.

4.1 BMI-RUNMDB Interface

The BMI-RUNMDB interface is responsible for
transmitting commands from the peripherals. Fur-

110

thermore, the interface defines the pattern of the com-
mands to be expected. It must be designed in such a
way that the commands

* can be formally defined in order to ease testability.
* have a clear and decomposeable structure.

* can be represented using a closed set.
4.1.1 CRUD Commands

Based on the requirements, the decision was made
to utilize text-based CRUD (Create, Read, Update,
and Delete) commands. They can be formalized
through the use of an (Extended) Backus-Naur Form
((E)BNF). Every CRUD command always has a Tar-
get as first element. The Target indicates which el-
ement within a model the command refers to. The
Read and Update commands additionally have a Fea-
ture, specifying the property of an element. To be
able to set values with an Update command a Value
and its Position within a possible list is needed (by
default 1). Since the Features are defined within
the Meta-Modeling Language, this is a closed set of
possibilities. For Target and Position, the closed set
is achieved by the implementation property of static
lists. Only in the case of Value can a closed set not
be assumed across the board. For this, suitable argu-
ments must be found in order to be able to justify that
every conceivable command can be tested.

4.2 Parser

The Parser’s objective is to determine the validity of
an input command. The parser must be designed in
such a way that

* every legal command can be tested.
* every incomplete command can be tested.
* every illegal command can be tested.
When testing it has to be ensured that
* alegal command, is recognized as valid.
* an incomplete command, is recognized as invalid.
* aillegal command, is recognized as invalid.

To meet the requirements, an LL(1) parser was cho-
sen. This is a top-down parser with a look-ahead of
a single-character. Meaning that the decision whether
a command is valid or not depends only on the next
character.

4.3 Lexer

The Lexer decomposes a syntactically correct com-
mand into objects suitable for further processing. For

Concept of Automated Testing of Interactions with a Domain-Specific Modeling Framework with a Combination of Class and Syntax

the decomposition of the commands it is important
that this proceeds deterministically in order to be able
to generate the original commands from decomposed
objects when testing the behavior.

4.4 Semantic Checker

While the Parser is responsible for checking the syn-
tax of a command, the Semantic Checker is responsi-
ble for checking the correct semantics. The semantic
checks include but are not limit to the checking so that

1. every element addressed is available

addressed features are available

only editable features can be updated
every part operates on the same level
feature and value match

target and features match

A o

that limitations within the implementation are cor-
rectly taken into account

For testing the correct behavior of every semantic
check it has to be ensured that

* the test cases are automatically derivable

 a correlation between the Grammar and the Meta-
Modeling Language exists to enable the possibil-
ity to either have a more complex grammar and
less semantic checks or vice versa.

The goal is to eliminate invalid commands as much as
possible so that as little effort as possible is required
in the ModelProcessor to catch invalid behavior.

4.5 ModelProcessor

The ModelProcessor processes syntactically and se-
mantically correct commands. It performs four differ-
ent model operations, based on the CRUD command
structure: creating elements, updating and reading
model information, and deleting elements. The opera-
tions within the ModelProcessor are time-dependent.
As a result, an infinite number of states must be
checked. Thus, the ModelProcessor must be designed
so that

* the complete behavior can be tested.

* fixed sized lists should be used.

4.6 Problem Statement

As seen in Figure 2, the Grammar and the Meta-
Modeling Language have no origin or relationship to

Diagrams

each other. Since the requirements for testing de-
scribed heavily rely on the Grammar and the Meta-
Modeling Language, a claim about the correct behav-
ior of the RUNMDB can only be formulated once a
formal correlation between the (implemented) Meta-
Modeling Language and the Grammar has been es-
tablished.

The Meta-Modeling Language can be considered
as a requirements document for the implementation
of RUNMDB. The Grammar serves as input to the
parser and thus forms the basis for deciding whether a
command may be processed further or not. The more
restrictive the grammar, the fewer semantic checks
are necessary, resulting in less need for testing pro-
cedures. More restrictiveness within the grammar can
be achieved by including information from the Meta-
Modeling Language. Furthermore, in the area of test-
ing, it is useful to have a single source of truth from
which tests can be automatically derived. A com-
bination of Grammar and Meta-Modeling Language
could represent such a single source of truth. At least
for testing the LL(1) Parser, the Lexer and the Seman-
tic Checker, the test cases can be derived from the
single source of truth, since there are no temporal de-
pendencies between the commands. This allows us to
formulate the following research question:

Is there a way to combine a grammar with a
modeling language to enable ...

» the creation of a strongly restrictive LL(1)
Grammar?

* the introduction of a single source of truth?

¢ a formal correlation between LL(1) Grammar
and Meta Modeling Language?

5 ESTABLISHING A
RELATIONSHIP BETWEEN
GRAMMAR AND MODEL

Section 4.6 identified the necessity for a formal cor-
relation of LL(1) grammar and meta-modeling lan-
guage to assist the certification process. Since a
context-free grammar can also be represented graph-
ically with syntax diagrams, and modeling languages
are inherently graphical, the idea of combining the
graphical notation of a grammar with a typical class
diagram is a natural idea.

5.1 Syntax Diagrams

A context-free grammar can be represented by several
syntax diagrams (Braz, 1990). A syntax diagram rep-

111

MODELSWARD 2024 - 12th International Conference on Model-Based Software and Systems Engineering

resents a single production rule of a grammar. An en-
try point can be connected via various paths with ter-
minal and non-terminal symbols to an end point. Ter-
minal symbols are represented by circular boxes and
non-terminal symbols by rectangular boxes. Repeti-
tions of non-terminal symbols are denoted by curved
lines. An example of the representation of a context-
free grammar for the definition of the Create com-
mand with syntax diagrams is depicted in Figure 3.

‘ <CRUD> <Create>
@)oo ()] <MT

T
LDOOO
Nurmr 1

\ Y P W oo 1]
[Famm OO0 OOOOO ()

[<FollowNum> W

Figure 3: Example of syntax diagrams.

The non-terminal <CRUD> can be created
through the non-terminal <Create> , or other non-
terminals. The the non-terminal <Create> can con-
sist of the terminals "CRT”, and ”O” and the non-
terminal <Number> followed by the terminal ”.”
and the non-terminal <M3Identifier> . All other syn-
tax diagrams follow the same structure and meaning.

5.2 On Combining Class and Syntax
Diagrams

Within the DOMAINES framework the implemented
meta-modeling language operates on M3 level to en-
able the interaction with models on M2 and M1 level.
The concept of combining a grammar and a meta-
modeling language is essentially to create a common
template for the grammar and the meta-modeling lan-
guage. In the modeling environment, this is usually
achieved by going one meta-level deeper.

To integrate syntax diagrams with a class diagram,
non-terminals are substituted with class elements, vir-
tually as a placeholder for information that is filled by
the design of the overlying M3 language. To main-
tain their recognizability as placeholders within the
text-based grammar, these classes are denoted by a +
preceding their name. In Figure 4 the combination of
a syntax diagram with a class diagram is depicted for
the Create command.

This syntax diagram describes the notation needed
to create a model (M) (either on M2 or M1 level), an
element at M2 level (O) or an element at M1 level
(D). The class diagram describes the structure of the
M3 language. A class on M3 level is always of type

112

StructureElement and contains a <+M3ldentifier>,
which is needed to create respective elements on M2
level. The <+M3ldentifier> is present in both the
syntax diagram and the class diagram and serves as a
placeholder for the textual representation. It is filled
as soon as an M3 language is instantiated from this
M4 language. Each StructureElement has features
(attributes) whose structure can also be seen in the
class diagram.

5.3 Processing

The entire process from an M4 Language to the fi-
nal LL(1) Grammar is depicted in Figure 5. The
green boxes represent textual documents, while the
gray ones depict graphical representations.

Having developed the M4 Language it is possible
to manually draw an Initial Grammar based on the
syntax diagrams. Within that Initial Grammar, there
are still non-terminals that serve as placeholders and
are marked with a + at the beginning. The grammar
is created by following the path from the first non-
terminal to the end symbol of the syntax diagram.
When branches are reached, additional non-terminals
are created in the grammar, named < Branch > and
supplemented with an incremented number. An ex-
ample of an Initial Grammar based on the M4 Lan-
guage in Figure 4, with the placeholders in red, is
listed below:

<CMDCreate> ::= "CRT" <Branchl>

<Branchl> ::= "M" <Branch2> | "O" <Number> "-"
<+M3Identifier> | "I" <Number> "." <Number>
"-" <tM3Identifier> "." <Number>

<Branch2> ::= <Number> <Branch3> | "x"
<Branch3> ::= "-x"

<Number> ::= <FirstNum> <FollowNum>* | "0"
<FirstNum> ::= "1" | ... | "9"

<FollowNum> ::= <FirstNum> | "0"

With the class diagram as part of the M4 Language
it is possible to draw the implemented M3 Language.
The graphical representation of the meta-modeling
language is only used for the descriptive demonstra-
tion of the functionality. To combine language with
grammar, a text-based representation is needed. As
text format for the modeling language the json file for-
mat was selected, because this format is easily read-
able by human and is efficiently processed by com-
puters. The text-based M3 Language includes coun-
terparts of the placeholders in the Initial Grammar. A
snippet of the text-based modeling language is listed
below.

"Class" : {
"<+M3Identifier>" : {
llname n : lllll’
"id" .1

Concept of Automated Testing of Interactions with a Domain-Specific Modeling Framework with a Combination of Class and Syntax

Diagrams

[inheritance” | parent = |

I 1 child

Specialiation | name string
et Association'

Target
m3_id

Feature

<CMDCreate>

<Number> }—»O—-{ <Number>

<+M3|dentifier>*

name : String
id: Integer

<Number>

Figure 4: Example of a combination of syntax diagrams with a class diagram for the create command.

—»

puew

o Yee— 1402 Grammr]

LL(1) Parser

’ Initial-Grammar

M4 Language (Syntax.

/ Python Script

Diagram + Class

Semantic Checker

Lookup Table

Diagram

Single Source of
Truth

M3-Language

Syntax & Semantic Correct

‘ CRUD Model Processor ‘

DOMAINES RUNMDB

Figure 5: From M4 Language to a Parsable LL(1) Grammar.

b

"<+M2MlFeature>" : {

"name" : "clabjectid",
"potency" : 2,
"field" : "Dual",
"datatype" "Integer",
"editable" "False",
"m3_id" : 1,
"target" : 1
brood

This is where the placeholder <

+M3ldentifier > is located again, the informa-
tion contained there can be taken over thereby into
the Initial Grammar. The information inside the
placeholder is always stored in the name. Ac-
cordingly, the “name” is searched for within the
feature and this information is stored in the grammar.
After having transferred the information about the
< +M3ldentifier > to the Initial Grammar an Ex-
tended Grammar as an intermediate step is available.
This extended grammar looks as follows:

<CMDCreate> ::= "CRT" <Branchl>

<Branchl> ::= "M" <Branch2> | "O" <Number> "-"
<+M3Identifier> | "I" <Number> "." <Number>
"-" <4M3Identifier> "." <Number>

<Branch2> ::= <Number> <Branch3> | "x"
<Branch3> ::= "-x"

<+M3Identifier> ::= "1"

<Number> ::= <FirstNum> <FollowNum>* | "Q"
<FirstNum> ::= "1" | ... | "9"

<FollowNum> ::= <FirstNum> | "O"

It can be seen that another line has been added
with the information from the M3 Language. How-
ever, parsability with an LL(1) parser is not yet guar-
anteed.

5.4 Effects on Certifiability

Demonstrating that the intended functionality of the
framework has been implemented is a requirement of
certification authorities. The intended functionality is
described by the M3 Language. Via the relationship
between the LL(I1) Grammar and the M3 Language,
the complete intended functionality of the implemen-
tation can be systematically tested.

e LL(1) Parser:

— Valid commands: The first step is to gener-
ate a syntax tree based on the LL(1) Grammar,
which can be used to navigate through a gram-
mar and therefore to generate all valid com-
mands. The fact that this is a closed set has
already been shown in 4.2, only for the Value of
a command an explanation is still missing. We
refer to the property of the LL(1) parser, where
only the next character is considered and based
on that it is decided if the command is valid or
not. Thus the length and the permutation possi-
bilities available with it are irrelevant, since the
parser behaves identically and thus only each
possible character within a value must be tested
once. This is based on the assumption that a
closed set of characters is used to describe a
value.

— Incomplete commands: For this purpose, all
valid commands are used and broken down into
individual characters.

— Invalid commands: For this, the property of
the LL(1) parser with the look-ahead of a sin-
gle character is utilized. No matter which posi-
tion within the grammar is currently being con-

113

MODELSWARD 2024 - 12th International Conference on Model-Based Software and Systems Engineering

114

sidered, it is possible to find all possible fol-
lowing characters. From the complementary set
it is possible to generate every non-valid com-
mand. Having a look at the LL(1) Grammar
from 5.3, the first line indicates that the first
possible character is a ”C”, all other characters
are invalid. Hence, commands with all invalid
characters have to be recognized as invalid. In
the next step starting with the valid character
”C”. Based on that the next valid characters
("R”) are determined. Every other character is
invalid and is appended to the ”C” and send to
the LL(1) Parser. For example, this causes the
commands "CA”, ”Ca”, "CB”, ”Cb”, ... to be
invalid.

With that the other components of RUNMDB
need only be tested with an immensely smaller
set of commands. The M3 Language information
contained in the LL(1) Grammar eliminates the
need for some semantic checks. For instance, the
first four semantic checks from Section 4.4 are al-
ready caught in the grammar since, e.g. only ex-
isting < +M3ldentifier > can be created or all
possible features are already stored in the LL(1)
Grammar. By increasing the complexity of the
grammar, more semantic properties can be intro-
duced, but this leads to the fact that the checking
of a command for validity takes longer and thus
a trade-off between the runtime and the less re-
quired semantic checks must be made.

Lexer: Only all syntactically correct commands
must be considered. The command objects cre-
ated in the lexer are put together into strings and
checked whether these strings correspond to the
original command.

Semantic Checker: For the remaining semantic
checks, test cases need to be generated. These
can be mostly automatically derived from the M3
Language and information about list sizes from
the implementation and follows white box test-
ing approaches (IEEE, 2021). For example the
eighth semantic check in Section 4.4 examines if
the program operates correctly when list sizes are
exceeded. This may occur if the selected Posi-
tion is outside the defined list size. Therefore, all
possible update commands are generated from the
grammar and the Position parameter is varied be-
yond the list limits. Having a Position which is out
of bounds, an error message has to be generated.

All further test cases for the semantic checks are
generated in a similar way. The test cases collec-
tively result in a manageable closed set of com-
mands. By basing test cases on a closed set of

valid commands or the meta-modeling language,
the testing of semantic checks can be fully traced
back to a finite set of test cases.

CRUD ModelProcessor: The ModelProcessor

operations are time-dependent on each other, re-

sulting in an infinite number of states to be
checked. The implementation is based on the

CRUDs, so there is a separate operation for

Create, Read, Update, and Delete. Within each

CRUD, the set to be tested can be reduced to the

following scenarios. It is notable that these sce-

narios rely on static lists in their implementation
and the first-in, first-out (fifo) principle.

— Create: Elements are created and stored in
static lists depending on their type and remain
on their position until they are deleted.

1. Create an element at the end of a list

2. Create an element between existing elements

3. Try to create an element at the end of a full list

— Read: The values can be either in fixed sized

lists or in single entries. Read

information from an empty model
updated information from single values
updated information from list values
information from full lists

— Update: If values are stored in lists, the posi-
tion can also be specified.

R s

1. Update every feature with a value

2. Update with a value at every possible position
3. Try to add values to fill lists

4. Change references

— Delete: All values of the deleted object are re-
set to their default values. Delete elements

1. where no information was updated
2. with updated values and full value lists
3. with updated references

Any behavior, at any time, can be traced back to
one of these scenarios. This procedure enables the
limitless set of combinations to be narrowed down
to a finite set of scenarios that can be tested. These
explanations have shown that it is feasible to test
the implementation for any possible command by
utilizing a combination of a Meta-modeling lan-
guage and a LL(1) Grammar, in order to avoid
any unexpected behavior. This provides an impor-
tant foundation for a potential certification pro-
cess for RUNMDB. At present, at least the tests
for the LL(1) Parser, the Lexer, and the Semantic
Checker can be generated automatically from the
single source of truth available through the com-
bination of LL(1) Grammar and Meta-modeling

Concept of Automated Testing of Interactions with a Domain-Specific Modeling Framework with a Combination of Class and Syntax

language. For the ModelProcessor, there is cur-
rently no automated solution for generating test
scenarios and their evaluation.

6 RELATED WORK

With our approach we strive for a certifiable frame-
work for DSM in order to fully exploit the advantages
of DSM in the safety-critical (avionics) environment.
We are not the first to do so. For example, Mat-
lab Simulink claims to have a Tool Qualification Kit
for the DO-178C standard. In the field of certifiable
code generators are additional approaches such as the
most prominent example SCADE (Dormoy, 2008).
Another one is the Gene-Auto code-generator (Toom
et al., 2008) or TargetLink from dSpace (dSpace,).
Each approach mentioned implies that certification
or qualification is attainable. However, the process
of achieving this remains undisclosed. There is no
method published against which we may compare our
approach.

The idea of how we want to achieve certifiability
is not entirely new. The basis is testing the imple-
mentation through some kind of grammar-based test-
ing which is subject to research in (Sirer and Bershad,
), (Sharma,). This involves deriving test cases from
a formally defined grammar to systematically test a
system or software with its input. One common is-
sue with that approach is the possibility of generating
an infinite number of test cases which is addressed
in (Hoffman et al., 2011). An infinite number of
test cases can result in test coverage reaching its lim-
its, this is addressed in (Godefroid et al., 2008) via
fuzzing. Our approach solves the problem of infinite
test cases by combining our meta-meta-modeling lan-
guage with the grammar on the one hand, and using
an LL(1) parser that can guarantee a closed set of test
cases on the other hand.

Beside that, we are unaware of any other corre-
lated research.

7 CONCLUSION AND OUTLOOK

In this paper, we presented a new M4 meta-meta
modeling language, which is required in our highly
safety-critical avionics domain to be able to prove that
the implementation of the meta-modeling language
can be certified. This is based on the fact that ev-
ery conceivable command in the implementation can
be tested to show that no unwanted misbehavior oc-
curs. In order to make this possible at all, a for-
mal definition of commands within a grammar and

Diagrams

a corresponding parser are used. A statement about
the functionality of the implementation is only pos-
sible, if a formal correlation between grammar and
implemented meta-modeling language exists, which
is achieved by the proposed M4 meta-meta modeling
language. In addition, the M4 meta-meta modeling
language acts as a single source of truth. This ulti-
mately should make it suitable for the development of
safety-critical avionics as well as for use in airborne
software. For further work it is important to assess
whether the current test cases adequately test all state-
ments within the implementation. Ideally, statement
coverage should adhere to the common avionics stan-
dards outlined in DO-178C.

ACKNOWLEDGEMENTS

The German Federal Ministry for Economic Affairs
and Climate Action (BMWK) has funded this re-
search within the LUFO-VI program.

REFERENCES

Annighoefer, B., Brunner, M., Luettig, B., and Schoepf,
J. (2021). EOQ: An Open Source Interface for a
More DAMMMMN Domain-specific Model Utiliza-
tion. In ACM/IEEE International Conference on
Model Driven Engineering Languages and Systems.

Braz, L. M. (1990). Visual syntax diagrams for program-
ming language statements. ACM SIGDOC Asterisk
Journal of Computer Documentation, 14(4):23-27.

Dormoy, F.-X. (2008). SCADE 6 a model based solution
for safety critical software development. In Embedded
Real Time Software and Systems (ERTS2008).

dSpace. Targetlink. https://www.dspace.com/de/gmb/ho
me/products/sw/pcgs/targetlink.cfm#176_-25806.
Accessed: 2023-09-20.

Godefroid, P., Kiezun, A., and Levin, M. Y. (2008).
Grammar-based whitebox fuzzing. In Proceedings of
the 29th ACM SIGPLAN conference on programming
language design and implementation, pages 206-215.

Hoffman, D. M., Ly-Gagnon, D., Strooper, P., and Wang,
H.-Y. (2011). Grammar-based test generation with
YouGen. Software: Practice and Experience, 41(4).

IEEE (2021). ISO/IEC/IEEE International Standard - Soft-
ware and systems engineering - Software testing — Part
2: Test processes. Standard, IEEE.

RTCA (2011). DO-178C software considerations in air-
borne systems and equipment. Standard, RTCA.

SAE (2010). Guidelines for development of civil aircraft
and systems. Standard, SAE.

Sharma, A. How does grammar-based test case generation
work? https://www.veracode.com/blog/managing-a
ppsec/how-does-grammar-based-test-case-generatio
n-work. Accessed: 2023-10-04.

115

MODELSWARD 2024 - 12th International Conference on Model-Based Software and Systems Engineering

Sirer, E. G. and Bershad, B. N. Using production grammars
in software testing. ACM SIGPLAN Notices, 35(1).

Tietz, V., Frey, C., Schoepf, J., and Annighoefer, B. Why
the use of domain-specific modeling in airworthy soft-
ware requires new methods and how these might look
like? In Proceedings of the 25th International Con-
ference on Model Driven Engineering Languages and
Systems: Companion Proceedings, pages 627-632.

Tietz, V., Schoepf, J., Waldvogel, A., and Annighoefer, B.
A concept for a qualifiable (meta)-modeling frame-
work deployable in systems and tools of safety-critical
and cyber-physical environments. In 2021 ACM/IEEE
24th International Conference on Model Driven Engi-
neering Languages and Systems (MODELS).

Toom, A., Naks, T., Pantel, M., Gandriau, M., and Wati, 1.
(2008). Gene-auto: an automatic code generator for a
safe subset of simulink/stateflow and scicos. In Em-
bedded Real Time Software and Systems (ERTS2008).

116

