Anomaly Detection Methods for Finding Technosignatures

Rohan Loveland and Ryan Sime

Dept. of Electrical Eng. and Computer Science, South Dakota School of Mines and Technology, Rapid City, SD, U.S.A.

Keywords: Anomaly Detection, Rare Category Detection, Variational Autoencoders, Technosignatures, Lunar, Spacecraft.

Abstract: Machine learning based anomaly detection methods are used to find technosignatures, in this case human activity on the Moon, in high resolution imagery for four anomaly detection methods: autoencoder based reconstruction loss, kernel density estimate of probability density, isolation forests, and the Farpoint algorithm. A deep learning variational autoencoder was used which provided both a reconstruction capability as well as a means of dimensionality reduction. The resulting lower dimension latent space data was used for the probability density and isolation forest methods. For our data, we use Lunar Reconnaissance Orbiter high resolution imagery on four known mission locations, with large areas broken into smaller tiles. We rank the tiles by anomalousness and determine the gains in efficiency that would result from showing the tiles in that order as compared to using random selection. The resulting efficiency in reduction of necessary amount of analyst time ranges into factors in the hundreds depending on the particular mission, with the Farpoint algorithm generally having the best performance. We also combine the tiles into bounding boxes based on spatial proximity, and demonstrate that this could provide a further improvement in reduction efficiency.

1 INTRODUCTION

Machine learning based anomaly detection methods have been developed and applied to a variety of applications, ranging from intrusion detection to medical applications to energy consumption (Nassif et al., 2021). In this effort, we apply anomaly detection to the problem of finding technosignatures, which can be defined as evidence of past or present usage or direct presence of technology. Here we approach this by looking for technosignatures on the Moon in lunar imagery (with the expectation that these will be from human activity). Thus, technosignatures in this case range from crashed probe remnants to rover tracks.

The Lunar Reconnaissance Orbiter (LRO) has been deployed in orbit around the moon to acquire high resolution imagery, which allows for the possibility of finding crashed probes and other extant technosignatures. We examine four missions in particular with known locations and widely differing characteristics (e.g. crewed landings and crashes).

We select imagery in large regions containing the four missions, and divide these regions into tiles, designating the small subset of tiles that contain technosignatures ("TSig tiles"). We apply four anomaly detection methods: autoencoder reconstruction loss, kernel density estimated probabilities, isolation forests, and the Farpoint algorithm. Each of the methods provides us with a ranking of the tiles from least to most anomalous, and we compare the relative efficiency in terms of which method would most rapidly find the TSig tiles.

2 RELATED WORK

Extensive research has been conducted in the field of anomaly detection, with surveys in (Xu et al., 2019),(Ruff et al., 2021). A number of Deep Learning (DL) based methods have been investigated, with a survey in (Pang et al., 2021).
In the area of anomaly detection applied to imagery, four standard methods for anomaly detection are described in detail in (Yang et al., 2021): density estimation, image reconstruction, one-class classification, and self-supervised classification. A number of the methods have been developed particularly for analyzing medical imagery; a survey of DL based methods is available in (Alloqmani et al., 2021). Ref. (Zhang et al., 2020) applied DL Anomaly Detection methods to finding Covid-19 in lung imagery with good results.

The density estimation techniques rely on the fact that data points that are considered to be anomalous should have a correspondingly low probability density. These techniques generally have some kind of scale parameter, e.g. 'bandwidth' in kernel density estimation (Rosenblatt, 1956). Isolation Forests bypass this by normalizing the results with expected values from binary search trees (Liu et al., 2008), and can still be used for density estimation, smoothed over the results from an ensemble of trees.

A different approach is based on using reconstruction error from DL autoencoders (Zhou and Paffenroth, 2017). The idea in this case is that the encoders are constrained to have small enough latent spaces so that they can only do a good job reconstructing "normal" points, and correspondingly less on those that are anomalous. The basic autoencoders were extended in (Kingma and Welling, 2013) to "Variational Auto Encoders" (VAE’s), which constrained the latent space representation to a multi-variate normal distribution. These were further extended to a Gaussian Mixture Model in (Zong et al., 2018).

The previous approaches are based on viewing anomaly detection as a binary classification problem, in some cases by finding an "anomalousness measure" that allows ranking the points and then applying a threshold to separate the 'anomalous' from the 'normal' points. A different approach is to view anomaly detection as a multi-class problem, where allowance for different kinds of anomalies are made (Loveland and Amdahl, 2019).

Machine learning methods have been applied for analyzing lunar data in a number of respects, with, e.g. (Kodikara and McHenry, 2020) classifying lunar soils. As our ability to see further into space and deploy probes with higher resolution sensors increases, more emphasis is being placed on detecting technosignatures (Haqq-Misra et al., 2022). Ref. (Lesnikowski et al., 2020) uses LRO imagery to look for technosignatures, but limits their approach to binary classification using VAE’s.

3 DATA

NASA’s LRO was launched in 2009 and has been orbiting the Moon since at an altitude of 50-200 km, making up to 4 passes per day (NASA, 2023a). Its instrumentation includes two Narrow Angle Cameras (NACs) that are designed to provide 0.5 meter-scale panchromatic images over a 5 km swath. The resulting high resolution data is available from NASA’s Planetary Data System archive (NASA, 2023b). Some examples of lunar imagery are shown in Fig. 1.

A table of anthropogenic impacts and spacecraft on the moon has been compiled at (Williams, 2023). This lists the dates, landing types, locations (if known), and statuses of whether or not the landing site has been imaged for over 70 spacecraft. Other sources of information are also available, e.g. (Wagner et al., 2017). All of these human activities left technosignatures that can be used to evaluate anomaly detection algorithm performance. For this research, we selected four different missions:

- Ranger 6 - Crash Landing;
- Apollo 12 - Crewed Landing with Rover;
- Apollo 13 - Crash Landing - Large Profile;
- Apollo 17 - Crewed Landing - Low Light.

For each of these missions, we extracted "region" images which contained the mission area as well as a significant amount of the surrounding lunar surface. The region images were broken into tiles of 64x64 pixels/side, overlapping with a stride of 32 pixels (both vertically and horizontally). Each of these tiles was then flattened into a vector in a 4,096 dimensional feature space.

The indexes of the tiles containing evidence of the spacecraft (technosignature or "TSig" tiles) were then identified and stored for performance evaluation. The region sizes varied slightly, but contained approximately 18,000,000 pixels, corresponding to approximately 17,000 tiles, with 4 TSig tiles for Ranger 6, 44 for Apollo 12 (the larger number is due to rover track tiles), 9 for Apollo 13, and 4 for Apollo 17. Example TSig tiles for each mission are shown in Fig. 2, in pseudo-color.

Figure 2: Positive technosignature tiles for each mission.
4 METHODS

We approach the problem of detection of technosignatures in two different ways:

• as a standard anomaly detection problem, in which binary classification is used with the data partitioned into an "anomaly" class and a "normal class".

• as a rare class detection problem within an imbalanced dataset where one or more majority classes dominate, and a number of different anomaly classes may exist.

The former leads to a "tiles-only" approach, in which individual tiles are just presented in an order determined by their anomalousness score.

The latter suggests that tiles that are from the same class should be grouped together, particularly if they are spatially close. This leads to the "bounding box" approach, where tiles that are close are grouped together and presented to the user as a single instance. Results from both of these approaches are presented below.

Beyond the form of what is presented to a user, a number of different methods can be used to determine anomalousness and/or membership in a rare class. We examine: a random baseline, deep autoencoders, deep variational autoencoders, isolation forests, and an unsupervised Farpoint implementation. Several of these methods can be used to produce an "anomalousness" score directly, which can then be ranked and presented in order. Each of these is discussed in more detail below.

4.1 Random Baseline

The performance of a random baseline algorithm can be calculated in terms of the expected values of the numbers of tiles that would have to be queried in order to find the TSig tiles.

The calculation is as follows: let \(N \) be the total number of tiles, \(G = \{ \text{tile } g_i : g_i \text{ contains a technosignature} \} \), and \(B, b, G \), and \(B \) be defined similarly for the non-TSig tiles. Then

\[
G + B = N
\]

For the tiles \(b_j \in B \), define indicator functions \(I_j \) such that:

\[
I_j = \begin{cases}
1, & \text{if } b_j \text{ is queried before any tiles } g_i \in G \\
0, & \text{otherwise}
\end{cases}
\]

Then,

\[
E[I_j] = \frac{1}{G + 1}
\]

Let \(X_1 - 1 \) be the number of tiles queried before a tile \(g_i \in G \) is found. Then

\[
X_1 - 1 = \sum_{j=1}^{B} I_j
\]

Therefore,

\[
E[X_1] = \frac{B}{G + 1} + 1 = \frac{N + 1}{G + 1}.
\]

This provides us with the expected value of the number of queries before the first TSig tile is drawn. This can then be extended by "starting over" with the \(N' \) remaining tiles, and \(G' \) remaining TS tiles. We can re-use equation 5 to get

\[
N' = N - \frac{N + 1}{G + 1} \quad \text{and} \quad G' = G - 1
\]

and then find the expected value of the number of queries to find the second TSig tile using

\[
E[X_2] = E[X_1] + \frac{N' + 1}{G' + 1}
\]

Some algebra results in

\[
\frac{N' + 1}{G' + 1} = \frac{N + 1}{G + 1} \quad \text{so that } E[X_n] = nE[X_1]
\]

4.2 Variational Auto Encoders

Deep autoencoders (AE’s) have been used as a method for anomaly detection based on the idea that they preferentially learn to encode "normal" samples, with correspondingly poor reconstruction for anomalous ones (Zhou and Paffenroth, 2017).

This is achieved by forcing the neural network to have a low dimensional "bottleneck" in between the encoder and decoder. This represents a latent space which has significantly lower dimensionality than the input and output (which have the same dimensionality). An anomalousness score for each input can be calculated using the autoencoder based on the mean squared error of the reconstruction loss. An extension of the autoencoder, the "variational autoencoder" (VAE), where the probability density of the latent space is shaped to be a multi-variate normal density, was proposed to improve performance (Kingma and Welling, 2013).

We compared the performance of AE’s to VAE’s and concluded that the VAE’s had generally better performance. We also compared a number of different dimensionalities for the latent space and ended up selecting 64 dimensions as providing the best performance.

The two primary differences in implementation between AE’s and VAE’s are the addition of random
sampling to the latent space term and a modification of the loss function. These are described briefly below, along with the specific neural net architectures shown in Fig.3.

4.2.1 Encoder Network

The inputs for the encoder are the tile vectors reshaped into 64x64x1 tensors. The encoder has three pairs of convolution layers: the first layer of each pair uses 3x3 kernels and strides of 2 with 32, 64, and 64 filters respectively. The second layer of each pair uses 1x1 kernels with strides of 1 and 16 filters each. For every layer, the ReLU activation function is used. The resulting 8x8x16 tensor is flattened and fed through two parallel dense layers which represent the means and variances of the VAE’s multi-variate normal distribution.

4.2.2 Sampler

The sampler adds random normal noise ε scaled by $\lambda = 0.05$ to the mean. The resulting latent space z is:

$$ z = \mu + \lambda \varepsilon \frac{\log_2^2}{2} $$

which is based off of the implementation of (Chollet, 2021).

4.2.3 Decoder Network

The decoder feeds the latent space into a 1024-node dense layer and reshapes it into an 8x8x16 tensor. There are six layers that mirror the encoder layers: convolution transposes with 16, 64, 16, 64, 16, and 32 filters respectively with the same kernels and strides as their encoder counterparts. After the transposes, a final convolution with 1 filter, a 1x1 kernel, and a stride of 1 is applied to reduce the filter space. Batch normalization and a sigmoid activation are applied before flattening the output to the original vector of size 4096.

4.2.4 Training

The model was trained with the Adam optimizer using a variety of batch sizes ranging from 32-512 over a range of 50-250 epochs with the best results using a batch size of 32 over 50 epochs. The total training loss for each epoch is the average of each batch’s loss, which is the sum of the average binary cross-entropy reconstruction loss and the Kullback-Leibler divergence loss:

$$ \text{loss} = \text{loss}_r + \text{loss}_{KL} $$

where

$$ \text{loss}_r = \frac{1}{S} \sum_{i=0}^{M-1} \sum_{j=0}^{L} \text{BCE}(x, r) $$

and

$$ \text{loss}_{KL} = -\frac{1}{2S} \sum_{i=0}^{L} \left(1 + \sigma_i^2 - \mu_i^2 - e^\log_2\sigma_i^2\right) $$

where BCE is the binary cross-entropy function, x and r are the original and reconstructed images, S is the batch size, M is the number of features in the tiles, and μ_i and σ_i are the mean and standard deviation in the latent space of dimensionality L such that $\{\mu_i, \sigma_i: i \in 1..L\}$.

4.2.5 Reconstruction Based Anomalousness

A measure of anomalousness based on reconstruction error, α_{RE}, is implemented with:

$$ \alpha_{RE} = \frac{1}{M} \sum_{i=1}^{M} (I_{rec}(i) - I_{input}(i))^2 $$

where $I_{rec}(i)$ and $I_{input}(i)$ are the intensity values of the flattened versions of the reconstructed and input images at location i, and M is the total number of pixels. Graphically, this is illustrated for two tiles in Fig. 4.

A histogram of α_{RE}, with the top 100 anomalies, is shown in Fig. 5. A bimodal distribution would
Figure 5: α_{RE} scores for Ranger 6 tiles encoded into the latent space of dimensionality \(L=64 \).

support a division between a ‘normal’ population and anomalous classes. We do see a possible ‘notch’ slightly to the left of the top 100 region which may be indicative of this, but we do not investigate this further here.

4.2.6 Likelihood Based Anomalousness

The previous section described a measure of anomalousness based on the reconstruction loss of the VAE. An alternative method is to view anomalies as samples falling in low probability density areas. An estimate of this underlying density from the latent space representation \(z \) can be obtained using kernel density estimation, which we modify to obtain an anomalousness measure of inverse log likelihood, \(\alpha_{LLk} \), using:

\[
\alpha_{LLk} = \frac{1}{\log \left(\frac{1}{N} \sum_{i=1}^{N} e^{-\frac{1}{2} \left(\frac{z - h}{\sigma_i} \right)^2} \right)}
\]

(14)

where \(h \) is the bandwidth/smoothing parameter, and \(N \) is the number of points. The bandwidth \(h \) is selected as:

\[
h = 10 \times \max \left\{ \sigma_i : i \in 1..L \right\}
\]

(15)

where \(\sigma_i \) is the standard deviation of the VAE in the \(i^{th} \) dimension in the latent space of dimensionality \(L \).

A histogram of \(\alpha_{LLk} \), with the top 100 anomalies, is shown in Fig. 6. We note the presence of a possible ‘notch’ separating ‘normal’ and anomalous populations here as well.

4.2.7 Dimensionality Reduction

Beyond the previously described anomalousness measures, the VAE can be used for dimensionality reduction since it produces a lower dimensional latent space after the encoder. Experimentation over a range of latent space dimensionalities showed that the performance of the VAE anomalousness calculations, as well as that of the isolation forest, was best using a 64 dimensional latent space.

4.3 Isolation Forests

Isolation Forests were developed as a tree-based anomaly detection technique based on the number of randomly selected node divisions necessary to isolate a given input sample (Liu et al., 2008). Averaging these path lengths over a large number of individually constructed trees allows for an ensemble estimate of the probability density, which can then be used as an estimate of anomalousness.

We used the sci-kit learn implementation on the 64-dimensional latent space data representation from the VAE encoder. The corresponding anomalousness score, which we designate as \(\alpha_{IF} \) for consistency, is based on:

\[
\alpha_{IF} = -1 \left(0.5 - 2 \frac{E(h(z))}{c(N)} \right)
\]

(16)

where \(c(N) \) is the average search length for a dataset of size \(N \),

\[
c(N) = 2 \ln N - 1 + \gamma - 2(N - 1)/N
\]

(17)

where \(\gamma \) is Euler’s constant, approximately 0.577. We insert a ‘-1’ into equation 16 in order to make more positive values indicate increasing anomalousness.

A histogram of \(\alpha_{IF} \), with the top 100 anomalies, is shown in Fig. 7. A case can be made for a ‘notch’ here as well.

4.4 Farpoint Algorithm

The Farpoint algorithm is based on treating anomaly detection as a rare class detection problem, rather than strict binary classification or anomalousness scoring (Loveland and Amdahl, 2019),(Loveland and Kaplan,
It is normally used in a semi-supervised, active mode, where samples are sequentially presented to an oracle/user who is queried for a corresponding label. The label is used by the algorithm to attempt to find a sample from a different class each time, in the process minimizing the overall number of queries required to find all classes. In this mode, Farpoint acts as both an algorithm for rare class detection and as a classifier for imbalanced datasets.

It is also possible to run Farpoint in an unsupervised mode, circumventing the oracle by providing every point with a different label. This was the mode used here, because the tiles contained a mixture of classes and we lacked the domain expertise to provide proper labels for everything except TSig tiles. In this mode it is clear that no meaningful classifier will result, but the order in which the tiles are presented can be seen as a ranking for anomalousness. The results of using both the original 4,096 dimensional input feature space and the reduced 64 dimensional latent space were compared, with the algorithm performing better on the full, unreduced, input.

5 RESULTS

We first present results for the tile-only approach, and then results for tiles combined into bounding boxes.

5.1 Tiles

Standard classification metrics (e.g. precision, recall) are not directly applicable here because a human analyst needs to be presented with only a single tile containing a TSig to trigger a subsequent, larger scale search. Therefore, we consider the number of queries required to find the first positive occurrence to be the salient measure. Expressing this relative to the expected results from a random strategy gives us "First Occurrence Efficiency" (FOE_M) for method "M":

\[
 \text{FOE}_M = \frac{\text{query # of first TSig using random selection}}{\text{query # of first TSig using algorithm}}
\]

The numerator is the expected value from the random selection method, given by Eqn. 5, while the denominator is dependent on the particular method chosen (e.g. VAE Reconstruction Loss).

The results from the various spacecraft missions are shown in Table 1. In general, the table shows that these algorithms could reduce the amount of samples that a human analyst might have to look at by factors in the hundreds.

Farpoint has the best performance, followed by isolation forests and then the VAE based techniques. The large variation in performance between scenarios is reflective of the differences in difficulty between them; Apollo 17 scored much lower than the others because it has a small profile, and can easily be mistaken as just another large rock, while Apollo 13 TSigs were so distinct that they ranked as the most anomalous tile by three of the four methods.

The number of queries that it takes to find the first four occurrences for each of the missions are shown in Fig. 8. The top two figures both show results for Ranger 6 for two different tile offsets, with little difference in number of queries to find the first occurrence, except for VAE Reconstruction Loss. Farpoint’s performance is best in 3 of the 4 scenarios for finding the first TSig, but generally takes longer to find the other occurrences after the first. This is to be expected given that it attempts to present classes that are different from any presented so far.

5.2 Bounding Boxes

Simply presenting tiles ranked by anomalousness score is potentially less useful to a user than grouping data samples into classes. This is apparent here where a large rock field might have a correspondingly large number of anomalous tiles, none of which are relevant. We partially address this by thresholding a number of anomalous tiles (e.g. 50) and then finding bounding boxes that include all 8-connected tile neighbors. This has the potential to further reduce the number of overall items that are separately presented to a user. The bounding boxes resulting from Farpoint and Ranger 6 are shown in Fig. 9. In this case the user would have only need to see seven bounding boxes before finding Ranger 6, as opposed to 14 tiles, thereby saving a factor of 2. Similar or greater reductions occur for the other scenarios.
Table 1: Shows the first occurrence efficiency (FOE) for the spacecraft missions and differing methods.

<table>
<thead>
<tr>
<th></th>
<th>Ranger 6</th>
<th>Apollo 12</th>
<th>Apollo 13</th>
<th>Apollo 17</th>
</tr>
</thead>
<tbody>
<tr>
<td># TSig Tiles</td>
<td>4</td>
<td>44</td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td>Random Selection</td>
<td>3422</td>
<td>380</td>
<td>1711</td>
<td>3422</td>
</tr>
</tbody>
</table>

First Occurrence Efficiencies

<table>
<thead>
<tr>
<th></th>
<th>VAE Rec. Loss</th>
<th>VAE 1/Log Likelihood</th>
<th>Isolation Forest</th>
<th>Farpoint (Unsupervised)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>11.0</td>
<td>3.4</td>
<td>1711.0</td>
<td>7.8</td>
</tr>
<tr>
<td></td>
<td>85.6</td>
<td>13.1</td>
<td>1711.0</td>
<td>7.0</td>
</tr>
<tr>
<td></td>
<td>148.8</td>
<td>7.8</td>
<td>1711.0</td>
<td>14.3</td>
</tr>
<tr>
<td></td>
<td>244.4</td>
<td>380.0</td>
<td>342.2</td>
<td>15.3</td>
</tr>
</tbody>
</table>

Figure 8: First four occurrences of technosignature tiles for each spacecraft.

Figure 9: Bounding boxes and queried tiles corresponding to the first 9 unique regions detected by Farpoint.

6 CONCLUSION

Applying machine learning based anomaly detection methods to lunar imagery can significantly reduce the amount of time required to find technosignatures, potentially by factors ranging into the 100’s or more. Of the methods used, Farpoint has generally better performance than VAE based reconstruction loss, VAE probability density, and isolation forests, even used in it’s unsupervised mode.

Moving beyond the binary classification of anomalies to a multi-class framework offers the potential for even more gains in reduction efficiency, as evidenced by the combination of anomalous tiles into bounding boxes.

This effort has focused on using known mission locations in order to allow for performance evaluation, but the present work can easily be extended, with input from an appropriate domain expert, to mount a methodical search for lost probe locations. Part of this process would ideally involve further algorithm development to better address dealing with data at massive scale (e.g. imagery of the entire moon).

In the process of conducting that effort, it would be desirable to curate the LRO imagery based on the optimal solar incidence angles to only process images with high contrast lighting. This is motivated by the difficulty that each method had locating the Apollo 17 TSig tile compared to the other missions, which could be attributed to the weak lighting of the imaged area resulting in low contrast tiles.

639
Future work will also involve extending the existing algorithm to address the numerous applications in streaming data in system health monitoring, cybersecurity, etc.

REFERENCES

