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Abstract: Human-Robot collaboration (HRC) plays a critical role in enhancing productivity and safety across various
industries. While reactive motion re-planning strategies have proven useful, there is a pressing need for proac-
tive control involving computing human intentions to enable efficient collaboration. This work addresses this
challenge by proposing a deep learning-based approach for forecasting human hand trajectories and a heuris-
tic optimization algorithm for proactive robotic task sequencing problem optimization. This work presents
a human hand trajectory forecasting deep learning model that achieves state-of-the-art performance on the
Ego4D Future Hand Prediction benchmark in all evaluation metrics. In addition, this work presents a problem
formulation and a Dynamic Variable Neighborhood Search (DynamicVNS) heuristic optimization algorithm
enabling robot to pre-plan their task sequence to avoid human hands. The proposed algorithm exhibits sig-
nificant computational improvements over the generalized VNS approach. The final framework efficiently
incorporates predictions made by the deep learning model into the task sequencer, which is evaluated in an
experimental setup for the HRC use-case of the UR10e robot in a visual inspection task. The results indicate
the effectiveness and practicality of the proposed approach, showcasing its potential to improve human-robot
collaboration in various industrial settings.

1 INTRODUCTION

Human-robot collaboration (HRC) has gained signif-
icant importance in recent years due to the increas-
ing demand for automation. In collaboration with
humans, robots can improve productivity, efficiency,
and safety in the manufacturing industry (Matheson
et al., 2019). However, achieving effective HRC re-
quires robots to comprehend and respond to human
intentions and actions, which can be challenging in
dynamic environments (Li et al., 2023).

Current research in HRC has primarily focused
on developing reactive motion re-planning strategies
that can adapt to dynamic environments (Li et al.,
2021). While these reactive strategies have proven
useful in different use cases ranging from domestic
to industrial environments (Ajoudani et al., 2018),
they have limitations in anticipating and planning for
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future changes in human-present environments. To
overcome these issues, researchers have emphasized
the significance of proactive control through the com-
putation of human intentions (Fan et al., 2022; Li
et al., 2023). By accurately predicting human inten-
tions, robots can plan their actions in advance, en-
abling smoother and more efficient collaboration. In
particular, forecasting human hand trajectories pro-
vides valuable information for robot motion planners
to determine the appropriate task sequence.

Hand is a natural and ubiquitous mode of ex-
pression for the human and is an effective mean of
communication between the human and the robot
(Mukherjee et al., 2022). While several works have
proposed using human hand trajectory estimation to
augment robot planners, these works are often tai-
lored to specific use cases, are limited in the diver-
sity of used data (Mainprice and Berenson, 2013; Lyu
et al., 2022) or by assuming deterministic and static
human behavior (Cheng and Tomizuka, 2021). Devel-
oping an efficient and proactive robot motion planner
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necessitates the integration of efficient human hand
forecasting and robot task sequencing modules.

Robotic task sequencing is the process of opti-
mizing the sequence and order of task visits to im-
prove the overall performance of the robotic system
in industrial applications. Although various research
has been focused on trajectory optimization (Ata,
2007), efficient control and end-effector path plan-
ning (Alatartsev et al., 2014), the popular approach
is to model task sequencing problem as a Traveling
Salesman Problem (TSP) (Alatartsev et al., 2015).
The TSP is an NP-hard problem, which means that
it is computationally infeasible to solve for large in-
stances and thus an efficient algorithm is required
to find optimal solutions in shortest time. To ad-
dress the aforementioned challenges, this work pro-
poses a deep learning-based framework for predict-
ing human hand trajectories and integrating the pre-
dictions into robot task sequencer. The presented
framework includes a state-of-the-art deep learning
model trained on diverse human hand motion data
that forecasts future hand trajectories. Previous ap-
proaches have attempted to solve the problem of
hand position forecasting (Chen et al., 2022), but
this work achieved higher evaluation results with the
same memory requirements, by adapting the pre-
sented model’s training procedure. The predicted tra-
jectories are then utilized by the robot task sequencer
to optimize the robot’s task sequencing. A robot
adaptive task sequencing module employs a Dynamic
Variable Neighborhood Search heuristic algorithm to
plan the most efficient task sequence. By forecast-
ing future human hand positions, the robot can proac-
tively adjust its plan to avoid interrupting human in-
tentions, resulting in seamless and efficient collabora-
tion. This work presents the following contributions:

• Generalized model that achieved state-of-the-art
performance on future hand position forecasting
task.

• Modified Travelling Salesman Problem formula-
tion to model future hand position occupancy.

• Dynamic Variable Neighborhood Search heuristic
algorithm to plan the most efficient task sequence.

2 RELATED WORK

Future Hand Position Forecasting. Predicting hu-
man hand trajectories is a complex task that requires
understanding the intricate and dynamic nature of hu-
man movement. Recent works addressed the hand
forecasting task, but they are limited by the scope
of the applied datasets, which capture hand interac-

tions in limited settings (Fan et al., 2018; Liu et al.,
2020; Liu et al., 2022). Fan et al. introduced a
two-stream convolutional neural network architecture
that predicts future object and hand positions in video
frames based on previous frames (Fan et al., 2018).
Their innovation lies in forecasting the precise loca-
tions of objects in videos, a task not previously opti-
mized for. However, the evaluation was limited to a
specific dataset of human interactions, which may not
fully represent daily hand interactions.

Liu et al. developed a deep-learning model for
anticipating human-object interactions in egocentric
videos, introducing the concept of motor attention to
capture intentional hand movements (Liu et al., 2020).
This model jointly predicts hand trajectories, interac-
tion hotspots, and action labels, outperforming pre-
vious methods on benchmark datasets. However, it
relies on manual annotations and may face scalability
challenges with other datasets.

Liu et al. presented the Object-Centric Trans-
former (OCT) model to forecast future hand-object
interactions in egocentric videos (Liu et al., 2022).
This model captures object-centric interactions and
hand-object motion dependencies, demonstrating im-
proved performance on a new dataset generated from
existing ones. This work’s limitations include the
dataset’s limited size and the assumption that objects
are static during interactions.
Robotics Task Sequencing. Simultaneously, the
development of a proactive and dynamic task se-
quencer poses its challenges. Several works ad-
dressed the robotic task sequencing optimization
problem based on the Traveling Salesman Problem
formulation (Dubowsky and Blubaugh, 1989; Edan
et al., 1991; Zacharia and Aspragathos, 2005; Ko-
lakowska et al., 2014). However, these approaches
have not addressed the dynamic time windows for-
mulation due to the forecasting of human inten-
tions. Dubowsky and Blubaugh introduced an ATSP-
based method to plan time-optimal robotic manipula-
tor motions for point-to-point tasks (Dubowsky and
Blubaugh, 1989). They used dynamic programming
to minimize task completion time but didn’t consider
multiple inverse kinematics solutions, limiting opti-
mality. Edan et al. aimed to minimize robot cycle
time while accounting for kinematics and dynamics
(Edan et al., 1991). Their approach involved a TSP
formulation and neural network solving but suffered
from extensive computational time due to frequent
cost matrix recalculations.

Zacharia et al. proposed an optimization-based
TSP solution considering multiple inverse kinemat-
ics solutions using Genetic Algorithms (Zacharia and
Aspragathos, 2005). While efficient, it is heuristic in
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nature, so optimal solutions cannot be guaranteed.
Kolakowska et al.’s recent approach employs

mathematical constraints and a corresponding solver
for up to ten points (Kolakowska et al., 2014). How-
ever, the exponential computational growth with the
number of points limits its applicability to large sce-
narios.
Human-Robot Collaboration Using Human Hand
Position Prediction. Mainprice and Berenson intro-
duced a framework for safe human-robot collabora-
tion in shared workspaces (Mainprice and Berenson,
2013). They utilized a prediction algorithm to con-
struct a 3D workspace occupancy space, enhancing
safety and efficiency. However, the limited class and
trajectory diversity restrict real-world applicability.

Landi et al. combined model-based and data-
driven approaches to predict human arm movements
(Landi et al., 2019). They tracked hand positions with
a Kinect camera, fitting them to a model and incorpo-
rating neural networks. However, the focus on detect-
ing reaching motions towards the robot and computa-
tional complexity are some of its limitations.

Cheng and Tomizuka proposed a hierarchical
framework for long-term human hand trajectory pre-
diction and action duration estimation (Cheng and
Tomizuka, 2021). They employed a sigma-lognormal
function and an online algorithm for parameter ad-
justment. However, their assumption of deterministic
human actions may not hold in real-world scenarios.

Lyu et al. presented an efficient HRC pipeline
encompassing trajectory prediction, target estimation,
and robot trajectory generation (Lyu et al., 2022).
While this pipeline ensures safe collaboration, it re-
quires evaluation on more complex tasks and assumes
a static environment, limiting its real-world applica-
bility.

3 FUTURE HAND POSITION
FORECASTING

In this section, the deep learning model used to pre-
dict future hand positions from a video sequence is
presented and evaluated. This model is trained and
evaluated on the Ego4D dataset and achieved state-
of-the-art performance on Future Hand Position Fore-
casting benchmark.

3.1 Ego4D Dataset

Training deep learning models requires a diverse
dataset that contains annotations of human hands in
natural daily interactions. The Ego4D dataset (Grau-
man et al., 2022) is a large-scale egocentric video

dataset and benchmark suite that contains data suit-
ing that task. It consists of 3670 hours of record-
ings capturing daily life activities across 74 world-
wide locations and nine countries. The dataset in-
cludes diverse occupational backgrounds and encom-
passes hand-object interactions in various environ-
ments. It provides hand annotations along with a
hand position forecasting benchmark for evaluation.
The benchmark focuses on predicting future hand po-
sitions in future key frames based on a recording of
hands for consecutive 2 seconds. The benchmark de-
fines five key frames: the contact frame (xc), the pre-
condition frame (xp), and three frames preceding the
pre-condition frame by 0.5s, 1.0s, and 1.5s, denoted
as xp1, xp2, and xp3, respectively.

3.2 Evaluation Metric

The evaluation metric is based on the Future Hand
Prediction (FHP) benchmark presented as part of the
Ego4D dataset (Grauman et al., 2022). The bench-
mark is based on two error metrics: Mean Key
Frame Displacement Error (M.Disp.) and Contact
Key Frame Displacement Error (C.Disp.). Mean Key
Frame Displacement Error is defined in Eq. 1.

Dm =
1
n ∑

i∈Ht

||hi− ĥi|| (1)

Ht denotes a set of visible hand positions in key
frames, n denotes the size of the set Ht , hi refers to
the predicted hand position, while the ĥi refers to the
ground truth hand location. It should be noted that
if the hand is not present in the annotation, zeros are
padded into the ĥi.

The Contact Key Frame Displacement Error is de-
fined in Eq. 2.

Dc = ||hc− ĥc|| (2)

hc refers to the predicted hand position in the contact
frame, while the ĥc refers to the ground truth hand
position in the contact frame.

It should be noted that the presented evaluation
metric does not penalize the model if it gives predic-
tions on frames without hands.

3.3 UniFormer Model

The UniFormer model is used for forecasting future
hand positions. The UniFormer is a unified trans-
former architecture for efficient spatiotemporal repre-
sentation learning from high-dimensional videos (Li
et al., 2022). It addresses the challenges of spatiotem-
poral redundancy and dependency by combining the
strengths of 3D CNNs and vision transformers. The
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UniFormer architecture serves as a backbone in all
experiments conducted in this work. The UniFormer
is used as the feature extraction backbone and is fol-
lowed by a linear mapping function as a regressor.

3.4 Multitask Learning Loss

This work utilizes a multi-task learning loss to facil-
itate the learning of future hand positions and occu-
pancy representations. Firstly, the regression task in-
volves predicting hand positions in spatial coordinates
for both hands in five key frames. Each prediction
target vector consists of 20 values, where two repre-
sent the left and right hand, two represent the x and
y coordinates, and five represent the key frames. In
addition to those annotations present in the dataset,
this work introduces annotations for learning the con-
tact delay time ct . This is accomplished by calculat-
ing the difference between the ground truth contact
frame time and the frame time of the first key frame.
Consequently, the model becomes capable of learn-
ing and predicting the precise time delay between the
pre-condition and contact frames. The resulting target
representation vector comprises 21 values employed
in the regression task.

The regression component measures the Smooth
L1 loss between the predicted and ground truth val-
ues. Subsequently, the losses for all 21 points are
summed and divided by the total sum of mask val-
ues. This loss component encourages the model to
generate accurate predictions for all values at the ex-
pense of producing false positives and is defined in
Equations 3 and 4.

li =

{
0.5 · (hi− ĥi)

2, if |hi− ĥi|< 1
|hi− ĥi|−0.5, otherwise

(3)

RLoss =
∑

N
i=1 li

∑
N
i=1 mi

(4)

The classification component introduces an addi-
tional branch in the model output that predicts the
existence mask of the hand in a future key frame or
contact with the object. This branch outputs a single
value between 0 and 1, representing the probability of
the target’s existence. The ground truth for this branch
is a binary value of 1 (indicating target existence) or
0 (indicating target non-existence). The binary cross-
entropy loss is computed by comparing the predicted
existence probability with the ground truth existence
label as shown in Equation 5.

CLoss =−
N

∑
i=1

m̂i log(mi) (5)

The total loss is then formulated as a combina-
tion of the regression loss and the existence loss, suit-
ably weighted. The following equation represents the
computation of the total loss:

TotalLoss = α ·RLoss+β ·CLoss (6)

In Equation 6, the weights α and β are assigned
to balance the contributions of the regression and the
binary cross-entropy loss, respectively.

3.5 EgoVLP Pretraining

In this work, clip-level annotations from EgoVLP are
utilized for model pretraining. Specifically, the verb-
filtered clip-level annotations provided by Chen et al.
(Chen et al., 2022) are employed. Authors highlight
that video-language pretraining based on the entire
Ego4D dataset significantly improves model perfor-
mance on various downstream tasks. Their work sug-
gests that using pretrained backbones directly yields
inferior performance due to the distribution gap be-
tween egocentric and exocentric data.

4 DYNAMIC TASK SEQUENCING

In this section the Dynamic Traveling Salesman Prob-
lem with Time Windows problem formulation along
with the heuristic optimization algorithm is presented.
The trajectories predicted by the deep learning model
are utilized by the Dynamic Variable Neighborhood
Search heuristic algorithm to plan the most efficient
task sequence. By forecasting future human hand po-
sitions, the robot can proactively adjust its plan to
avoid interrupting human intentions, resulting in a
seamless and efficient collaboration.

4.1 Dynamic Traveling Salesman
Problem with Time Windows
Formulation

This work presents a formulation of the Dynamic
Traveling Salesman Problem with Time Windows (D-
TSPTW), introducing a modification to the traditional
TSPTW problem by incorporating time variability
into node parameters. The introduction of time vari-
ability in the D-TSPTW implies that the problem
graph G = (V,A), along with its node parameters, can
undergo changes over time. The main difference with
a well-established Time-Dependent Traveling Sales-
man Problem with Time Windows (TD-TSPTW) is
that D-TSPTW assumes changes in the customer con-
figurations, while TD-TSPTW assumes changes in
travel times (Vu et al., 2020).
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To define the problem, specific restrictions are im-
posed. Firstly, the graph structure and node param-
eters remain unchanged during the execution of one
cycle. Here, a cycle is defined as a sequence of ac-
tions performed by an agent, which includes servic-
ing a node, traveling to another node, and waiting
for the start time of the next node. Additionally,
D-TSPTW assumes that only the following parame-
ters can change between each cycle: the number of
present nodes, their start times, and due times. Node
coordinates and service times are assumed to remain
constant throughout the execution of the task.

The D-TSPTW task is formalized as a tour on a
time-expanded network denoted as D = (N ,A). The
time in this notation is split into discretized cycles, as
described earlier. The node set N consists of nodes
(i, t), where i∈N and t ∈ [ai,bi], representing the time
window for node i. The travel arc set A comprises
travel arcs represented as ((i, t),( j, t̂)), where i ̸= j,
(i, j) ∈ A , t ≥ ai, and max(ai, t + τi j(t))≤ t̂ ≤ bi.

The binary variable xa is equal to 1 if and only
if the arc a = ((i, t),( j, t̂)) is visited. Furthermore,
ca = ci j(t) denotes the non-negative travel cost of arc
a. Thus, the optimization task can be defined as an
integer programming problem, as shown in Equation
7.

min ∑
a∈A

caxa

s.t. ∑
a∈A

xa = 1

t̂ ≥ t + ca−M(1− xa) ∀a ∈ A
ai ≤ t ≤ bi ∀i ∈V
xa ∈ {0,1} ∀a ∈ A

(7)

The objective function in Equation 7 aims to min-
imize the total cost of the tour. The first constraint
ensures that each arc in the set A is visited exactly
once. The second constraint enforces the requirement
that the visiting time of node j must be greater than
or equal to the sum of the visiting time of node i and
the associated arc cost.

This work assumes that the number of cycles is 5,
where each cycle correspond to a particular time in
the future as denoted in each key frame definition in
section 3.1.

4.2 Dynamic Variable Neighborhood
Search Heuristic Algorithm

A heuristic solver for the Dynamic Traveling Sales-
man Problem with Time Windows (D-TSPTW) is
now presented. The motivation for this work comes

from the two-stage heuristic presented by da Silva
and Urrutia (Da Silva and Urrutia, 2010) for the tradi-
tional TSPTW problem. Their approach combines the
Variable Neighborhood Search (VNS) for generating
feasible solutions and the Variable Neighborhood De-
scent (VND) for optimizing local solutions. The algo-
rithm they presented demonstrated computational ef-
ficiency compared to state-of-the-art approaches and
achieved superior results in terms of execution time
on most of the benchmark instances (Da Silva and Ur-
rutia, 2010).

The approach proposed by da Silva and Urrutia is
limited to the static TSPTW problem and does not ac-
count for variations in node parameters as introduced
in the extended D-TSPTW problem formulation. This
approach can be applied in a straightforward manner
and be used to solve the D-TSPTW problem by tack-
ling each cycle individually. This approach will be
used as a baseline in our experiments.

To improve the optimization performance, this
work proposes an extension of the GVNS opti-
mization algorithm to solve the D-TSPTW problem
called DynamicVNS. The proposed algorithm is de-
signed to tackle the dynamic nature of the prob-
lem and adapt to changing node parameters. The
main difference with the algorithm proposed by da
Silva and Urrutia is in the construction phase. The
GetFeasibleSolution() algorithm, shown in Algo-
rithm 1, is responsible for obtaining a feasible so-
lution in the construction phase for the D-TSPTW
problem. It takes the objective function f (·) and
the number of nodes n as inputs, and optionally, a
previous solution previousSolution. The algorithm
repeatedly searches for feasible solutions, employ-
ing perturbation and local search operation using
Local1Shift() function until a feasible solution is
found. If previousSolution is provided, the algorithm
starts with this solution. Otherwise, it begins with
a new solution using the NewSolution() function,
which generates a path depending on an initializa-
tion strategy. The initialized path can be sorted by
customers’ ready or due times or randomly shuffled.
The perturbation is controlled by the variable k, which
is increased iteratively to explore different neighbor-
hoods until a feasible solution is found or until kmax
is reached. As a result, each consecutive expanded
problem formulation is solved until the last one.

5 RESULTS

This section begins by showcasing the outcomes of
the UniFormer model training and evaluation exper-
iments. Following that, it provides an explanation
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Data: f (·), n, previousSolution = None
Result: x
repeat

k← 1;
if previousSolution ̸= None then

x← previousSolution;
else

x← NewSolution(n);
end
x← Local1Shi f t(x);
while x is unfeasible and k < kmax do

x′← Shake(x,k);
x∗← Local1Shi f t(x′);
if f (x∗)< f (x) then

x← x∗;
k← 1;

else
k++;

end
end

until x is feasible;

Algorithm 1: GetFeasibleSolution() algorithm.

of the DynamicVNS heuristic optimization algorithm
experiments. The section concludes by presenting the
HRC setup, including both simulation and real robot
experiments.

5.1 UniFormer Model Training

The UniFormer model was firstly pretrained on the
video-language EgoClip dataset and then fine-tuned
for the future hand prediction task. The UniFormer
model is fine-tuned on the future hand prediction task
with the following configuration. Training is per-
formed with a batch size of 16 and 8 segments per
sample. The input size and short side size were set
to 320. Each input consisted of 4 frames. The op-
timizer used is AdamW, with a learning rate of 1e-
3 and beta values of 0.9 and 0.999. Weight de-
cay is set to 0.05. The training process spanned 30
epochs, with 5 warm-up epochs. During testing, 2
segments were used, and 3 crops were taken per seg-
ment. The sampling strategy involved sampling 8
frames in 30 temporal views, which showed best per-
formance across mutliple experiments. Moreovoer,
experiments showed that better evaluation results on
the validation sets could be achieved by reducing the
learning rate to 10e-4, removing abnormal videos, and
employing early stopping. Finally, the model was
trained using a multi-task learning approach, incor-
porating the best learning parameters and sampling
strategy. The learning task employed the multi-task

loss defined in Equations 3, 4, 5, and 6.
Despite the evaluation benchmark not explic-

itly considering the computed multi-task output, the
model achieved state-of-the-art performance on the
FHP benchmark. The final model’s performance is
compared with previous state-of-the-art approaches in
Table 1, demonstrating superior results on the test and
validation data. All presented UniFormer-based re-
sults use the (320, 8, 30) sampling strategy for com-
mon evaluation.

5.2 Qualitative Results

Figure 1 showcases qualitative results from the fi-
nal trained model on sample video snippets extracted
from the validation set. The figure depicts the predic-
tions made on five key frames (xp3, xp2, xp1, xp, xc) in
sequential order. Green dots represent ground truth
hand positions, while blue dots depict the model’s
predictions. The presented visualization illustrates
that the model can clearly model human hand posi-
tions in future frames with varying people, environ-
ments, and lighting conditions. The predicted tra-
jectory clearly follows the intended human trajectory
with minor differences.

Despite minor differences, the model’s overall
performance demonstrates its ability to accurately
predict human hand positions in various scenarios.
These qualitative results provide valuable insights
into the model’s capabilities and highlight its poten-
tial for real-world applications.

Figure 1: Qualitative results showing predictions made by
the final model on the 5 key frames in sequential order (xp3,
xp2, xp1, xp, xc). Ground truth hand positions are repre-
sented in green dots, and predictions made by the model are
represented in blue dots.

5.3 DynamicVNS Implementation and
Evaluation

The DynamicVNS algorithm, described in the
methodology section, was implemented in Python
3.10. The algorithm’s performance was evaluated us-
ing three different route initialization strategies: ran-
dom shuffling (Random), sorting based on node due
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Table 1: Evaluation of the best-performing models on the test set and comparison with previously presented state-of-the-art.

Set Method Left Hand Right Hand
M.Disp. ↓ C.Disp. ↓ M.Disp. ↓ C.Disp. ↓

Test

I3D (Grauman et al., 2022) 52.98 56.37 53.69 56.17
UniFormer (Chen et al., 2022) 43.85 53.33 46.25 53.38

UniFormer + Multi-Task Loss 43.00 53.47 44.36 53.42

Table 2: Comparison experiments of the DynamicVNS and GVNS algorithm on time unrolled sequencing tasks using different
initial path generation strategies.

# Random Due Time Ready Time
DynamicVNS GVNS DynamicVNS GVNS DynamicVNS GVNS

mean 0.326 4.814 0.563 28.200 0.341 0.346
std 0.00179 0.56678 0.00976 0.24479 0.00846 0.00406

time bi (Due Time), and sorting based on node ready
time ai (Ready Time). The execution time of the Dy-
namicVNS algorithm was recorded for each initial-
ization strategy and compared to the GVNS (Da Silva
and Urrutia, 2010). Table 2 presents the performance
differences for each strategy. Each strategy-algorithm
pair was evaluated ten times on the same benchmark
instance, and the execution time was recorded. The
table 2 displays the mean and standard deviation of
the computational times across all runs.

The results clearly show that DynamicVNS out-
performs the GVNS algorithm on all task instances
while generating solutions with the same travel cost.
The algorithm exhibits a noticeable speedup when
using the random and due time initialization strate-
gies, but the speedup is smaller when using the ready
time initialization strategy. The superior performance
of DynamicVNS can be attributed to its inherent de-
sign, which preserves and utilizes temporal informa-
tion from previous runs. It should be noted that while
the random shuffling method shows the fastest execu-
tion time in the presented table, it was not able to find
the optimal solutions in some of the benchmark in-
stances. Therefore, the ready-time initialization strat-
egy offers the best speed and robustness trade-off.

5.4 HRC Experiments

Robotic task sequencing experiments were conducted
in simulation and on a real robot setup. Firstly,
the simulation environment in the Gazebo simulation
software was constructed. The simulation environ-
ment consists of a UR10e robot with a mounted cam-
era and a table with four objects on top. The sim-
ulation environment can be seen in Figure 2. Initial
experiments with pre-recorded hand movements were
conducted in the simulation environment to validate
robot task-planning behavior.

The real setup with the same configuration can be
seen in Figure 3. The only difference is the overhead-

mounted camera that captures the hand movements
and sends the images to the camera stream. Multiple
interaction experiments were conducted to confirm
the feasibility of the proposed framework for real-
time HRC application. Experiments have shown that
the forecasting algorithm can accurately predict hand
positions, and the task sequencing algorithm produces
explainable task sequences that do not interfere with
human intentions.

Figure 2: Simulation environment setup consisting of a sim-
ulated UR10e robot and tabletop objects.

Figure 3: Real setup consisting of UR10e robot, overhead
mounted camera, and tabletop objects.

6 CONCLUSIONS

The comprehensive framework developed in this pa-
per provides an overview of the development of
proactive robotic planner. By leveraging deep mod-
els for future hand position forecasting and integrat-
ing them with task sequencing algorithms, safer and
more productive human-robot interactions can be fa-
cilitated in diverse real-world applications. As a di-
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rection for future work, further refinements and opti-
mization of the framework can be explored alongside
more sophisticated travel cost estimation based on
robot motion profiles, integration of obstacle avoid-
ance modules, and more use-case experiments. More-
over, investigations into end-to-end approaches of hu-
man intention forecasting for robot task sequencing
may prove to be effective.
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