
UPSS: A Global, Least-Privileged Storage System with Stronger Security
and Better Performance

Arastoo Bozorgi a, Mahya Soleimani Jadidi and Jonathan Anderson b

Department of Electrical and Computer Engineering, Memorial University, St. John’s, NL, Canada

Keywords: Cryptographic Filesystem, Distributed Filesystem, Private Sharing, Redaction, Private Version Control.

Abstract: Strong confidentiality, integrity, user control, reliability and performance are critical requirements in privacy-
sensitive applications. Such applications would benefit from a data storage and sharing infrastructure that
provides these properties even in decentralized topologies with untrusted storage backends, but users today are
forced to choose between systemic security properties and system reliability or performance. As an alternative
to this status quo we present UPSS: the user-centric private sharing system, a cryptographic storage system
that can be used as a conventional filesystem or as the foundation for security-sensitive applications such as
redaction with integrity and private revision control. We demonstrate that both the security and performance
properties of UPSS exceed that of existing cryptographic filesystems and that its performance is comparable
to mature conventional filesystems — in some cases even superior. Whether used directly via its Rust API or
as a conventional filesystem, UPSS provides strong security and practical performance on untrusted storage.

1 INTRODUCTION

Across a broad spectrum of domains, there is an acute
need for private storage with flexible, granular shar-
ing. Environments as diverse as social networking,
electronic health records and surveillance data man-
agement require both strong cryptographic protection
and fine-grained sharing across security boundaries
without granting overly-broad access. Existing sys-
tems provide coarse security guarantees or strong per-
formance properties, but rarely both. Fine-grained,
flexible, high-performance sharing of default-private
data is still a challenging problem.

What is needed is a mechanism for least-
privileged storage that facilitates simple discretionary
sharing of arbitrary subsets of data, providing strong
confidentiality and integrity properties on commodity
cloud services from untrusted providers. In the previ-
ous years, some cryptographic filesystems have been
developed that store user data on untrusted storage
providers. However, they cannot provide strong se-
curity properties nor flexible data sharing. For exam-
ple, EncFS (Team, 2018) and CryFS (Messmer et al.,
2017) are cryptographic filesystems that leave meta-
data unprotected, or in the latter one, everything is

a https://orcid.org/0000-0002-7059-9501
b https://orcid.org/0000-0002-7352-6463

encrypted with one key. TahoeFS (Wilcox-O’Hearn
and Warner, 2008) is another cryptographic filesystem
with strong security properties, but its design does not
allow flexible and fine-grained data sharing.

In this paper, we have built UPSS: the user-centric
private sharing system, which is a “global first” cryp-
tographic filesystem with no assumptions of trustwor-
thiness for storage infrastructure or even on common
definitions of user identities. Relying on key con-
cepts from capability systems (Dennis and Van Horn,
1966), distributed systems, log-structured filesystems
and revision control, we have developed a new ap-
proach to filesystems that offers novel features while
being usable in ways that are compatible with existing
applications.

UPSS makes several key contributions to the field
of privacy-preserving filesystems. First, unlike cryp-
tographic filesystems that entangle user and group
identifications and device specification with access
controls, UPSS stores all data as encrypted blocks
on untrusted block stores including local, network,
or cloud block stores, without any mapping between
the blocks or blocks to block owners. Granular ac-
cess controls are then defined by higher level applica-
tions according to application semantics. Traditional
access control modalities such as Unix permissions
can be implemented by systems using UPSS, as in the
case of our FUSE-based interface, but they are not

660
Bozorgi, A., Jadidi, M. and Anderson, J.
UPSS: A Global, Least-Privileged Storage System with Stronger Security and Better Performance.
DOI: 10.5220/0012306600003648
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 10th International Conference on Information Systems Security and Privacy (ICISSP 2024), pages 660-671
ISBN: 978-989-758-683-5; ISSN: 2184-4356
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.



encoded in the shared cryptographic filesystem itself.
This decoupling allows the filesystem to be global-
first and local-second.

Second, all UPSS blocks can be accessed by cryp-
tographic capabilities (Dennis and Van Horn, 1966)
called block pointers consist of block names and their
decryption keys that reduces the burden of key man-
agement and simplifies naming; a block pointer is
enough to fetch, decrypt and read a block, with no
central key management required. Block pointers en-
able flexible data sharing at the block level among
mutually-distrustful users. They also enable per-
block encryption rather than per-file or per-filesystem
encryption, which provides a stronger security model.

Third, UPSS enables aggressive and safe caching
by defining a multi-layer caching block store consists
of other block stores that guarantee data consistency
between all block stores. The caching block store pri-
oritizes applying the operations on faster block stores
on the cache hierarchy and processes the operations
on slower block stores in the background. Therefore,
the caching block store becomes available immedi-
ately despite the number of layers in the hierarchy or
the slowness of higher-level block stores. This pro-
vides performance that exceeds cryptographic filesys-
tems by factors of 1.5–40×.

UPSS’ system model and design is described in
Section 2. Performance is evaluated in Section 4
via three case studies comparing UPSS to existing
filesystems: local filesystems (Section 4.2), network
filesystems (Section 4.3) and global filesystems (Sec-
tion 4.4). The related works are discussed in Section 5
and we conclude our paper in Section 6.

2 UPSS SYSTEM MODEL AND
DESIGN

UPSS is a cloud-first private storage and sharing sys-
tem. Rather than a local cryptographic filesystem
that projects POSIX assumptions (e.g., file owner-
ship, user identification and trusted devices) into the
cloud, UPSS starts with the assumptions of untrusted
storage and user-directed sharing via cryptographic
capabilities (Dennis and Van Horn, 1966). UPSS can
be exposed via FUSE (fus, 2019) as a conventional
POSIX filesystem, allowing performance comparison
to existing local filesystems, network filesystems and
global filesystems, but its most exciting capabilities
are exposed directly through a Rust API.

In this section, we review key elements of the
UPSS design, which was seeded in (Bozorgi et al.,
2019; Bozorgi, 2020) as prototype ideas, and de-
scribe new design elements that enable practical per-

Encrypted Block Store

Immutable DAG

Mutable FS

prev

Access

Unix VFS
(future)

UPSS library API

User applicationFUSE VFS

POSIX system calls CLI/GUI/TUI

MutableDirectory

currentVersion
MutableFile

currentVersion

Cloud

File-backedIn-memory

Mirror

UPSS-CLI

CLI

Networked

Cacheing

Figure 1: The layered structure of UPSS.

formance that had previously been envisioned as fu-
ture work. These elements are visible across four lay-
ers shown in Figure 1: untrusted storage (Section 2.1),
an immutable copy-on-write DAG of blocks (Sec-
tion 2.2), mutable filesystem objects (Section 2.3) and
two user-visible filesystem interfaces (Section 2.4).

2.1 Untrusted Storage

Like all filesystems, UPSS ultimately stores data in
fixed-size blocks on persistent media. Block sizes are
all multiples of common physical sector sizes and are
set by the backing store rather than the client. UPSS
uses a default block size of 4 kiB that can be over-
ridden on a per-store basis. Unlike other filesystems,
all UPSS blocks are encrypted in transit and at rest:
plaintext blocks is only held in memory and never
stored to persistent media. Rather than using per-
file or per-filesystem encryption keys, each block is
encrypted with a key kB derived from its plaintext
and named by a cryptographic hash nB of its cipher-
text. The 2-tuple (nB,kB) constructs a block pointer
as given in eq. (1).

kB = h(B)
nB = h(EkB{B})

(1)

In this equation, B represents the plaintext contents
of a block, which contains user content and random
padding to fill out the fixed-size block, h is a cryp-
tographic hash function and E is a symmetric-key
encryption algorithm. A block pointer is a crypto-
graphic capability (Dennis and Van Horn, 1966) to
fetch, decrypt and read a block’s contents, though not
to modify it, as blocks are immutable. Changing a
single byte in the block would change a block’s en-
cryption key kB, which would change the encrypted
version of the block, which would change its name

UPSS: A Global, Least-Privileged Storage System with Stronger Security and Better Performance

661



nB. As a matter of practical implementation, se-
rialized block pointers also contain metadata about
their hashing and encryption algorithms (typically
SHA3 (Dworkin, 2015) and AES-128 (Dworkin et al.,
2001)).

Deriving a symmetric encryption key from a
block’s contents is an example of convergent encryp-
tion (Douceur et al., 2002; Li et al., 2013; Agarwala
et al., 2017). Convergent encryption is a symmetric-
key encryption technique in which identical cipher-
texts are produced from identical plaintexts. This
technique affords two benefits: a reduced burden of
key management and the possibility of block (rather
than file) level data deduplication (Satyanarayanan
et al., 1990; Douceur et al., 2002). Deduplication
is an important feature for global-scale information
sharing systems in which many users may share the
same content with others. By deduplication, only two
extra 4 KiB meta blocks are required to ingest a 1 GB
file to UPSS for the second time with the same con-
tent. However, convergent encrypion and deduplica-
tion bring with themselves some risks that are dis-
cussed in Section 3.

2.1.1 Block Stores

A narrow API including read, write, block_size
and is_persistent methods is implemented by

several types of block stores shown in Figure 1:
in-memory (non-persistent), file-backed, networked,
cloud via Amazon S3 (Amazon Web Services, Inc.,
2020) or Azure blob storage (Microsoft, Inc., 2023),
caching and mirror. The caching and mirror block
stores consist of multiple stores, that accomplish
different tasks. The former enables caching (Sec-
tion 2.1.2) and the latter handles replication (Sec-
tion 2.1.3), both at the block level.

When an encrypted block is stored in a block
store, the block store responds with a block name
nB derived using that store’s preferred cryptographic
hash algorithm. A block’s name can be used to re-
trieve the block in the future without any further au-
thorization — it is a cryptographic capability (Den-
nis and Van Horn, 1966). This approach allows block
stores to be oblivious to user identities and content
ownership. Instead, it is a content-addressed store.
The operator of a block store cannot view plaintext
content or even directly view metadata such as file
sizes or directory-file relationships. Inference of these
relationships is discussed in Section 3, which also de-
scribes the stronger privacy and security properties
that UPSS provides relative to other cryptographic
and conventional filesystems.

Cacheing
block store

Journal

Cacheing
block store

Journal

near near

far farget 8b3…
store 4dc…

Figure 2: A caching hierarchy of untrusted block stores.

2.1.2 Caching

The caching block store consists of two other near and
far stores and a journaling mechanism. A near store
can be an in-memory block store that processes the
operations faster than a far store that can be a file-
backed, networked, cloud, mirror, or another caching
block store. Note that both near and far stores can be
any block stores. By having the caching block store,
UPSS enables building a cache hierarchy as shown in
Figure 2. For storing an encrypted block, the caching
block store stores the block to the near store and jour-
nals it to an on-disk file. The journaled blocks will
be processed in the background to be stored to the far
store. For reading, the caching block store tries to
read the block from the near store and if it does not
exist (e.g., the near store is an in-memory store which
has been cleared), the block is read from the far store.
The confidentiality and immutability of blocks in a
block store enable aggressive yet safe caching, even
with remote storage on untrusted systems. This makes
UPSS achieve better performance results as discussed
in Section 4.

A challenging problem with caching data in any
information system is handling inconsistencies; a
block’s content can be updated in a cache while not
in other locations. However, UPSS avoids any cache
inconsistencies and reduces this problem to a version
control problem by the immutable nature and crypto-
graphic naming of the stored blocks. A block may be
present within or absent from a store, but it cannot be
inconsistent between two stores: even the smallest in-
consistency in content would cause the blocks to have
different cryptographic names.

2.1.3 Data Availability via Replication

The mirror block store handles data replication across
multiple block stores. For storing an encrypted block,
the mirror block store replicates the block to all block
stores in parallel and returns the block name upon suc-
cessful replication. For reading, the mirror block store
queries the block by its name from all block stores
in parallel and returns the block from a block store
that responds faster and ignores other block store re-
sponses.

ICISSP 2024 - 10th International Conference on Information Systems Security and Privacy

662



Version
prev
bp

blocks
bp bp bp …bp bp

Version
prev

∅
blocks
bp bp bp …bp bp

Figure 3: Two sequential Version objects that reference
two common blocks and one diverging block.

2.2 Immutable DAGs

UPSS uses directed acyclic graphs (DAGs) of im-
mutable blocks to represent files and directories. Re-
lationships among blocks are specified by Version
objects that describe arbitrary-length collection of im-
mutable blocks, each accessible by their block point-
ers. As shown in Figure 3, multiple Version objects
can reference underlying immutable blocks, facilitat-
ing the copy-on-write modification of files and direc-
tories described in Section 2.3. Version objects are
themselves stored in UPSS blocks, allowing them to
be named according to their cryptographic hashes.
For files smaller than 100 kiB, a Version fits in a
single UPSS block. A Version may contain a block
pointer to a previous Version, and thus a Version
can be used as a Merkle tree (Merkle, 1979) (more

precisely, a Merkle DAG) that represents an arbitrary
number of versions of an arbitrary quantity of im-
mutable content.

This use of Merkle DAGs reduces the problem of
data consistency to that of version control: it is pos-
sible for two files to contain different blocks, but not
two variations of the “same” block. It is left to the
user of these immutable DAGs to provide mutable
filesystem objects using copy-on-write (CoW) seman-
tics and to ensure that new blocks are appropriately
pushed to backend block stores.

2.3 Mutable Filesystem Objects

Conventional mutable filesystem objects (files and di-
rectories) are provided by UPSS by mapping arrays
of bytes into mutable Blob objects. These objects
maintain copy-on-write (CoW) references to underly-
ing blocks and versions. Non-traditional objects such
as structured binary key-value data structures are also
possible using multiple blobs and versions.

A Blob manages an array of bytes via copy-on-
write block references, starting from an empty se-
quence of blocks and permitting operations such as

truncation, appending and random-access reading and
writing. A Blob accumulates edits against an im-
mutable Version in an “edit session” (Asklund et al.,
1999) until a file or directory is persisted into a new
immutable Version. This allows UPSS to accumu-
late write operations and batch them into aggregate
CoW operations.

Files and directories are both backed by Blob ob-
jects, and both can be explicitly persisted to backing
storage via API calls persist() and name(), which
persists an object and returns its block pointer. A
file version can be named by a block pointer to its
Version object which represents the file’s content
and, optionally, history. A directory is represented as
a sequence of directory entries, each of which maps
a unique, user-meaningful name to a filesystem ob-
ject (file or directory). A directory can be persisted
by serializing its entries into a Version that is named
by a block pointer. Thus, directories are also Merkle
DAGs that reference the lower-level Merkle DAGs of
other file and directory objects.

Cryptographic hashes are computed and blocks
encrypted when files and directories are persisted,
making persisting one of the most expensive opera-
tions in UPSS. Tracking chains of Version objects in
addition to content makes both the time and storage
requirements for persistence superlinear. It is, there-
fore, only done when requested via the API or, in the
case of UPSS-FUSE, every 5 s. Based on our mea-
surement results, the total space bt required in a block
store to store b bytes of content follows Equation (2).

bt = (1.09+0.001613)b (2)

2.3.1 Mutation and Versioning

Naming all filesystem objects by block pointers to
Version structures introduce new challenges to han-
dling modifications. Whenever a file or directory is
modified in a directory hierarchy, a new block pointer
is generated that should be updated in the object’s
parent entries , and this update should be applied
up to the root directory. In order to handle updates
efficiently, every file and directory object keeps an
Updater object, which is a reference to its parent in-
memory object. Upon modification and persisting,
an object notifies its Updater about its new block
pointer and the parent object is modified to reflect the
child’s new version. Similar requirements for updat-
ing of parents exist in other CoW filesystems such as
ZFS (Bonwick et al., 2003), but the case of a global
CoW filesystem such as UPSS is more challenging
than that of local filesystems. In a local CoW filesys-
tem, it is possible for the filesystem implementation to
be aware of all concurrent uses of a parent directory,

UPSS: A Global, Least-Privileged Storage System with Stronger Security and Better Performance

663



including by multiple users. In a global filesystem,
however, not all uses of a parent directory are visible
to a local host. UPSS therefore, treats every update
to a filesystem subtree as a potential versioning oper-
ation, allowing new directory snapshots to be created
and shared as described in section 2.3.2; versions can
be integrated at the level of filesystem interfaces as
described in section 2.4.

2.3.2 Snapshot and Sharing

As a copy-on-write filesystem, UPSS provides cheap
snapshots of previous versions. UPSS creates snap-
shots whenever requested via sync(2), fsync(2) or
the UNIX sync(1) command, or in case of FUSE
(filesystem in user space) wrapper, by querying
a directory’s cryptographic name with POSIX ex-
tended attributes, or in case of UPSS API, by calling
persist() or name() methods. Also, extended at-
tributes can be queried to retrieve the cryptographic
hash or serialized block pointer of any UPSS file
or directory. Exposing serialized block pointers to
users facilitates sharing of file and directory snapshots
from user to user, including sharing from UPSS FUSE
wrapper snapshots to users employing the UPSS CLI.
Also, this allows users to check integrity guaran-
tees over file and directory Merkle DAGs, facilitating
blockchain-like applications.

As a user-empowering sharing system, these
snapshots can be quickly shared with other users for
read-only access: user a need only share the block
pointer to a file or directory with user b, and user b
will be able to retrieve the content from a block store
and decrypt it. Since block pointers correspond to
immutable blocks, user b cannot modify the shared
block. Upon modification, a new block is generated
with a new block pointer and user a still has access to
the unmodified shared block.

2.4 File Access Interfaces

Users can access an UPSS filesystem via a variety of
interfaces, including a Rust API which can be com-
piled to WebAssembly, a command-line interface and
a FUSE (Filesystems in Userspace) interface. Unlike
many filesystems, any UPSS directory can be treated
as the root directory of a filesystem. Within a direc-
tory hierarchy, a user may persist any subdirectory to
retrieve a block pointer to an immutable version of
it. That version may then be used as the basis for fur-
ther filesystem operations including mounting, mutat-
ing and further sharing. When new versions of files
and directories are generated, parent directories are
updated until a new root directory version is created.
Storing the block pointer of that new root directory is

15
89

8

15
97

2

35
33

07

17
78

70

32
02

31
66

27
85

54

24
56

8

52
42

52
33

.4

52
10

5.
4

58
7727

00

25
24

.4

49
92

1.
6

46
8.

6

1e+01

1e+03

1e+05

MakeDir MakeFile Read Write

Systems

O
p

s
/s

 ±
 s

.d
.

api-local api-remote upss-fuse-local upss-fuse-remote

Figure 4: UPSS performance when accessed via its API
and via UPSS-FUSE connected to a local or remote block
store. The average number of operations per 60 seconds is
reported for five runs; error bars show standard deviation.

the responsibility of an UPSS client (API, CLI, FUSE
or future native VFS implementation). The UPSS CLI
and FUSE clients both store this information in a lo-
cal passphrase-protected file as per PKCS #5 Version
2.0 (Kaliski, 2000) for interoperability.

Direct API invocation provides clear performance
benefits when compared to FUSE-based wrapping.
As shown in Figure 4, directly invoking the UPSS
API yields higher performance than using a FUSE
wrapper with the same storage backend. For two of
the four microbenchmarks described in Section 4.1,
the cost of the FUSE wrapper exceeds that of the cost
of communicating with a remote blockstore via direct
UPSS API.

3 SECURITY MODEL

The judicious use of full-filesystem, per-block con-
vergent encryption allows UPSS to employ untrusted
storage backends that can scale to the largest of
workloads without revealing user data or metadata.
Its user-agnostic approach allows it to be employed
within applications and in a range of uses from a lo-
cal filesystem to a global sharing system.

Other cryptographic filesystems take a variety of
approaches to encryption. EncFS (Team, 2018) and
NCryptFS (Wright et al., 2003) employ encryption for
file content but not the filesystem itself, e.g., directory
structure. CryFS (Messmer et al., 2017) protects the
filesystem with a single encryption key. This implies
strong filesystem boundaries and precludes safe sub-
set sharing: the unit of possible sharing in the system
is a filesystem, not a file. It also increases the value of
one specific encryption key, making it a more attrac-
tive target for attackers. UPSS, in contrast, encrypts
data using per-block keys derived from block content,
removing the need for separate storage of keys and re-

ICISSP 2024 - 10th International Conference on Information Systems Security and Privacy

664



ducing the value of any single encryption key. Since
keys are not re-used, they are not secret from autho-
rized users.

Commonly cloud-based storage allows providers
to examine users’ plaintext; backend block store
providers in UPSS can only see a sea of encrypted
blocks, as encryption is performed on the client side.
This approach ensures that metadata such as file sizes
and directory structures are not revealed explicitly to
storage providers. Providers might perform traffic
analysis to infer relationships among various blocks,
but only at significant computational cost. This threat
could be addressed by the use of oblivious transfer
techniques such as ORAM, but other large-scale dis-
tributed systems that support such techniques have
disabled them due to cost (uta, 2020b).

Convergent encryption, first used in Farsite (Adya
et al., 2002), can also introduce risks that are not
present in traditional cryptosystems. Convergent en-
cryption is a deterministic encryption model, but the
traditional objective of indistinguishability under cho-
sen plaintext attack (IND-CPA) forbids determinism
in encryption; it can therefore reveal whether a given
plaintext has previously been encrypted and stored in
the content addressable storage if an attacker encrypts
a plaintext, presents it to a block store and uses timing
or other response information to determine whether
that block has previously been stored. Worse still,
naı̈ve systems could allow an attacker to guess varia-
tions on a known format (user=1000, user=1001, etc.)
to test whether any such variations have previously
been stored.

UPSS addresses these concerns by appending ran-
dom padding to plaintext blocks to bring them to the
fixed block size. Small blocks of user data, those
that most need protection from guessing attacks, are
padded with high-entropy random bits. Full blocks
of user data, such as content from shared media files,
do not require padding, allowing such files to enjoy
deduplication. Confirmation of a large existing block
is still possible, but not via guessing attacks due to
the block sizes involved, and no user can be associ-
ated with the content. By default, any block of plain-
text data that is smaller than the fixed block size will
have random padding appended. A typical AWS cre-
dential file with a known access key will have 72 B
of data that could be known to the attacker, 40 B of
Base64-encoded secret key that the attacker would
like to guess and, in a 4 kiB block, 3,984 B of random
padding.

UPSS does not explicitly represent users or user
identities. This allows applications or clients to bring
their own user model to the filesystem and avoid
the limitations of system-local users, as in systems

that project local filesystems to a multi-system con-
text, e.g., multi-user EncFS (Leibenger et al., 2016)).
Multiple users on separate systems can share a back-
end block store without interference, but the common
block store permits efficient sharing among systems
and users.

4 PERFORMANCE EVALUATION

In this section, we demonstrate the practicality of
UPSS as a local filesystem (Section 4.2), a network
filesystem (Section 4.3) and a global filesystem (Sec-
tion 4.4). Although UPSS achieves its best perfor-
mance when accessed via API rather than FUSE, em-
ploying the FUSE interface allows us to directly com-
pare its performance with the performance of extant
systems. These performance comparisons are com-
pleted using a suite of microbenchmarks and one
FileBench-inspired macrobenchmark.

4.1 Benchmark Description

We have compared the performance of UPSS with
other systems using both custom microbenchmarks
and a Filebench-inspired benchmark. All bench-
marks were executed on a 4-core, 8-thread 3.6 GHz
Intel Core-i7-4790 processor with 24 GiB of RAM
and 1 TB of ATA 7200 RPM magnetic disk, run-
ning Ubuntu Linux 4.15.0-72-generic. Remote block
stores, where employed, used machines with different
configurations as described in Section 4.3.

For microbenchmarking, we evaluated the cost of
creating files and directories and reading and writing
from/into on-disk local and remote block stores. For
evaluating file and directory creation, we generated
a user-defined number of files and directories, added
them to an ephemeral root directory and persisted the
results into file-backed block stores. To evaluate read
and write operations, we generated 1000 files filled
with random data of size 4 KiB, the natural block size
of our underlying storage, select a file randomly and
performed sequential read and write operations on it.

We also implemented a macrobenchmark that
simulates more complex behaviour. In this bench-
mark, we selected a file randomly from a set of files
and performed 10 consecutive read and write op-
erations with different I/O sizes: 4 KiB, 256 KiB,
512 KiB and 1 MiB. The building blocks of this
benchmark were inspired by the Filebench frame-
work (fil, 2016), but Filebench itself could not pro-
duce the fine-grained timing information used to
produce the figures shown in Sections 4.2.2, 4.3
and 4.4.1.

UPSS: A Global, Least-Privileged Storage System with Stronger Security and Better Performance

665



4.2 UPSS as a Local Filesystem

Direct usage of the UPSS API requires program mod-
ification — and, today, the use of a specific program-
ming language. In order to expose the benefits of
UPSS to a wider range of software, we have imple-
mented a filesystem in userspace (FUSE) (fus, 2019)
wrapper that exposes UPSS objects to other applica-
tions via a hook into the Unix VFS layer. The chal-
lenge here is picturing UPSS’s global view of en-
crypted blocks to a local view of files and directories
that can be accessed via FUSE inode numbers. To
tackle this, UPSS-FUSE uses a mapping from FUSE
inode numbers to in-memory UPSS objects to service
VFS requests. This allows conventional applications
to access an UPSS directory mounted as a Unix direc-
tory with POSIX semantics, though there is one un-
supportable feature: hard links. Hard links are defined
within the context of a single filesystem, but UPSS
is designed to allow any directory to be shared as a
root directory of a filesystem. Owing to this design
choice, it is impossible to provide typical hard link se-
mantics and, e.g., update all parents of a modified file
so that they can perform their own copy-on-write up-
dates (see Section 2.3). Therefore, we do not provide
support for hard links — a common design choice in
network file systems such as NFS.

The UPSS-FUSE wrapper exposes an ephemeral
plaintext view of an UPSS’s directory underneath a
Unix mount point, allowing conventional file and di-
rectory access, while keeping all data and metadata
encrypted at rest in a local or remote block store (see
Section 2.1). Unlike existing cryptographic filesys-
tems such as NCryptFS (Wright et al., 2003) and
EncFS (Leibenger et al., 2016; Team, 2018), no plain-
text directory structure is left behind in the mount
point after the filesystem has been unmounted.

4.2.1 Consistency

In order to provide data consistency, UPSS-FUSE re-
quests that UPSS persist a “dirty” — i.e., modified
— root directory every five seconds, or after a tun-
able number of dirty objects require persisting. As de-
scribed in Section 2.3, persisting a Directory object
causes its versioned children to be recursively per-
sisted (if dirty), after which the cryptographic block
pointer for the new root directory version can be
stored in the UPSS-FUSE metadata file. This root
block pointer is the only metadata that UPSS-FUSE
needs to mount the filesystem again. The block
pointer size is 80 bytes as the defualt hashing and en-
cryption algorithm in UPSS are SHA3-512 and AES-
128 respectively. As in other copy-on-write filesys-
tems, the cost of persisting an entire filesystem de-

4000

4500

5000

5500

6000

6500

5000 10000 15000 20000

Sync interval (dirty objects)

O
p
s/

s 
±

 s
.d

.

Operation

MakeDir

Write

Figure 5: Performance of 4 kiB operations vs sync fre-
quency (in number of dirty objects) over five runs.

pends on the amount of “dirty” content in the filesys-
tem. The trade-off between the demand for frequent
data synchronization and the requirement for more
frequent — though smaller — persistence operations
is illustrated in Figure 5.

4.2.2 Performance Comparisons

To illustrate the performance of UPSS when used
as a conventional local filesystem, we compared
UPSS-FUSE with the cryptographic filesystems
CryFS (Messmer et al., 2017) and EncFS (Leibenger
et al., 2016; Team, 2018), also based on FUSE, as
well as the mature, heavily-optimized ZFS (Bonwick
et al., 2003). ZFS is not a cryptographic filesystem
designed for fine-grained confidentiality, but it does
share some design elements with UPSS: it is a log-
structured filesystem with copy-on-write updates that
uses cryptographic hashes to name blocks. In con-
trast to UPSS-FUSE, ZFS has been extensively opti-
mized over the past two decades to become a high-
performance, widely-deployed filesystem.

We mounted each of these four filesystems on
different paths in the Linux host referenced in Sec-
tion 4.1 and ran four microbenchmarks to test their
speed in creating empty directories (MakeDir), creat-
ing empty files (MakeFile), reading randomly select
files sequentially including 4 KiB of data (ReadFile)
and writing random data to files (WriteFile).

Each of these four operations was run 100k and
the behaviour of the filesystems were reported in
Figure 6. In these plots, the x-axis represents the
time needed to complete all 100k operations. UPSS
outperforms EncFS and CryFS for all operations,
with performance especially exceeding these exist-
ing systems in the critical read and write bench-
marks. As might be expected, ZFS significantly out-
performs UPSS in all benchmarks, with read perfor-
mance 3× and write performance 10.9× faster than
UPSS-FUSE. In UPSS-FUSE, creating files and di-

ICISSP 2024 - 10th International Conference on Information Systems Security and Privacy

666



0

2000

4000

6000

0.0 2.5 5.0 7.5 10.0

MakeDir x 100k

0

2000

4000

0 4 8 12

MakeFile x 100k

2000

3000

4000

5000

6000

7000

0.0 0.2 0.4 0.6

Read x 100k

0

1000

2000

3000

4000

5000

0.0 2.5 5.0 7.5

Write x 100k

Time(s)

O
p

s/
s

(a) UPSS-FUSE.

0

2000

4000

6000

0.0 0.5 1.0 1.5 2.0

MakeDir x 100k

0

3000

6000

9000

0.0 0.5 1.0 1.5 2.0

MakeFile x 100k

15000

17500

20000

22500

0.00 0.05 0.10 0.15 0.20 0.25

Read x 100k

8000

10000

12000

0.0 0.2 0.4 0.6 0.8

Write x 100k

Time(s)

O
p

s/
s

(b) ZFS.

0

3000

6000

9000

0 5 10 15

MakeDir x 100k

1000

2000

3000

4000

5000

0 5 10 15

MakeFile x 100k

10000

15000

20000

0 1 2 3 4

Read x 100k

3000

4000

5000

6000

0 5 10 15

Write x 100k

Time(s)

O
p

s/
s

(c) EncFS.

0

2000

4000

6000

0 50 100 150

MakeDir x 100k

0

2000

4000

6000

0 100 200 300 400 500

MakeFile x 100k

10000

15000

20000

25000

0 2 4 6

Read x 100k

4000

6000

8000

0 10 20

Write x 100k

Time(s)

O
p

s/
s

(d) CryFS.
Figure 6: Performance comparison of UPSS-FUSE with
CryFS, EncFS and ZFS. Benchmarks were run for 100 kops.

rectories have the same cost, as they are both backed
by empty collections of blocks. We also note that
UPSS-FUSE performs 1.47−41.6× more operations
per second in various benchmarks than CryFS and
EncFS while also providing stronger security prop-
erties (see Section 5). This is due to our design
choice that the requests are served from the mapped
in-memory objects that are persisted periodically, if
dirty. Therefore, expensive persist operations can be
done quickly: with little accumulation of dirty state,
less synchronous persistence work is required.

These plots show the bursty nature of real filesys-
tems, and in the case of CryFS, they reveal perfor-
mance that scales poorly as the number of requested
operations increases. Much of the bursty nature of
these plots derives from how each filesystem synchro-
nizes data to disk. For example, by default, ZFS syn-
chronizes data every 5 s or when 64 MiB of data has
accumulated to sync, whichever comes first. Simi-
larly, to provide a fair comparison, UPSS-FUSE is
configured to synchronize after 5 s or 15,000 writes
(close to 64 MiB of data when using 4 KiB blocks).
These periodic synchronizations cause performance
to drop, even on dedicated computers with quiescent
networks and limited process trees.

4.2.3 Macro-Benchmark

We ran the macrobenchmark described in Section 4.1
on UPSS-FUSE, CryFS, EncFs and ZFS, to evalu-
ate UPSS-FUSE in a simulation in which consecu-
tive read and write operations with different I/O sizes
are performed on different files. The results are re-
ported in Figure 7. As in our microbenchmarks,

71
65

7.
6

72
63

12
.8

19
81

3.
6

24
13

5.
2 10

43
96

.8

12
63

10
4

33
55

64
.8

69
83

6.
8

10
33

21
.6

13
88

64
6.

4

40
90

88

73
62

5.
6

98
50

8.
8

12
84

50
5.

6

36
78

20
.8

74
75

2

10

1000

100000

4 256 512 1024

I/O size (KiB)

K
iB

/s
 ±

 s
.d

.

CryFS EncFS UPSS-FUSE ZFS

Figure 7: Performance of CryFS, EncFS, UPSS-FUSE and
ZFS for the macrobenchmark. The numbers are the average
of KiB of I/O per second for five runs, each 60 seconds
along with their standard deviations.

ZFS outperforms the other filesystems for different
I/O sizes. UPSS-FUSE achieved better results than
CryFS and EncFS for the 4 KiB case. However, as the
I/O size increases, CryFS outperforms UPSS-FUSE.
The larger the I/O operation, the more fixed-sized
blocks are generated by UPSS-FUSE, each of which
needs to be encrypted with a different key and per-
sisted. In CryFS, however, all the fixed-size blocks
related to a file are encrypted with the same sym-
metric key. This causes better performance for larger
files, but at the same time makes CryFS inapplica-
ble to the partial sharing and redaction use cases that
can be supported by UPSS. UPSS has been designed
for small block sizes (typically 4 kiB), as decades of
research has shown that filesystems mostly contain
small files (Rosenblum and Ousterhout, 1992; Baker
et al., 1991; Lazowska et al., 1986).

4.3 UPSS as a Network Filesystem

Although UPSS can be used as a local filesystem, it is
primarily designed as a system for sharing data across
networks with untrusted storage providers. UPSS’
use of encrypted block stores, in which confiden-
tiality and integrity of these blocks’ content are as-
sured by clients and not servers, allows us to build
a block store in which a centralized server exploits
high-quality network links to transfer large numbers
of encrypted blocks — the data plane — regardless
of what block pointers are shared between users —
the control plane. This design is amenable to multi-
layer caching, as described in Section 2.1. Thus,
we have compared the performance of UPSS-FUSE
when connected to a remote block store to that of

UPSS: A Global, Least-Privileged Storage System with Stronger Security and Better Performance

667



0

20000

40000

60000

0 5 10 15

MakeDir x 100k

0

10000

20000

30000

40000

50000

0 5 10 15

MakeFile x 100k

0

20000

40000

0 1 2 3

Read x 100k

429

572

715

858

0 50 100 150

Write x 100k

Time(s)

O
ps

/s

(a) UPSS-FUSE-network.

1600

1800

2000

2200

0 10 20 30 40

MakeDir x 100k

625

1250

1875

0 10 20 30 40

MakeFile x 100k

2000

4000

6000

0 5 10 15

Read x 100k

400

600

800

1000

0 25 50 75 100 125

Write x 100k

Time(s)

O
ps

/s

(b) NFS.

750

875

1000

1125

0 25 50 75 100

MakeDir x 100k

250

500

750

0 50 100

MakeFile x 100k

400

800

1200

0 20 40 60 80

Read x 100k

600

800

1000

0 25 50 75

Write x 100k

Time(s)

O
ps

/s

(c) SSHFS.
Figure 8: Performance comparison of UPSS-FUSE-
network, NFS and SSHFS. Benchmarks were run for
100 kops.

SSHFS (Team, 2020) and the venerable NFS (Shepler
et al., 2003).

4.3.1 Performance Comparison

As in Section 4.2.2, we evaluated the performance of
UPSS by mounting an UPSS-FUSE filesystem in a
Unix mount point and comparing it to other filesys-
tems using four microbenchmarks. In this section,
however, we connected our UPSS-FUSE filesystem
to a remote block store and compared our perfor-
mance results against two other remote filesystems:
the FUSE-based SSHFS (Team, 2020) and the ven-
erable NFS (Shepler et al., 2003). Similar to Sec-
tion 4.2.2, one comparison filesystem is primarily de-
signed for security and the other has higher perfor-
mance after a long history of performance optimiza-
tion.

The remote block store server was run on a 4-
core, 2.2 GHz Xeon E5-2407 processor with 16 GiB
of RAM and 1 TB of magnetic disk, running FreeBSD
12.1-RELEASE. The client machine, that runs UPSS-
FUSE, is a 4-core, 3.5 GHz Xeon E3-1240 v5 pro-
cessor with 32 GiB of RAM and 1 TB of magnetic
disk, running Ubuntu Linux 16.04. The client and
server were connected via a dedicated gigabit switch.
Figure 8 shows the behaviour of the benchmarked
filesystems when executing 100k MakeDir, Make-
File, Read and Write operations.

UPSS outperforms SSHFS and even NFS for
MakeDir, MakeFile and Read operations and for
Write, it achieves comparable results. For the
Read benchmark, UPSS-FUSE has a slow start as

encrypted blocks are read from the remote block
store and are loaded into memory. After files are
loaded into memory, other read operations are served
from the in-memory objects. This causes UPSS-
FUSE to be about 5× faster than NFS in the Read
benchmark, validating UPSS-FUSE’s approach to en-
crypted block storage and the safe and aggressive
caching it enables.

4.4 UPSS as a Global Filesystem

In addition to local and network filesystem, UPSS-
FUSE can also be connected to untrusted cloud stor-
age providers. To do so, we have implemented an
UPSS block store backed in the Amazon S3 service
(Amazon Web Services, Inc., 2020) and compared its
performance with S3FS (Gaul et al., 2020), Perkeep
(Lindner and Norris, 2018) and UtahFS (uta, 2020a;
uta, 2020b).

4.4.1 Performance Comparison

We mounted UPSS-FUSE backed with the Amazon
block store (with and without local caching), S3FS,
Perkeep and UtahFS in different Unix mount points
and compared them using our four microbenchmarks.
S3FS allows Linux and macOS to mount an Amazon
S3 bucket via FUSE without any security properties.
Perkeep, formerly called Camlistore, is a FUSE-based
cryptographic filesystem that can be backed by mem-
ory, local or cloud storage. UtahFS which is in its
initial stage of development, stores encrypted data on
untrusted cloud storage. We mounted UtahFS without
Path ORAM that hides the access patterns, as it de-
grades the performance (uta, 2020b). Having the Path
ORAM enabled, the Write benchmark runs 18.59×
slower. We configured Perkeep and UtahFS to use an
Amazon S3 account for our evaluation.

We ran the benchmarks discussed in Section 4.2.2
with 5k MakeDir, MakeFile, Read and Write op-
erations and the behaviours of UPSS-FUSE-network,
S3FS, Perkeep and UtahFS during time are reported
in Figure 9. In all of these cases, Amazon S3’s re-
sponse time is the bottleneck. To have a fair compar-
ison, we ran the benchmarks for UPSS-FUSE with
and without caching. With caching enabled, we write
the encrypted blocks in a caching block store and
journal the blocks to an on-disk file, then we write
to Amazon S3 bucket by processing the journal us-
ing a background thread. This makes a large differ-
ence in the number of operations that can be done
by UPSS-FUSE as a global filesystem in comparison
with S3FS, Perkeep and UtahFS (Figure 9a). In Fig-
ure 9b, we disabled caching and persisted the con-
tent just before the benchmark script is finished so

ICISSP 2024 - 10th International Conference on Information Systems Security and Privacy

668



0

20000

40000

60000

0.00 0.05 0.10 0.15

MakeDir x 5k

25

50

75

100

0.00 0.05 0.10 0.15 0.20

MakeFile x 5k

40

60

80

100

0.00 0.05 0.10 0.15 0.20

Read x 5k

0

200

400

0 50 100 150

Write x 5k

Time(s)

O
ps

/s

(a) UPSS-FUSE-global.

0

20000

40000

60000

0 5 10 15

MakeDir x 5k

0

20000

40000

0 5 10 15

MakeFile x 5k

0

20000

40000

60000

0.000 0.025 0.050 0.075 0.100

Read x 5k

0

200

400

0 50 100 150

Write x 5k

Time(s)

O
ps

/s

(b) UPSS-FUSE-global(full-
sync).

1.50

1.67

1.83

2.00

2.17

0 1000 2000 3000

MakeDir x 5k

0.33

0.67

1.00

1.33

1.67

0 1000 2000 3000 4000

MakeFile x 5k

0.00

3.33

6.67

10.00

13.33

16.67

0 50 100 150

Read x 5k

1.67

2.00

2.33

2.67

0 500 1000 1500 2000

Write x 5k

Time(s)

O
ps

/s

(c) Perkeep.

2.00

2.50

3.00

3.50

4.00

0 1000 2000 3000 4000

MakeDir x 5k

0.00

0.33

0.67

1.00

1.33

0 1000 2000 3000

MakeFile x 5k

2.00

4.00

6.00

8.00

0 200 400 600 800

Read x 5k

1.00

1.50

2.00

2.50

3.00

3.50

0 500 1000 1500

Write x 5k

Time(s)

O
ps

/s

(d) S3FS.

0.06

0.09

0.11

0.14

0 250 500 750 1000 1250

MakeDir x 5k

0.00

0.03

0.06

0.09

0.11

0.14

0 250 500 750 1000 1250

MakeFile x 5k

1000.00

1333.33

1666.67

0 1 2 3

Read x 5k

1.33

1.67

2.00

2.33

2.67

0 1000 2000

Write x 5k

Time(s)

O
ps

/s

(e) UtahFS.
Figure 9: Performance comparison of UPSS-FUSE-global,
S3FS, Perkeep and UtahFS. Owing to long read and write
delays for comparison filesystems, benchmarks were run for
5 kops rather than 100 kops.

that the content is ready to be read from the Ama-
zon block store. Even without caching and having the
content persisted to the Amazon block store, UPSS-
FUSE outperforms the other three filesystems by fac-
tors of 10–8,000. These results show that the crypto-
graphic foundation of UPSS provides, not just strong
security properties, but a foundation for aggressive
caching that would be unsafe in a system that does
not use cryptographic naming.

5 RELATED WORK

The CFS (Dabek et al., 2001), Coda (Satyanarayanan
et al., 1990), Ivy (Muthitacharoen et al., 2002),
and FARSITE (Adya et al., 2002) filesystems pro-
vide availability for user data stored on dedicated
servers in a distributed environment along with other
features such as disconnected operations, content-
addressable storage and log-structured systems. Sim-
ilar to UPSS-FUSE, FARSITE, which is a decentral-

ized network filesystem, uses convergent encryption
(Douceur et al., 2002; Li et al., 2013; Agarwala et al.,
2017) to protect user data. As CFS, Coda and Ivy
are non-cryptographic filesystems, they cannot rely
on untrusted storage servers. On the other hand, the
access control lists in FARSITE, which is a crypto-
graphic fileystem, is not completely decoupled from
user data; therefore, higher level applications cannot
define their own policies, as it is possible in UPSS.

Several filesystems have been designed for un-
trusted cloud settings, such as NCryptFS (Wright
et al., 2003), EncFS (Team, 2018; Leibenger et al.,
2016), OutFS (Khashan, 2020) and CryFS (Messmer
et al., 2017). NCryptFS and EncFS are cryptographic
filesystems, which protect content by encrypting files,
but leave filesystem metadata such as the directory
structure unprotected. CryFS and OutFS solve this
problem by splitting all filesystem data into fixed-size
blocks and encrypting each block individually. PLU-
TUS (Kallahalla et al., 2003), VDisk (Wires and Fee-
ley, 2007) and TVFS (Catuogno et al., 2014) also ap-
ply per block encryption. CryFs uses one key for all
encryptions, but OutFS generates separate keys per
file.

Ori (Mashtizadeh et al., 2013), IPFS (Benet, 2014)
and Perkeep (Lindner and Norris, 2018) (formerly
known as Camlistore) connect multiple devices with
a filesystem that users can access anywhere. Both Ori
and IPFS reduce the data inconsistency problem to a
version control problem by storing new versions of
files upon modification. Similar to UPSS-FUSE, Per-
keep can be backed by a memory store, a local store or
a cloud account. However, none of Ori, IPFS or Per-
keep provide a mechanism for sharing redacted file
and directory hierarchies. Moreover, Perkeep leaves
the directory structure unprotected on the backing ser-
vice.

MetaSync (Han et al., 2015) and DepSky (Bessani
et al., 2013) are synchronization services that
store confidential data on untrusted cloud storage
providers. However, these two systems cannot be
used as a platform for novel applications that UPSS
can support and they just synchronize multiple cloud
services.

Tahoe (Wilcox-O’Hearn and Warner, 2008) and
UtahFS (uta, 2020a) are cryptographic filesystems
with the goal of storing user data on untrusted storage
servers. As in UPSS, Tahoe and UtahFS store con-
tent encrypted in Merkle DAGs and provide access
control by cryptographic capabilities. Unlike UPSS,
however, Tahoe’s replica-oriented design lends itself
more readily to storage of shared immutable data than
to the use cases of a general-purpose filesystem.

UPSS: A Global, Least-Privileged Storage System with Stronger Security and Better Performance

669



6 CONCLUSION

UPSS: the user-centric private sharing system pro-
vides data availability, strong confidentiality and in-
tegrity properties while relying only on untrusted
backend storage (local or remote). Data is encrypted
at rest, named cryptographically and store within a
content-addressable sea of blocks, so no file or direc-
tory structure can be discerned directly from the con-
tents of an encrypted block store. Cryptographic ca-
pabilities are used to authorize access to arbitrarily-
sized DAGs of files and directories without cen-
tralized access control. Convergent encryption en-
ables data de-duplication for large files among even
mutually-distrustful users while avoiding the com-
mon pitfalls of the technique for small, low-entropy
files.

UPSS wraps copy-on-write operations with a con-
ventional filesystem API, accessible directly as a li-
brary or proxied via a FUSE interface. Although
UPSS-FUSE’s performance is lower than that of di-
rect API usage, it exceeds that of comparable cryp-
tographic filesystems and is within an order of mag-
nitude of that of the mature copy-on-write filesys-
tem ZFS. When using remote storage, UPSS’s per-
formance exceeds that of UtahFS, Google’s Perkeep
and even, for some benchmarks, unencrypted NFS.

UPSS demonstrates that it is possible to achieve
both strong security properties and high performance,
backed by untrusted local, remote or global stor-
age. UPSS’s performance is comparable to — or, in
some cases, superior to — mature, heavily-optimized
filesystems. Adoption of UPSS will lay the founda-
tion for future transformations in privacy and integrity
for applications as diverse as social networking and
medical data storage, providing better opportunities
for users — not system administrators — to take con-
trol of their data.

REFERENCES

(2016). Filebench - A model based filesystem workload
generator. https://github.com/filebench/filebench.

(2019). FUSE (Filesystem in Userspace). https://github.
com/libfuse/libfuse/releases/tag/fuse-3.9.0.

(2020a). UtahFS. https://github.com/cloudflare/utahfs/
releases/tag/v1.0.

(2020b). UtahFS: Encrypted File Storage. https://blog.
cloudflare.com/utahfs.

Adya, A., Bolosky, W. J., Castro, M., Cermak, G., Chaiken,
R., Douceur, J. R., Howell, J., Lorch, J. R., Theimer,
M., and Wattenhofer, R. P. (2002). FARSITE: Fed-
erated, available, and reliable storage for an incom-

pletely trusted environment. ACM SIGOPS Operating
Systems Review, 36(SI):1–14.

Agarwala, A., Singh, P., and Atrey, P. K. (2017). DICE:
A dual integrity convergent encryption protocol for
client side secure data deduplication. In 2017 IEEE
International Conference on Systems, Man, and Cy-
bernetics (SMC), pages 2176–2181. IEEE.

Amazon Web Services, Inc. ((Accessed on February
28, 2020)). Amazon Simple Storage Service.
”https://aws.amazon.com/s3”.

Asklund, U., Bendix, L., Christensen, H. B., and Magnus-
son, B. (1999). The unified extensional versioning
model. In System Configuration Management, pages
100–122, Berlin, Heidelberg. Springer Berlin Heidel-
berg.

Baker, M. G., Hartman, J. H., Kupfer, M. D., Shirriff, K. W.,
and Ousterhout, J. K. (1991). Measurements of a dis-
tributed file system. In Proceedings of the thirteenth
ACM Symposium on Operating Systems Principles,
pages 198–212.

Benet, J. (2014). IPFS: content addressed, versioned, P2P
file system. arXiv preprint arXiv:1407.3561.

Bessani, A., Correia, M., Quaresma, B., André, F., and
Sousa, P. (2013). DepSky: dependable and secure
storage in a cloud-of-clouds. ACM Transactions on
Storage (TOS), 9(4):1–33.

Bonwick, J., Ahrens, M., Henson, V., Maybee, M., and
Shellenbaum, M. (2003). The Zettabyte file system.
In Proc. of the 2nd Usenix Conference on File and
Storage Technologies, volume 215.

Bozorgi, A. (2020). From online social network analysis
to a user-centric private sharing system. PhD thesis,
Memorial University of Newfoundland.

Bozorgi, A., Jadidi, M. S., and Anderson, J. (2019). Chal-
lenges in Designing a Distributed Cryptographic File
System. In Cambridge International Workshop on Se-
curity Protocols, pages 177–192. Springer.

Catuogno, L., Löhr, H., Winandy, M., and Sadeghi, A.-R.
(2014). A trusted versioning file system for passive
mobile storage devices. Journal of Network and Com-
puter Applications, 38:65–75.

Dabek, F., Kaashoek, M. F., Karger, D., Morris, R., and
Stoica, I. (2001). Wide-area cooperative storage with
CFS. In ACM SIGOPS Operating Systems Review,
volume 35, pages 202–215. ACM.

Dennis, J. B. and Van Horn, E. C. (1966). Programming
semantics for multiprogrammed computations. Com-
munications of the ACM, 9(3):143–155.

Douceur, J. R., Adya, A., Bolosky, W. J., Simon, P., and
Theimer, M. (2002). Reclaiming space from dupli-
cate files in a serverless distributed file system. In Pro-
ceedings of the 22nd International Conference on Dis-
tributed Computing Systems, pages 617–624. IEEE.

Dworkin, M. (2015). SHA-3 Standard: Permutation-Based
Hash and Extendable-Output Functions. Federal Inf.
Process. Stds. (NIST FIPS), National Institute of Stan-
dards and Technology.

Dworkin, M. J., Barker, E. B., Nechvatal, J. R., Foti, J.,
Bassham, L. E., Roback, E., and Jr., J. F. D. (2001).
Advanced Encryption Standard (AES). Federal Inf.

ICISSP 2024 - 10th International Conference on Information Systems Security and Privacy

670



Process. Stds. (NIST FIPS), National Institute of Stan-
dards and Technology.

Gaul, A., Nakatani, T., and rrizun (2020). S3FS: FUSE-
based file system backed by Amazon S3). https:
//github.com/s3fs-fuse/s3fs-fuse/releases.

Han, S., Shen, H., Kim, T., Krishnamurthy, A., Anderson,
T., and Wetherall, D. (2015). MetaSync: File synchro-
nization across multiple untrusted storage services. In
2015 USENIX Annual Technical Conference (USENIX
ATC 15), pages 83–95.

Kaliski, B. (2000). PKCS #5: Password-Based Cryptogra-
phy Specification Version 2.0. RFC 2898.

Kallahalla, M., Riedel, E., Swaminathan, R., Wang, Q., and
Fu, K. (2003). Plutus: Scalable secure file sharing on
untrusted storage. In 2nd USENIX Conference on File
and Storage Technologies (FAST 03).

Khashan, O. A. (2020). Secure outsourcing and sharing
of cloud data using a user-side encrypted file system.
IEEE Access, 8:210855–210867.

Lazowska, E. D., Zahorjan, J., Cheriton, D. R., and
Zwaenepoel, W. (1986). File access performance of
diskless workstations. ACM Transactions on Com-
puter Systems (TOCS), 4(3):238–268.

Leibenger, D., Fortmann, J., and Sorge, C. (2016). EncFS
goes multi-user: Adding access control to an en-
crypted file system. In 2016 IEEE Conference on
Communications and Network Security (CNS), pages
525–533. IEEE.

Li, J., Chen, X., Li, M., Li, J., Lee, P. P., and Lou, W. (2013).
Secure deduplication with efficient and reliable con-
vergent key management. IEEE Transactions on Par-
allel and Distributed Systems, 25(6):1615–1625.

Lindner, P. and Norris, W. (2018). Perkeep (née Camli-
store): your personal storage system for life. https:
//github.com/perkeep/perkeep/releases.

Mashtizadeh, A. J., Bittau, A., Huang, Y. F., and Mazieres,
D. (2013). Replication, history, and grafting in the Ori
file system. In Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles, pages
151–166. ACM.

Merkle, R. (1979). Secrecy, authentication, and public key
systems. PhD thesis.

Messmer, S., Rill, J., Achenbach, D., and Mü ller Quade,
J. (2017). A novel cryptographic framework for
cloud file systems and CryFS, a provably-secure con-
struction. In IFIP Annual Conference on Data and
Applications Security and Privacy, pages 409–429.
Springer.

Microsoft, Inc. ((Accessed on January, 2023)). Azure
Blob Storage. ”https://azure.microsoft.com/en-
us/products/storage/blobs/ ”.

Muthitacharoen, A., Morris, R., Gil, T. M., and Chen, B.
(2002). Ivy: A read/write peer-to-peer file system.
ACM SIGOPS Operating Systems Review, 36(SI):31–
44.

Rosenblum, M. and Ousterhout, J. K. (1992). The design
and implementation of a log-structured file system.
ACM Transactions on Computer Systems (TOCS),
10(1):26–52.

Satyanarayanan, M., Kistler, J. J., Kumar, P., Okasaki,
M. E., Siegel, E. H., and Steere, D. C. (1990). Coda: A
highly available file system for a distributed worksta-
tion environment. IEEE Transactions on Computers,
39(4):447–459.

Shepler, S., Callaghan, B., Robinson, D., Thurlow, R.,
Beame, C., Eisler, M., and Noveck, D. (2003).
RFC3530: Network File System (NFS) Version 4 Pro-
tocol.

Team, E. (2018). EncFS: an Encrypted Filesystem for
FUSE. https://github.com/vgough/encfs/releases/tag/
v1.9.5.

Team, S. (2020). SSHFS (a network filesystem client to
connect to ssh servers). https://github.com/libfuse/
sshfs/releases.

Wilcox-O’Hearn, Z. and Warner, B. (2008). Tahoe: the
least-authority filesystem. In Proceedings of the 4th
ACM International Workshop on Storage Security and
Survivability, pages 21–26.

Wires, J. and Feeley, M. J. (2007). Secure file system
versioning at the block level. In proceedings of the
2nd ACM SIGOPS/EuroSys European Conference on
Computer Systems 2007, pages 203–215.

Wright, C. P., Martino, M. C., and Zadok, E. (2003).
NCryptfs: A Secure and Convenient Cryptographic
File System. In USENIX Annual Technical Confer-
ence, General Track, pages 197–210.

UPSS: A Global, Least-Privileged Storage System with Stronger Security and Better Performance

671


