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Abstract: Saliency Object Detection (SOD) has several applications in image analysis. The methods have evolved
from image-intrinsic to object-inspired (deep-learning-based) models. However, when a model fails, there
is no alternative to enhance its saliency map. We fill this gap by introducing a hybrid approach, the Iterative
Saliency Enhancement over Superpixel Similarity (ISESS), that iteratively generates enhanced saliency maps
by executing two operations alternately: object-based superpixel segmentation and superpixel-based saliency
estimation - cycling operations never exploited. ISESS estimates seeds for superpixel delineation from a given
saliency map and defines superpixel queries in the foreground and background. A new saliency map results
from color similarities between queries and superpixels at each iteration. The process repeats, and, after a
given number of iterations, the generated saliency maps are combined into one by cellular automata. Finally,
the resulting map is merged with the initial one by the maximum between their average values per superpixel.
We demonstrate that our hybrid model consistently outperforms three state-of-the-art deep-learning-based
methods on five image datasets.

1 INTRODUCTION

Saliency Object Detection (SOD) aims to identify the
most visually relevant regions within an image. SOD
methods have been used in many tasks, such as image
segmentation (Iqbal et al., 2020), compression (Wang
et al., 2021a), and content-based image retrieval (Al-
Azawi, 2021).

Traditional SOD methods combine heuristics to
model object-inspired (top-down) and image-intrinsic
(bottom-up) information. Object-inspired models ex-
pect that salient objects satisfy specific priors based
on domain knowledge – e.g., salient objects in natural
images are often centered (Cheng et al., 2014), fo-
cused (Jiang et al., 2013), or have vivid colors (Peng
et al., 2016). Image-intrinsic models provide can-
didate background and foreground regions used as
queries and expect that salient regions are more sim-
ilar to the foreground than background queries (Yang
et al., 2013). Thus, their results strongly rely on those
preselected assumptions.

Recently, deep-learning-based SOD methods have
replaced preselected assumptions with examples of
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salient objects from a given training set. Instead of
modeling assumptions of common salient characteris-
tics, these models learn object-inspired features from
abundant annotated data.

Although deep SOD methods are among the most
effective, they only rely on object-inspired features
learned from the training images. For that, the
saliency maps created may drift away from the results
humans expect, where foreground parts with similar
colors to the ones highlighted are missed (see Fig-
ure 1). Currently, there is no alternative to improve
said saliency maps and add image-intrinsic character-
istics to these models. We fill this gap by proposing a
hybrid model named Iterative Saliency Enhancement
over Superpixel Similarity (ISESS), which explores
the color similarity of superpixels in multiple scales
to improve the output of deep object-inspired models.

ISESS is meant to improve saliency maps con-
taining genuinely detected salient objects whose parts
(superpixels) have similar colors. Although other
similarity criteria could be used, its current imple-
mentation uses only color similarity. It can improve
an input saliency map over a few iterations of two al-
ternate operations: object-based superpixel segmen-
tation (”Belém et al., 2019) and superpixel-based
saliency estimation. ISESS uses an input saliency
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(a) (b) (c) (d)
Figure 1: (a) Original image (top) and ground-truth seg-
mentation (bottom). (b)-(d) BASNET (Qin et al., 2019)
MSFNet (Miao et al., 2021), and U²Net (Qin et al., 2020)
saliency maps (top) and their enhanced maps (bottom).

map to estimate seeds for superpixel delineation and
define superpixel queries in the foreground and back-
ground. A new saliency map is obtained by mea-
suring color similarities between queries and super-
pixels, such that salient superpixels are expected to
have high color similarity with at least one foreground
query and low color similarity with most background
queries. The process repeats for a given number of
iterations, with a decreasing quantity of superpixels
(increasing scale) per iteration. Although the process
is meant to create progressively better saliency maps
(Figure 2), we combine all output maps by cellular
automata (Qin et al., 2015). By using the deep model
as input, ISESS removes the need for preselected as-
sumptions, providing an image-intrinsic extension of
the object-inspired model. Finally, the image-intrinsic
and initial (object-inspired) maps are merged by the
maximum between their average values per super-
pixel, creating a hybrid saliency model. It is worth
noting that ISESS does not depend on the choice of
the object-inspired method.

We demonstrate that our hybrid model can
improve three state-of-the-art deep SOD methods
(namely Basnet (Qin et al., 2019), U²Net (Qin et al.,
2020), and Auto-MSFNet (Miao et al., 2021)) using
five well-known datasets. These results are confirmed
by several metrics in all datasets, especially when im-
ages have multiple salient objects. Qualitative analy-
sis also shows considerably enhanced maps whenever
deep models fail to capture salient regions.

Therefore, the contributions of this paper are:

• A hybrid model for saliency object detection
that does not rely on preselected assumptions
while using object-inspired and multiscale image-
intrinsic information.

• A first method to enhance object saliency maps,
even when they are generated by deep-learning-
based methods, with no need to combine multiple
SOD methods (Section 2.2).

(a) (b) (c)

(d) (e) (f)
Figure 2: ISESS saliency enhancement over multiple itera-
tions. (a-c) original image, ground-truth segmentation and
U²net saliency; (d-f) ISESS improvement over iterations 1,
3 and 10.

• A novel strategy that alternates over time object-
based superpixel segmentation and superpixel-
based saliency estimation (cycling operations
never exploited) for saliency estimation.

Section 2 presents related work and ISESS is de-
tailed in Section 3. Experiments with in-depth analy-
sis of their results are presented in Section 4. We state
conclusions and discuss future work in Section 5.

2 RELATED WORK

2.1 Traditional SOD Methods

2.1.1 Overview

Traditional SOD methods often rely on hand-crafted
heuristics to model a set of characteristics shared by
visually salient objects. These methods explore a
combination of top-down object-inspired information
— characteristics inherent to the object, not its re-
lationship to other image regions — or bottom-up
image-intrinsic strategies that use intrinsic image fea-
tures to estimate saliency based on region similarity.
Early bottom-up strategies include modeling saliency
according to global contrast by comparing all pos-
sible pairs of image patches (Cheng et al., 2014),
for instance. Later, saliency estimators started us-
ing superpixels for better region representation, con-
sistently outperforming pixel and patch-based meth-
ods. Most superpixel-based SOD methods use differ-
ent heuristics to assemble a combination of top-down
and bottom-up approaches.

2.1.2 Image-Intrinsic Approaches

Apart from superpixel similarity methods that use
global contrast (Jiang et al., 2013), bottom-up ap-
proaches (image-intrinsic) require a strategy to select
superpixels that represent candidate foreground and
background regions — namely, queries. The three
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most common query selection strategies are based
on sparsity, backgroundness, or objectness. Meth-
ods based on low-rank (LR) matrix recovery (Peng
et al., 2016) use sparsity, and assume an image can
be divided into a highly redundant background-likely
low-rank matrix and a salient sparse sensory matrix.
Superpixel-graph-based methods (Yang et al., 2013)
estimate saliency by combining superpixel-adjacency
contrast with the similarity between every superpixel
and probable background and foreground queries.
Background queries are usually defined at the image
borders, but the methods propose strategies to miti-
gate error when this assumption is invalid. For exam-
ple, one may use all four image borders and define
a region to be salient if it is consistently highlighted
(Yang et al., 2013). However, background-based
saliency methods often highlight parts of the desired
object even when using those error-mitigating strate-
gies. To improve upon background-based saliency,
one can use background saliency to define salient re-
gions as foreground queries and then compute a fore-
ground saliency score (Yang et al., 2013).

A major drawback in all methods above is their
reliance on heuristics or domain-specific prior infor-
mation. We propose combining saliency estimations
from a given object-inspired deep SOD model and the
proposed superpixel-based image-intrinsic model to
avoid the heuristic-based approach.

2.2 Saliency Map Aggregation

Multiple SOD methods have been combined to im-
prove incomplete saliency maps (Singh and Kumar,
2020; Li et al., 2018). Unsupervised methods may use
min-max operations over the estimated foreground
and background regions (Singh and Kumar, 2020).
Supervised methods often learn regressors that com-
bine multiple saliency maps into a single saliency
score using bootstrap learning (Li et al., 2018).

However, such aggregation strategies create a sig-
nificant processing overhead due to the execution
of multiple SOD methods, and their quality relies
on most saliency maps agreeing with respect to the
salient object. To our knowledge, our approach is the
first that improves incomplete saliency maps without
requiring aggregation of multiple SOD methods.

2.3 Deep-Learning Methods

2.3.1 MLP-Based Approaches

The usage of deep neural networks for saliency de-
tection has been extensive in the past few years. As
presented in a recent survey (Wang et al., 2021b), ear-

lier attempts used MLP-based approaches (He et al.,
2015; Liu and Han, 2016), adapting networks trained
for image classification by appending the feature-
extraction layers to a pixel-patch classifier. Despite
the improvement of these models over heuristic-based
traditional methods, they were incapable of providing
consistent high spatial accuracy, primarily due to re-
lying on local patch information.

2.3.2 FCNN

FCNN-based methods improved object detection and
delineation, becoming the most common network
class for visual saliency estimation. Most FCNN
models use the pretrained backbone of a CNN for im-
age classification (e.g. DenseNet (Huang et al., 2017),
and Resnet (He et al., 2016)) and a set of strategies
to exploit the backbone features in the fully convolu-
tional saliency model. These strategies often explore
information from shallow and deep layers, providing
methods for aggregating or improving the multiple-
scale features. For instance, in (Zhang et al., 2017) a
generic framework is proposed for integrating multi-
ple feature-scales into multiple resolutions.

Instead of upsampling directly from the low-
resolution deep layers back to the full-size input layer,
several methods have adopted the encoder-decoder
structure to gradually re-scale the low-resolution fea-
tures (Liu et al., 2019; Qin et al., 2020; Qin et al.,
2019; Miao et al., 2021). Each method proposes a
different strategy to exploit the multi-scale features
in the decoder. The authors in (Liu et al., 2019)
propose a global guidance module based on pyra-
mid pooling to explicitly deliver object-location in-
formation in all feature maps of the decoder. In re-
cent work, the Auto- Multi-Scale Fusion Network
(Auto-MSFNet) is proposed (Miao et al., 2021), us-
ing Network Architecture Search (NAS) to create an
automatic fusion framework instead of trying to elab-
orate complex human-described strategies for multi-
scale fusion. They introduce a new search cell (Fu-
sionCell) that receives information from multi-scale
features and uses an attention mechanism to select
and fuse the most important information.

Additionally, boundary information can be used
to achieve better object delineation. Early on, a new
loss was proposed (Luo et al., 2017) to heavily pe-
nalize boundary regions for training an adaptation
of VGG-16; an encoder-decoder network is used in
(Zhao et al., 2019) to exploit multi-scale features and
assist an edge-feature extraction that guides the de-
lineation for the final saliency estimation. Instead
of explicitly or exclusively using boundary informa-
tion, the Boundary-Aware Segmentation Network
(BASNET) (Qin et al., 2019) uses a hybrid loss to rep-
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resent differences between the ground-truth and the
predictions in a pixel, patch, and map leve. Their strat-
egy consists of a prediction module that outputs seven
saliency maps (an upsampled output of each decoder
layer) and a residual refinement module that outputs
one saliency map at the final decoder layer. All output
maps are used when computing the hybrid loss, and
both modules are trained in parallel.

All earlier methods require a backbone pretrained
in a large classification dataset and often require many
training images for fine-tuning. Recently, the U²Net
(Qin et al., 2020) was proposed as a nested U-shaped
network and has achieved impressive results without
requiring a pretrained backbone. Their approach con-
sists of extracting and fusing multiple-scale informa-
tion throughout all stages of the encoder-decoder by
modeling each stage as a U-shaped network. By doing
so, they can extract deep information during all net-
work stages without significantly increasing the num-
ber of parameters (due to the downscaling inside each
inner U-net).

Even though each presented method has specific
characteristics and shortcomings, the main goal of this
paper is to aggregate image-intrinsic information to
the complex object-inspired models provided by the
deep saliency methods. In this regard, we selected as
baseline three state-of-the-art saliency estimators that
apply different strategies to learn their models: U²Net
(Qin et al., 2020), which has the novelty of not re-
quiring a pre-trained backbone; BASNet (Qin et al.,
2019), that provides a higher delineation precision due
to its boundary-awareness; and Auto-MSFNet (Miao
et al., 2021), which uses a framework to learn the fu-
sion strategies that humans commonly define.

3 METHODOLOGY

ISESS aims to improve the results of complex
deep-learning-based SOD models by adding image-
intrinsic information. For such, ISESS combines
alternate executions of object-based superpixel seg-
mentation and superpixel-based saliency estimation.
The multiple executions of both operations generate
enhanced saliency maps for integration into a post-
processed map, which is subsequently merged with
the initial saliency map of the deep SOD model. Fig-
ure 3 illustrates the whole process, described in Sec-
tions 3.1 and 3.2.

3.1 Saliency Enhancement Module

The saliency enhancement module starts by com-
puting a superpixel segmentation since ISESS is a
superpixel-based saliency enhancer. For such, we use

the Object-based Iterative Spanning Forest algorithm
(OISF) (”Belém et al., 2019).

In short, OISF 1 represents an image as a graph,
whose pixels are the nodes and the arcs connect 8-
adjacent pixels, elects seed pixels based on an input
object saliency map, and executes the Image Forest-
ing Transform (IFT) algorithm (Falcão et al., 2004)
followed by seed refinement multiple times to obtain
a final superpixel segmentation. Each superpixel is
then represented as an optimum-path tree rooted at its
most closely connected seed.

For the initial seed sampling based on a saliency
map, we use OSMOX (Belém et al., 2019), which al-
lows user control over the ratio of seeds to be placed
inside and outside the salient objects with no need to
binarize the saliency map. For seed refinement, we
set the new seed of each superpixel to be the closest
pixel to its geometrical center.

For this setup of OISF, the user has to provide four
parameters: α to control the importance of superpixel
regularity; β to control the importance of boundary
adherence; γ to provide a balance between saliency
information and pixel colors; and io the number of
iterations to obtain a final superpixel segmentation.
Within the method proposed in this paper, we fixed
α = 12 and β = 0.5 as suggested in (Vargas-Muñoz
et al., 2019), while γ and io were tuned by grid search-
ing (see Section 4.1).

The only specific implementation change regard-
ing the superpixel segmentation algorithm is the per-
centage of object seeds required by the seed sampler.
Instead of fixing a percentage that would fit most im-
ages, we set the number of seeds inside salient areas
to be nos = ns ∗ nc, where nc is the number of con-
nected components found by Otsu binarization of the
saliency map resultant from the last iteration, and ns
is a parameter. This way, the number of superpixels
depends on how many salient objects the oversegmen-
tation is trying to represent.

Within this paper, let the saliency score of either
a pixel or a superpixel be represented as s(·). At the
end of each iteration, the saliency score of a super-
pixel is given by the previously computed pixel-wise
saliency map and is taken as the mean saliency score
of all pixels inside the superpixel. We do not reuse
the saliency of a superpixel directly because the su-
perpixel segmentation changes at each iteration.

Let S be a superset of all superpixels, F : S → Rm

map to every superpixel the mean feature vector of
all its pixels — in this paper, m = 3 because we use
the pixel colors in the CIELab color-space as features.
We define two query lists, QF for foreground super-

1The OISF method is available at https://github.com/
LIDS-UNICAMP/OISF.
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Figure 3: Proposed method. The saliency/superpixel enhancement loop is inside the Saliency Enhancement Module (SEM).

pixels, and QB for background ones, where QF ∪QB =
S . Take ψ to be the Otsu threshold of the previously
computed saliency map, then, the query lists are de-
fined as follows: S ∈ QF ↔ s(S) ≥ ψ, and similarly,
S ∈ QB ↔ s(S)< ψ.

Taking S,R ∈ S as superpixels, we define a
Gaussian-weighted similarity measure between su-
perpixels as:

sim(S,R) = exp
−d(F(S),F(R))

σ2 , (1)

where d(F(S),F(R)) is the euclidean distance be-
tween the superpixel’s mean features, and σ2 = 0.01
is the variance used to regulate the dispersion of sim-
ilarity values.

Using the similarity measure and the query lists,
we define two saliency scores for each superpixel:
one based on foreground queries, and the other on
background ones. For the foreground saliency score,
a region is deemed to be salient if it shares similar
characteristics to at least one other foreground region:

s f (S) = max
∀R∈QF

{sim(S, R)} (2)

However, when S = S f ∈ QF is a foreground
query, its foreground saliency score equals one, which
is an out-scaled value as compared to other gaussian-
weighted similarities. To keep foreground queries
with the highest score but in the same scale of the
remaining superpixels’ scores, we update their values
to match the highest non-foreground query region’s
saliency: s f (S f ) = max

∀Q/∈QF
{s f (Q)}. By doing so, we

allow for a forced exploration of possible foreground
regions at each iteration.

(a) (b) (c) (d)

Figure 4: Image with complex background with little rele-
vant information from background queries. (a) original im-
age; (b) U²Net map; (c) background-based saliency with
d0.5 < 0.1; (d) background-based saliency from last itera-
tion which will substitute (c).

Similarly, the background-updated saliency score
defines that a superpixel is salient if it has low simi-
larity to most background queries:

sb(S) = 1−
∑

∀R∈QB,S̸=R
sim(S, R)

|QB|
. (3)

When the background is too complex, the normal-
ized mean difference of all superpixels will be close to
fifty percent, resulting in a mostly gray map with lit-
tle aggregated information (Figure 4). To detect those
scenarios, we compute a map-wise distance to fifty
percent probability d0.5 = 1

|S| ∑
∀S∈S

(sb(S)−0.5)2|S|.

For maps with d0.5 < 0.1, we set the background
saliency score to be the saliency of the previous iter-
ation sb(S) = si−1(S), where si−1 is the final saliency
computed in the last iteration and s0 is the initial deep-
learning saliency.

The final saliency score for the iteration is the
product of both saliencies:

si(S) = s f (S)∗ sb(S). (4)
By multiplying both scores, the combined

saliency ignores any region that was hardly taken as
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non-salient by foreground or background saliency and
keeps a high score for regions taken as salient in both
maps. The new score is saved together with the su-
perpixel representation used to create it. Then, the
saliency is fed to the superpixel algorithm to restart
the enhancement cycle. We reduce the number of su-
perpixels by 20% at each iteration to a minimum of
200 superpixels.

The result of all iterations is then combined using
the method described in Section 3.2

3.2 Saliency Integration Module

To integrate the saliency maps created throughout the
iterations, we use a traditional unsupervised saliency
integrator method (Qin et al., 2015) that models an
update function using a Bayesian framework to itera-
tively update a Cellular Automata whose cells are de-
rived from a stack of the saliency maps. Note that we
are using saliency integration to combine the multi-
ple outputs of our iterative approach, not aggregating
different saliency methods.

In short, the saliency maps are stacked to form
a three-dimensional grid where the (x,y) coordinates
match the saliency map’s (x,y) coordinates and z is
the direction in which the different maps are stacked.
The pixels are then updated over it iterations in a way
that the new pixel saliency depends on how consis-
tently salient its adjacency is. The adjacency used is
a cuboid adjacency Cp around the pixel p, so that a
pixel q is considered adjacent to a p if |(xp − xq)| ≤
1, |(yp − yq)| ≤ 1; i.e. a 4-adjacency extended to all
maps on the z-axis.

For the update rule, the saliency score is repre-
sented as log odds: lt(p) = st (p)

1−st (S) so that the value
can be updated by performing subsequent sums. The
value changes according to the rule:

st+1(p) = lt(p)+ ∑
∀q∈Cp

λδ
t(q), (5)

where λ is a constant that regulates the update rate,
and δt(·) ∈ {−1,1} is a signal function that makes
the saliency either increase or decrease at each update
depending on whether st(q) is greater or smaller than
the Otsu threshold of the saliency map that originated
the cell. Essentially, if a pixel is surrounded by more
foreground than background regions, its saliency in-
crease over time by a rate of λ; likewise, the saliency
decreases for pixels in a non-salient adjacency.

Afterward, the integrated map is run through the
last iteration of saliency estimation using Equation 2
and the initial number of superpixels, creating the last
color-based saliency score sc. This last estimation
serves two purposes: improve object delineation by

relying on the quality of the superpixel algorithm —
rather than depending on the cuboid adjacency rela-
tion; and eliminate unwanted superpixel leakage that
may occur when the superpixel number is reduced
(Section 4.3.2).

Lastly, we reintroduce the deep object-inspired
model by averaging its saliency values inside the su-
perpixels of the last segmentation, which defines an-
other saliency score for each superpixel:

sd(S) =
1
|S| ∑

∀p∈S
s0(p), (6)

where s0(p) is the saliency score provided by the net-
work. The final saliency score is than defined as:

s f (p) = max{sd(p),si(p)}. (7)

Therefore, the final saliency map will highlight
salient regions according to the image-intrinsic or the
superpixel-delineated object-inspired model.

4 EXPERIMENTS AND RESULTS

4.1 Datasets and Experimental Setup

Datasets. We used five well-known datasets for com-
parison among SOD methods. The datasets selected
with a brief description of their characteristics, as pro-
vided by their authors, are: DUT OMRON (Yang
et al., 2013), which is composed of 5168 images con-
taining one or two complex foreground objects in a
relatively cluttered background; HKU-IS, containing
4447 images with one or multiple low contrast fore-
ground objects each; ECSSD, consisting of 1000 im-
ages with mostly one large salient object per image
in a complex background; ICoSeg, which contains
643 images usually with several foreground objects
each; and SED2, formed by 100 images with two
foreground objects per image.
Parameter Tuning. The baselines networks were
used as provided by the authors since they have
been pretrained on datasets with similar images (e.g.,
DUT OMRON). For ISESS, we randomly selected
50 images from each dataset, totalizing a training set
with 300 images, to optimize its parameters by grid
search. The remaining images compose the test sets
of each dataset. Grid search was performed with
saliency maps from each baseline, creating three sets
of parameters (one per baseline). Most parameters
were optimized to the same value independently of
the baseline, except for the number of iterations i,
the number of superpixels n, the number of fore-
ground seeds per component ns, and the number of
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OISF iterations io. Taking the order U²Net, BASNET,
and MSFNet, the parameters were respectively, i =
{12,9,12}, n = {2500,200,2500}, ns = {10,30,30},
and io = {5,3,1}. The rest of the parameters with
fixed values for all methods were optimized to be:
γ = 10.0, σ2 = 0.01, λ = 0.0001, t = 3, where γ is
related to the superpixel segmentation algorithm, σ2

is the gaussian variance for the graph node similarity,
λ and t are related to the cuboid integration.
Evaluation Metrics. We used six measures
for quantitative assessment. (1) Mean Structural-
measure, Sm, which evaluates the structural simi-
larity between a saliency map and its ground-truth;
(2) max F-measure, maxFβ, which represents a bal-
anced evaluation of precision and recall for sim-
ple threshold segmentation of the saliency maps; (3)
weighted F-measure, Fw

β
, which is similar to maxFβ

but keeps most saliency nuances by not requiring
a binary mask; (4) Mean Absolute Error, MAE,
that provides a pixel-wise difference between the
output map and expected segmentation; (5) mean
Enhanced-alignment measure, Em

ψ , used to evalu-
ate local and global similarities simultaneously; and
(6) precision-recall curves, which display precision-
recall values between the expected segmentation and
saliency maps binarized by varying thresholds.
Post Processing. ISESS can sometimes score a
superpixel with close-to-zero saliency values. These
small saliencies are not visually perceived by the ob-
server but can significantly impair the presented met-
rics (Figure 5). In the image presented, the bottom-
left quadrants (with a little more than a fourth of the
total image weight) had a superpixel slightly salient (a
value below 2% of the maximum saliency) by ISESS,
which caused the local SSIM to change from a full
match on the original map to a complete miss on the
enhanced map. To deal with these small values, we
eliminate regions in the map with saliency lower than
half of the Otsu threshold.

4.2 Execution Time

ISESS is yet to be optimized for time-sensitive appli-
cations. In its current implementation, considering an
average among all datasets, ISESS takes 1.1s to run
the entire pipeline with one iteration and 686ms for
each subsequent one. Out of the time taken, consid-
ering the proposed parameters, around 71% is spent
(re)computing superpixels, so improving or substitut-
ing the superpixel algorithm would provide the high-
est benefit for reducing execution time.

We are still working on its optimization with par-
allel computing. However, since ISESS is not using
multi-threading, one can simultaneously execute as

(a) (b)

(c) (d)

Figure 5: Example of drastic Sm difference between two
similar saliency maps. (a) original image with ground-
truth objects delineated in red; (b-c) BASNET and BAS-
NET+ISESS saliency maps, respectively, divided into quad-
rants, with each quadrant weight and Structural Similarity
values; (d) histogram-manipulated (c) to show the detail that
caused the large difference in similarity value.

many images as threads available.

4.3 Ablation Study

To analyze the impact of some decisions within our
proposal, we present ablation studies on (i) the effects
of re-introducing the deep model at the end of the last
iteration; (ii) re-using the initial number of superpix-
els at the last iteration. We used the same parameters
as the ones reported in Section 4.1 for the ablation
studies.

4.3.1 Ablation on Reintroducing the Deep
Saliency Model

The goal of ISESS is to improve the complex and ro-
bust deep models by adding information more closely
related to what a human observer expects. Not re-
introducing the deep model would imply creating a
color-based model that keeps all the robustness of the
deep-learning ones, which is hardly feasible.

An example of why the proposed color-based
model is often insufficient can be seen in Figure 6.
The object of interest was less uniformly salient: The
armband the player is wearing has significantly dif-
ferent colors than the rest of the object, which caused
the model not to consider it as part of the foreground.
In that example, ISESS mainly contributed to creating
sharper edges.

The downside of re-introducing the deep model
is that it reduces the influence of ISESS on wrong-
fully salient regions. Take Figure 7 as an example:
The deep-model wrongfully highlighted part of the
airplanes’ smoke trail; ISESS removed it entirely; the
re-introduction of the deep-model also brought back
the error. However, the smoke trail’s saliency was re-
duced thanks to combining the deep model with the

VISAPP 2024 - 19th International Conference on Computer Vision Theory and Applications

304



(a) ( b) (c) (d)

Figure 6: Good example of the re-introduction of the deep-
model saliency. (a) original image; (b) U²Net saliency map;
(c-d) ISESS without and with the reintroduction of the deep
model, respectively.

(a) (b) (c) (d)

Figure 7: Bad example of the re-introduction of the deep-
model. (a) original image; (b) U²Net; (c-d) ISESS without
and with the reintroduction of the deep model.

(a) ( b) (c)

(d) (e) (f)

Figure 8: Bad object representation due to the superpixel
decrease. (a-c) original image and superpixel segmen-
tations; (d-f) U²Net, U²Net+ISESS considering the maps
above. Note part of the object missing (pink circle) due
to superpixel leakege.

superpixel segmentation.

4.3.2 Ablation on Superpixels in Last Iteration

As the iterations progress and the number of superpix-
els decreases, the object-representation provided by
the superpixels can worsen due to either leakage to
the background or under-segmentation of too distinct
object parts. As exemplified in Figure 8, the wings of
the airplanes were lost in the final saliency map due
to superpixel leakage. The model could adequately
highlight most of the planes’ wings by increasing the
number of superpixels at the last iteration.

4.4 Quantitative Comparisons

Table 1 shows that the proposed method can consis-
tently improve maxFβ, Fw

β
, MAE and Em

ψ for U²Net

Table 1: Quantitative comparison between enhanced and
non-enhanced maps in terms of Sm ↑, maxFβ ↑, Fw

β
↑, MAE

↓, and Em
ψ ↑. BLUE indicates the best result between the

enhaced and non-enhanced maps.
Sed2 Sm ↑ maxFβ ↑ Fw

β
↑ MAE ↓ Em

ψ ↑
U²Net 0.8193 0.8140 0.7704 0.0558 0.8529
U²Net+ISESS 0.8527 0.8404 0.8087 0.0483 0.8816
BASNET 0.8558 0.8565 0.8119 0.0514 0.8881
BASNET+ISESS 0.8643 0.8647 0.8375 0.0470 0.9037
Auto-MSFNet 0.8374 0.8333 0.8032 0.0544 0.8800
Auto-MSFNet+ISESS 0.8378 0.8518 0.8182 0.0524 0.8881
ECSSD Sm ↑ maxFβ ↑ Fw

β
↑ MAE ↓ Em

ψ ↑
U²Net 0.9209 0.9286 0.8993 0.0370 0.9407
U²Net+ISESS 0.9182 0.9297 0.9099 0.0339 0.9467
BASNET 0.9142 0.9262 0.8992 0.0384 0.9414
BASNET+ISESS 0.9123 0.9267 0.9075 0.0355 0.9468
Auto-MSFNet 0.9067 0.9229 0.9032 0.0387 0.9427
Auto-MSFNet+ISESS 0.9069 0.9203 0.9026 0.0389 0.9411
DUT OMRON Sm ↑ maxFβ ↑ Fw

β
↑ MAE ↓ Em

ψ ↑
U²Net 0.8444 0.7868 0.7491 0.0541 0.8627
U²Net+ISESS 0.8418 0.7895 0.7647 0.0518 0.8736
BASNET 0.8362 0.7750 0.7465 0.0558 0.8607
BASNET+ISESS 0.8335 0.7758 0.7556 0.0548 0.8686
Auto-MSFNet 0.8321 0.7748 0.7536 0.049 0.8692
Auto-MSFNet+ISESS 0.8323 0.7730 0.7533 0.0491 0.8680
ICoSeg Sm ↑ maxFβ ↑ Fw

β
↑ MAE ↓ Em

ψ ↑
U²Net 0.8727 0.8585 0.8210 0.0449 0.8957
U²Net+ISESS 0.8869 0.8769 0.8548 0.0404 0.9165
BASNET 0.8702 0.8578 0.8217 0.0476 0.8972
BASNET+ISESS 0.8784 0.8630 0.8397 0.0436 0.9057
Auto-MSFNet 0.8662 0.8515 0.8256 0.0425 0.9083
Auto-MSFNet+ISESS 0.8703 0.8544 0.8332 0.0417 0.9095
HKU-IS Sm ↑ maxFβ ↑ Fw

β
↑ MAE ↓ Em

ψ ↑
U²Net 0.9183 0.9291 0.8950 0.0311 0.9453
U²Net+ISESS 0.9174 0.9292 0.9085 0.0274 0.9528
BASNET 0.9123 0.9264 0.8977 0.0308 0.9476
BASNET+ISESS 0.9110 0.9262 0.9075 0.0278 0.9536
Auto-MSFNet 0.9148 0.9297 0.9144 0.0255 0.9617
Auto-MSFNet+ISESS 0.9156 0.9270 0.9146 0.0255 0.9603

and BASNET in all five datasets, and achieve simi-
lar Sm. On both datasets composed mostly of images
containing more than one object (Sed2 and ICoSeg),
the results were even more expressive, indicating that
ISESS can considerably improve the saliency repre-
sentation of similar objects.

The precision-recall curves show a clear advan-
tage of ISESS-enhanced maps over the non-enhanced
ones on datasets mainly consisting of multiple ob-
jects (sed2, and icoseg). There is a breakpoint
where ISESS loses precision more rapidly than non-
enhanced maps on the other three datasets. We at-
tribute the rapid precision loss to ISESS highlight-
ing more parts of non-salient objects deemed partially
salient by the deep models (Figure 9). By looking at
the maxFβ, we see that by segmenting ISESS maps
using an adequate threshold, the segmentation results
are often better than the non-enhanced maps on al-
most every combination of method and dataset.

The better representation of non-salient objects
discussed before also highly impacts the Sm. Similar
to the example shown in Figure 5, spatially extend-
ing the saliency of a non-salient object to other image
quadrants drastically affects the quality of the map ac-
cording to the Mean Structural-measure.
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(a) (b) (c) (d)

Figure 9: ISESS improving the saliency of wrogfully salient
object partially highlighted by Auto-MSFNet. (a) origi-
nal image; (b) ground-truth; (c) saliency map by Auto-
MSFNet; (d) (c) enhanced by the proposed ISESS.

Regarding Auto-MSFNet, apart from the ICoSeg
and SED2, ISESS could not improve its metrics. By
analyzing the precision-recall curves, we identified
that Auto-MSFNet has the lowest precision of all
three methods. We realized that the AutoMSF-Net
creates more frequently partially salient regions on
non-salient objects. Both examples used in Figure
9 were taken from the AutoMSF-Net results. There-
fore, ISESS seems to over-trust the deep model on
non-salient regions.

4.5 Qualitative Comparisons with
Non-Enhanced Maps

To visually evaluate the benefits of enhancing a
saliency map using ISESS, we compiled images
where ISESS improved different aspects of object
representation (Figure 11). The image in the first row
contains minimal salient values in a small part of the
desired object (columns (c) and (g)). Even though
the initial map provides little trust (i.e., small saliency
values), ISESS created similar resulting maps using
all deep models.

In the second and third rows, we present examples
where ISESS captured most intended objects by ex-
tending the saliency value to regions with high sim-
ilarity to the provided saliency. Note that ISESS
was unable to improve (e), even though (e) has high
precision. Because the map is almost binary and
most salient regions are taken as background queries,
ISESS could not highlight the other salient regions.

The bottom four rows present images where
ISESS was able to complete partially salient objects.
Excluding the last row, each row shows simpler ob-
jects that the deep models failed to capture fully. In
particular, in (e) and (g), ISESS properly included a
narrow stem on the traffic light, even though narrow
structures can be complex during superpixel delin-

eation. The last image presents a successful case on
a difficult challenge due to the radiating shadow com-
ing out of the hole (which makes it hard to delineate
adequate borders), especially on (e) where the initial
map gave no part of the desired object.

Since ISESS was meant to improve partially
saliented objects whose parts (superpixels) have sim-
ilar colors, it cannot deal with some situations. Fig-
ure 12 shows examples of fail cases. In the first two
columns, the ground-truth object (pyramid) was not
detected by the deep method. ISESS cannot improve
the saliency of non-detected objects, which makes it
dependent on the map’s precision. The other two
columns (fish) shows another situation where the map
of the detected salient object is incomplete. Since the
missing parts have colors too distinct from the high-
lighted ones, ISESS could not complete the saliency
map. However, Figure 11d (second and third rows)
show that ISESS can recover the map of missing ob-
jects when the highlighted parts have similar colors.

5 CONCLUSION

We presented a hybrid model for saliency enhance-
ment that exploits a loop between superpixel segmen-
tation and saliency enhancement for the first time.
ISESS delineates superpixels based on object infor-
mation, as represented by an input saliency map, and
improves the input saliency map by computing fea-
ture similarity between superpixels and queries. It ex-
ploits multiple scales of superpixel representation and
integrates the intermediate saliency maps by cellular
automata. Experimental results on five public SOD
datasets demonstrate that ISESS can consistently im-
prove object representation, especially in the follow-
ing cases: (a) partially salient objects and (b) images
with multiple salient objects with only a few captured
by the deep model. Although better superpixel de-
scriptors can be used for superpixel similarity, we fo-
cused on a simple color descriptor to illustrate how
well deep models can be assisted by image-intrinsic
information to improve their results.

We intend to explore ISESS enhanced maps for
interactive- and co-segmentation tasks. The goal will
be to assist humans when annotating images with
fewer interactions, using the highly-trusted human-
provided object location to define the precise back-
ground and foreground queries, combined with robust
deep models to capture finer features. Another char-
acteristic inherent in ISESS is the superpixel improve-
ment over time. Although this aspect was not in focus
in this paper, future work includes further evaluation
of the enhancement loop’s impact on superpixel seg-
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(a) (b) (c)

(d) (f)

Figure 10: The Precision-Recall curves of all methods with and without enhancement in all datasets. (a) DUT OMRON; (b)
ECSSD; (c) HKU-IS; (d) ICOSEG; (e) SED2.

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 11: Mural of images with their initial saliency maps and their ISESS enhanced version. (a) original image; (b) ground-
truth; (c) BASNET; (d) BASNET+ISESS; (e) Auto-MSFNet; (f) Auto-MSFNet+ISESS; (g) U²Net; (h) U²Net + ISESS

(a) (b) (c) (d)

Figure 12: Failed saliency improvements. (a) Original im-
age; (b) ground-truth object; (c) saliency map by U²-Net;
and (d) ISESS’s output given (c).

mentation and how the final superpixel map can assist
interactive object segmentation.
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