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Abstract: There has been a rapidly growing interest in penalized least squares problems via l1 regularization. The
LASSO (Least Absolute Shrinkage and Selection Operator) regression, which utilizes l1 regularization, has
gained popularity as a method for model selection and shrinkage estimation. An important extension of
LASSO regression is Group LASSO regression, which generates sparse models at the group level. However,
Group LASSO regression does not directly evaluate group importance. In this study, we propose a method
to assess group importance based on Group LASSO regression. This method leverages regularization param-
eters to estimate the importance of each group. We applied this method to both synthetically generated data
and real-world data, conducting experiments to evaluate its performance. As a result, the method accurately
approximated the importance of groups, enhancing the interpretability of models at the group level.

1 INTRODUCTION

Recently, there has been a rapidly growing interest
in penalized least squares problems via l1 regulariza-
tion(Nardi and Rinaldo, 2008). The LASSO (Least
Absolute Shrinkage and Selection Operator) regres-
sion(Tibshirani, 1996) is a regularization technique
where the penalty for model complexity is the l1
norm of the estimated coefficients. Originally devel-
oped for linear regression models, LASSO regression
has gained popularity as a method for model selec-
tion and shrinkage estimation. Group LASSO regres-
sion(Yuan and Lin, 2006), which selects key explana-
tory factors in a grouped manner, is an important ex-
tension of LASSO regression(Yang et al., 2010).This
method has found successful applications in various
fields, including birthweight prediction and gene find-
ing(Yuan and Lin, 2006)(Meier et al., 2008). How-
ever, while it can yield solutions with sparsity at the
group level, it doesn’t inherently assess the individual
group importance. In this study, we propose to assess
group importance based on Group LASSO regression,
thereby enhancing interpretability and addressing the
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limitations of the existing approach.
In the subsequent section of this paper, we delve

into Group LASSO regression. In section 3, we detail
the proposed method for estimating group importance
based on Group LASSO regression. Moving to sec-
tion 4, we engage in experimental validations, testing
the efficacy of our approach using both synthetically
generated data and real data. Finally, we conclude by
summarizing the key findings of our study and dis-
cussing the adaptability of our proposed approach in
real-world scenarios.

2 GROUP LASSO REGRESSION

In this section, we present Group LASSO regres-
sion(Yuan and Lin, 2006) and proximal gradient al-
gorithms for Group LASSO regression(Tomioka and
Scientific, 2015).

Consider a linear model where we have in-
dependent and identically distributed observations
(x(1)i, · · · ,x(M)i,yi), i = 1, · · · ,N, of a N-dimensional
vector x⃗k = (x(k)1, · · · ,x(k)N)⊤, y⃗ = (y1, · · · ,yN)

⊤, ma-

trix X = (⃗x1, · · · , x⃗M) and the parameter vector β⃗ ∈
RM , which holds the coefficients for each feature. The
relationship between the features and the response in
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this model is given by:

y⃗ = X β⃗+ ε⃗ (1)

Here, ε⃗ ∈ RN is the error vector capturing the devia-
tion from the linear model, assumed to be independent
and identically distributed, following a normal distri-
bution with mean 0.

In the context of Group LASSO Regression, we
extend this basic linear model to accommodate a
structure where the M features are partitioned into
J distinct groups. Let m j denote the number of fea-
tures in the j-th group. Consequently, matrix X can
be expressed as X = (X1, · · · ,XJ) where X j ∈ RN×m j .
The coefficient vector β⃗ is similarly decomposed into
β⃗ = (β⃗1, · · · , β⃗J)

⊤, where β⃗ j = (β{ j}1, · · · ,β{ j}m j) for
j = 1, · · · ,J.

The optimization problem for Group LASSO,
considering the above model, is defined as:

min
β⃗

1
2
∥⃗y−X β⃗∥2

2 +λ

J

∑
j=1

∥β⃗ j∥2 (2)

In this formulation, ∥β⃗ j∥2 represents the l2 norm
of the coefficients of the j-th group, calculated as
∥β⃗ j∥2 =

√
∑

m j
p=1 β2

{ j}p. The parameter λ is a non-
negative regularization term that introduces group-
wise sparsity into the model, effectively encouraging
the model to reduce the coefficients of less relevant
groups to zero. This results in a more parsimonious
and interpretable model that highlights the most sig-
nificant group-based features for predicting the target
variable.

We also introduce the proximal gradient algo-
rithm, an iterative optimization technique used for
addressing both convex and non-convex optimization
problems, including LASSO regression and Group
LASSO regression. It updates the differentiable com-
ponents similarly to gradient descent and handles the
non-differentiable components using the proximal op-
erator. The update formula for the proximal gradient
algorithm is given by the following expression, which
incorporates the proximal operator:

⃗β(t+1) = prox(β⃗(t)− γ∇ f (β⃗(t))) (3)

where, β⃗(t) represents the regression coefficients β⃗ up-

dated at the t-th iteration, γ is the step size and ∇ f (⃗β)
denotes the gradient of the function f (⃗β), which is a
differentiable convex function. The convergence cri-
teria used in the proximal gradient algorithm are as
follows:

||F( ⃗β(t+1))−F(β⃗(t))||1
||F( ⃗β(t+1))||1

< e ≈ 0 (4)

Input: X , y⃗, λ, γ

Initialization: t = 0 and β⃗(t) = β⃗(0)
while not satisfied with Equation (4) do

Calculate the gradient: ∇ f (β⃗(t))

Update the β⃗ based on Equation (3) and
Equation (7)

Update t = t +1
end
Output: β⃗(t)

Algorithm 1: Proximal Gradient Algorithm for
Group LASSO Regression.

where, F (⃗β) represents the objedtive function, which
is a convex function and e denotes a small constant
close to zero. In Group LASSO regression, F (⃗β) and
f (⃗β) are defined as:

F (⃗β) =
1
2
||⃗y−X β⃗||22 +λ

J

∑
j=1

||β⃗ j||2 (5)

f (⃗β) =
1
2
||⃗y−X β⃗||22 (6)

Furthermore, in Group LASSO regression, the prox-
imal operator is defined using the proximity point
β⃗′ ∈ RM as follows:

prox(β⃗′
j) =

β⃗′
j −

γλ

||β⃗′j ||2
β⃗′

j ||β⃗′
j||2 ≥ γλ

0 ||β⃗′
j||2 < γλ

(7)

Based on the equations presented in section 2, Algo-
rithm 1 shows the flow of the proximal gradient algo-
rithm for Group LASSO regression.

3 GROUP IMPORTANCE
ESTIMATION METHOD

In this section, we propose the group importance es-
timation method based on Group LASSO regression.
Section 3.1 lays the foundation by explaining the core
concepts of our method. Following that, section 3.2
sheds light on the importance of the threshold in our
approach. Finally, section 3.3 provides a comprehen-
sive formulation of the proposed method.

3.1 Concept of the Group Importance
Estimation

While Group LASSO regression is powerful in
achieving sparsity at the group level, it often side-
lines the assessment of individual group importance.
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Figure 1: Example of allergy diagnosis for Group LASSO
regression.

Figure 2: Example of allergy diagnosis for proposed
method.

Figure 3: Illustrative representation of the relationship be-
tween β⃗ j and λ.

For illustration, consider an allergy diagnosis sce-
nario where the goal is to predict reactions to specific
allergens. The predictions hinge on various symp-
toms, ranging from allergies to dogs and cats (cate-
gorized as animal allergies) to cedar pollen and rag-
weed (grouped under pollen allergies). When em-
ploying Group LASSO regression in such a context,
the group variable selection might look like what’s
shown in Fig. 1. In this figure, ”×” indicates that the

regression coefficients for animal allergies are zero,
suggesting that this group’s variables have been ex-
cluded. In contrast, ”⃝” signals the presence of non-
zero coefficients for pollen allergies, indicating their
incorporation in the regression model. A quick look
at Fig. 1 might suggest that pollen allergies play a piv-
otal role in the regression model. However, the cur-
rent approach falls short in offering a nuanced com-
parison between the importance of animal and pollen
allergies. Addressing this gap, our study proposes a
method to assess the importance of such groups, as
shown in Fig. 2.

Central to our method is the establishment of
a common criterion to assess the relative impor-
tance of each group. To achieve this, we explore a
methodology that utilizes the threshold for determin-
ing whether a group is important or not in predicting
the target variable. This threshold serves as a com-
mon criterion derived from the feature selection pro-
cess conducted at the group level in Group LASSO
regression. With the general concept of our method
outlined, we’ll now delve deeper into the pivotal role
the threshold plays in our approach.

3.2 Threshold for the Group
Importance Estimation

A group j is considered important in predicting the
target variable if β⃗ j ̸= 0⃗, and unimportant if β⃗ j = 0⃗.
As briefly described in Algorithm 1 in Section 2, if
the condition ||β⃗′

j||2 < γλ holds according to Equa-

tion (7), then β⃗ j = 0⃗, leading to the elimination of
variables within group j. Conversely, if the condition
||β⃗′

j||2 > γλ holds, then β⃗ j ̸= 0⃗, and as a result,
variables within group j are not reduced. Essentially,
the value of γλ has an impact on variable selection
at the group level. In this study, Fig. 3 shows
the relationship between β⃗ j and λ. Based on this
depiction, we consider the point where β⃗ j = 0⃗ is first
achieved as a threshold common to each group. For
this boundary to exist in all groups, the relationship
between β⃗ j and γλ must be either monotonically
increasing or decreasing. To shed more light on this,
we experimentally verify the relationship between
||β⃗ j||2 and γλ. Since γ is provided as a constant,
we use a path diagram to clarify this relationship
between ||β⃗ j||2 and λ.

Experimental Conditions.
For the vector v⃗[θ,η], we define:

1000

∑
n=1

v⃗[θ,η]n = θ,
1000

∑
n=1

v⃗[θ,η]n
2 = η
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From this, we derive the vector x⃗m as:

x⃗m = v⃗[0,1] (m = 1, · · · ,9)

The target variable, y⃗, is then generated as:

y⃗ = X β⃗+ v⃗[0,2]

The regression coefficient vectors β⃗1, β⃗2, and β⃗3 are
defined as:

β⃗1 = (1.0,1.0,1.0)
β⃗2 = (2.0,2.0,2.0)
β⃗3 = (3.0,3.0,3.0)

Combining these, the regression coefficient vector β⃗

is:
β⃗ = (β⃗1, β⃗2, β⃗3)

⊤

Furthermore, standardization is applied to X , and x⃗m
is centered (mean 0). By varying the value of the reg-
ularization parameter λ in the range [10−1,105], we
aim to show the relationship between ||β⃗ j||2 and λ.
Fig. 4 shows a path diagram that captures this re-
lationship. Fig. 4 shows that ”Overall” represents
||⃗β||2, ”Group1” is ||β⃗1||2, ”Group2” is ||β⃗2||2, and
”Group3” is ||β⃗3||2. It’s evident from the figure that
||β⃗ j||2 decreases monotonically as λ grows. Next,
based on Algorithm 1, we will explore the relation-
ship between ||β⃗ j||2 and λ. From Equation (3) and
Equation (7) in Algorithm 1, it becomes clear that
as λ increases, the value of ||β⃗ j||2 is updated to be-
come smaller. Therefore, we can infer that there is
a monotonically increasing or decreasing relationship
between ||β⃗ j||2 and λ. However, due to the conver-
gence conditions in Equation (4), there might be sce-
narios where this relationship doesn’t hold. Thus,
the relationship between ||β⃗ j||2 and λ is not strictly
monotonic. However, instances where this relation-
ship does not hold are rare. From the above discus-
sions, it’s clear that a general monotonic relationship,
either increasing or decreasing, exists between ||β⃗ j||2
and λ. Based on this understanding, in this study, we
assume that either a monotonic decreasing or increas-
ing relationship exists between λ and ||β⃗ j||2. Fur-
thermore, based on the above analysis, we use the
threshold to estimate the importance of each group
in predicting the target variable as a criterion for es-
tablishing their relative importance in this study. No-
tably, the key factor that distinguishes among differ-
ent groups is the value of the regularization parame-
ter λ at this threshold. Therefore, by leveraging the
value of the regularization parameter λ at the thresh-
old for each group, we can estimate the importance of
each group, thereby improving the interpretability of
group-specific data.

Step 1: Prepare multiple values of the
regularization parameter λ to identify the
threshold in group j that determines whether
it is important or not for predicting the
target variable.

Step 2: Define the optimization problem as
outlined in Equation 2. Estimate the
regression coefficient β⃗ using the proximal
gradient algorithm for Group LASSO
Regression (Algorithm 1).

Step 3: If the regression coefficient β⃗ j
estimated in Step 2 is not the zero vector,
calculate the value of ||β⃗ j||2 − γλ. The
regularization parameter λ that is closest to
calculating ||β⃗ j||2 − γλ ≈ 0 is defined as λ j.

Step 4: Convert λ j into a ratio and estimate
group importance using the formula given in
Equation (8).

Algorithm 2: Group Importance Estimation based
on Group LASSO Regression.

Figure 4: Relationship between the regularization parame-
ter λ and group coefficient ||β⃗ j||2.

3.3 Formulation of the Group
Importance Estimation

In the proposed method, we utilize the optimization
problem of Group LASSO regression, represented by
Equation (2). We consider the point where the group
regression coefficient β⃗ j first becomes zero as the
group’s threshold, as detailed in section 3.2.

To effectively implement our proposed method, it
is essential to identify the threshold for the group by
adjusting the value of the regularization parameter λ.
However, pinpointing this threshold accurately is a
complex task. Specifically, there’s a need to search
through the values of λ in fine-grained steps to de-
termine the threshold for the group with precision.
Such an approach might substantially increase com-
putational time, potentially rendering it impractical
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for large datasets or real-time applications. Therefore,
to address this challenge, instead of using the point at
which the regression coefficient for a group, β⃗ j, first
becomes zero as the threshold, we propose estimating
the threshold near the point where β⃗ j first becomes
zero. Building on this, the essence of our approach
can be captured from Equation (7). If γλ > ||β⃗ j||2,
β⃗ j remains non-zero. Conversely, if γλ < ||β⃗ j||2, β⃗ j

becomes zero. This implies that γλ = ||β⃗ j||2 serves
as a crucial threshold in our framework. For our
study, we adopt γλ ≈ ||β⃗ j||2 as the threshold for the
group. Further, to estimate this threshold, we compute
multiple regression coefficients β⃗ for varied λ values.
Our objective is to locate the threshold ||β⃗ j||2 ≈ γλ

where β⃗ remains non-zero. With γ being constant
at this threshold, λ provides a measure of group im-
portance. We define λ j for each group j such that
||β⃗ j||2 ≈ γλ. This value, λ j, is indicative of the im-
portance of group j in our proposed method.

To facilitate a more comprehensive comparison
among groups, we introduce an importance measure
o j, which quantifies the relative importance of group
j. Formally, it is defined as:

o j =
λ j

∑
J
k=1 λk

(8)

A thorough step-by-step explanation of this method is
provided in Algorithm 2.

4 EXPERIMENTS

In this section, we conduct experiments using both
generated data and real data to demonstrate the ef-
ficacy of the estimated group importance using our
proposed method. Section 4.1 provides a detailed
description of the generated and real-world datasets.
Section 4.2 presents the common experimental con-
ditions for both sets of experiments. Finally, section
4.3 shows the results from both the generated and real
data experiments.

4.1 Experimental Data

4.1.1 Generated Data

We generated data using specific parameters. For the
vector v⃗[θ,η], we define:

400

∑
n=1

v⃗[θ,η]n = θ,
400

∑
n=1

v⃗[θ,η]n
2 = η

From this, we derive the vector x⃗m as:
x⃗m = v⃗[0,1] (m = 1, · · · ,15)

The target variable, y⃗, is then generated as:

y⃗ = X β⃗+ v⃗[0,2]

The regression coefficients β⃗ are detailed in Table 1.
As indicated in Table 1, the coefficients for group 1,
β⃗1, are defined as β{1}m j = 0.4 for m j = 1,2,3. By
setting the elements of the regression coefficients for
each group to the same value in this experiment, the
values presented in the third row of Table 1 represent
the importance of each group.

4.1.2 Real Data

The data utilized in this study is sourced from the
open datasets made publicly available by the Ministry
of Health, Labour and Welfare in Japan. Our experi-
ments span data points collected from May 10, 2020,
to May 8, 2023, totaling 1094 entries. The target vari-
able (or the dependent variable) is the number of daily
deaths in Japan due to the novel coronavirus (COVID-
19) infection. The independent variables (or explana-
tory variables) represent the number of daily infec-
tions with the COVID-19, broken down by prefecture
in Japan. Out of all the prefectures, 12 were selected
for this study based on the criterion that they ac-
counted for at least 2% of the total infections in Japan
as of May 8, 2023. These prefectures are Hokkaido,
Saitama, Chiba, Tokyo, Kanagawa, Shizuoka, Aichi,
Kyoto, Osaka, Hyogo, Hiroshima, and Fukuoka. The
rationale behind this selection is to ensure the model’s
appropriateness by avoiding prefectures with signif-
icantly low infection rates compared to the national
total as of May 8, 2023.

In Japan, prefectures are often categorized into
regions: Hokkaido, Tohoku, Kanto, Chubu, Kinki,
Chugoku, Shikoku, Kyushu, and Okinawa. To define
the group importance in our experiments, we used the
total number of deaths due to COVID-19 as of May 8,
2023, in the selected 12 prefectures. We then aggre-
gated these death counts according to the aforemen-
tioned regional groupings. The rationale behind using
the total number of deaths in each region is to provide
an estimate of the group’s importance in each area.
By utilizing the total death count, we can indicate the
severity and impact of the pandemic in each region,
which serves as an approximation of the group’s im-
portance. The defined group importance is presented
in the fourth column of Table 2.

In this study, we conducted statistical tests us-
ing Ridge regression to assess whether the real data
is suitable for the regression model. Specifically,
we evaluated whether the model’s residuals were ho-
moscedastic by conducting the Breusch-Pagan test.
The results showed a p-value of 0.078, indicating
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Table 1: Regression coefficients and Group importance in generated data.

Coefficient β⃗1 β⃗2 β⃗3 β⃗4 β⃗5
β{1}1 β{1}2 β{1}3 β{2}1 β{2}2 β{2}3 β{3}1 β{3}2 β{3}3 β{4}1 β{4}2 β{4}3 β{5}1 β{5}2 β{5}3

Importance 0.40 0.70 1.50 0.50 1.70

Table 2: Group importance as defined in real data.

Region Prefecture Total Deaths as Regional Total Deaths
of May 8, 2023 as of May 8, 2023

Hokkaido Hokkaido 4610 4610
Kanto Saitama 4013 20418

Chiba 3944
Tokyo 8126
Kanagawa 4335

Chubu Shizuoka 1408 5771
Aichi 4363

Kinki Kyoto 1674 14141
Osaka 8559
Hyogo 3908

Chugoku Hiroshima 1373 1373
Kyushu Fukuoka 3205 3205

insufficient evidence to reject the hypothesis of ho-
moscedastic residuals. Furthermore, the high deter-
mination coefficient of 0.821 demonstrates that the
model explains a significant portion of the data’s vari-
ation. Based on these findings, we conclude that it is
appropriate to apply the real data to the model in this
study.

4.2 Experimental Setups

In this section, we elucidate the experimental con-
ditions that are consistent across both the generated
and real data experiments. We compare four meth-
ods: LASSO regression, Group LASSO regression,
Ridge regression (Hoerl and Kennard, 1970), and our
proposed method.

For both generated and real data, the explanatory
variables undergo standardization to have a mean of
0 and a variance of 1. To avoid discussions about
the intercept ε⃗ with regard to the target variable y⃗, we
center the target variable in both datasets. In the pro-
posed method, the regularization parameter λ ranges
from 10−1 to 104, and is divided into 5000 equidistant
values. On the other hand, for the LASSO regres-
sion, Group LASSO regression, and Ridge regression
methods, the same range of λ values is used to deter-
mine the optimal λ. This determination is performed
using Leave-one-out cross-validation, and the identi-
fied λ is then utilized to estimate the regression model
using the entire dataset.

4.3 Experimental Results

In this section, we present the experimental results ob-
tained from both generated and real data. Following
the results, a discussion based on the results of each
experiment is provided. All methods utilized in this
study were executed using custom-made programs in
Python. The computations for all methods were per-
formed on a PC equipped with an Intel(R) Core(TM)
i7-8700 CPU @3.20GHz.

4.3.1 Generated Data

This section presents the experimental results utiliz-
ing the generated data delineated in section 4.1.1. Ta-
ble 3 lists the regression coefficients β⃗ estimated by
LASSO regression, Group LASSO regression, and
Ridge regression. As evident from Table 3, multiple
regression coefficients are zero for both LASSO and
Group LASSO regression. Thus, assessing the group
importance through LASSO and Group LASSO is in-
feasible. As Ridge regression estimates values for
all regression coefficients, for this experiment, we
consider the sum of regression coefficients for each
group as an indicator of the group importance. Ta-
ble 4 lists the group importance as determined by our
proposed method and Ridge regression, alongside the
group importance described in section 4.1.1. The pro-
posed method estimates the group importance in per-
centages, so all values of group importance in Ta-
ble 4 are conveyed in percentages. From Table 4,
it’s discernible that the group importance estimated

ICPRAM 2024 - 13th International Conference on Pattern Recognition Applications and Methods

202



Table 3: LASSO, Group LASSO, and Ridge regression coefficients for generated data.
Coefficient/Method β{1}1 β{1}2 β{1}3 β{2}1 β{2}2 β{2}3 β{3}1 β{3}2 β{3}3 β{4}1 β{4}2 β{4}3 β{5}1 β{5}2 β{5}3
LASSO 0.000 0.000 0.000 0.000 0.000 0.000 0.432 0.000 0.652 0.000 0.000 0.000 0.663 0.677 0.788
Group LASSO 0.000 0.000 0.000 0.000 0.000 0.000 0.805 0.499 0.936 0.000 0.000 0.000 1.050 1.082 1.132
Ridge 0.300 0.325 0.191 0.505 0.499 0.369 1.161 0.845 1.294 0.253 0.287 0.386 1.241 1.306 1.370

Table 4: Group importance as estimated by Proposed method and Ridge regression for generated data.

Group/Method Group 1 Group 2 Group 3 Group 4 Group 5
Defined Importance (%) 8.33 14.58 31.25 10.42 35.42
Proposed Method (%) 8.59 13.96 30.97 9.58 36.90
Ridge Regression (%) 7.89 13.30 31.94 8.96 37.91

Table 5: Execution times between the Proposed method and Ridge regression for genereted data.

Method Time (seconds)
Proposed Method 33
Ridge Regression 1040

Table 6: LASSO, Group LASSO, and Ridge regression coefficients for real data.
Coefficient/Method βHokkaido βSaitama βChiba βTokyo βKanagawa βShizuoka βAichi βKyoto βOsaka βHyogo βHiroshima βFukuoka
LASSO 0.000 0.000 0.000 0.000 0.000 4.620 0.000 0.000 0.000 0.000 1.891 0.000
Group LASSO 0.000 0.212 0.247 0.220 2.658 4.620 1.694 0.000 0.000 0.000 0.000 0.000
Ridge 0.087 0.378 0.821 -0.652 0.539 1.849 0.663 0.146 -0.153 0.682 1.745 0.227

Table 7: Group importance as estimated by Proposed method and Ridge regression for real data.

Group/Method Hokkaido Kanto Chubu Kinki Chugoku Kyushu
Defined Importance (%) 9.31 41.23 11.65 28.56 2.77 6.47
Proposed Method (%) 3.92 46.16 18.57 23.78 3.50 4.07
Ridge Regression (%) 1.10 30.10 31.63 12.35 21.97 2.86

Table 8: Execution times between the Proposed method and Ridge regression for real data.

Method Time (seconds)
Proposed Method 1598
Ridge Regression 7682

by the proposed method more closely mirrors the de-
fined group importance compared to that estimated by
Ridge regression. Additionally, Table 5 documents
the execution times for estimating the group impor-
tance by our proposed method and Ridge regression,
where Ridge regression estimations are performed us-
ing the Leave-one-out cross-validation method. The
results show that our proposed method is more time-
efficient compared to Ridge regression, highlighting
its practicality, especially in scenarios requiring quick
model evaluations.

4.3.2 Real Data

This section presents the experimental results utiliz-
ing the real data delineated in section 4.1.2. Ta-
ble 6 lists the regression coefficients β⃗ estimated by
LASSO regression, Group LASSO regression, and
Ridge regression. Analogous to the results from the

generated data, it’s apparent from Table 6 that multi-
ple regression coefficients are zero for both LASSO
and Group LASSO regression. Hence, assessing
the group importance through LASSO and Group
LASSO is infeasible. As with the generated data,
since Ridge regression estimates values for all regres-
sion coefficients, we consider the summation of re-
gression coefficients for each group as a metric for the
group importance. Table 7 lists the group importance
as determined by our proposed method and Ridge re-
gression, alongside the group importance described in
section 4.1.2. Similarly, since our proposed method
estimates the group importance in percentages, all
values in Table 7 are conveyed in percentages. It’s
discernible from Table 7 that the group importance
estimated by our proposed method more closely mir-
rors the defined group importance compared to that
estimated by Ridge regression. Additionally, Table
8 documents the execution times for estimating the
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group importance by our proposed method and Ridge
regression, where Ridge regression estimations are
performed using the Leave-one-out cross-validation
method. The results show that our proposed method
is more time-efficient compared to Ridge regression,
highlighting its practicality, especially in scenarios re-
quiring quick model evaluations.

5 CONCLUSION

In this study, we introduced a method for estimating
the group importance based on Group LASSO regres-
sion. This method addresses the primary limitation of
Group LASSO regression, which is its focus on spar-
sity only at the group level and often neglecting the
assessment of group importance. Our experiments
with both generated and real data showed that our
method consistently demonstrates values closer to the
defined group importance compared to existing meth-
ods, highlighting the efficacy of our approach. How-
ever, our method does have certain limitations, which
are important to consider:

• Necessity to Predefine Multiple Regularization
Parameters.
The method requires a careful selection and pre-
definition of a range of regularization parameter
values, which can be time-consuming and chal-
lenging, especially for datasets with varying char-
acteristics and complexities.

• Possibility of Extended Execution Times.
For large datasets or complex models, our method
might need more computation per regularization
parameter, potentially increasing execution time.
However, tests with generated and real data sug-
gest it’s generally more time-efficient than Ridge
regression’s Leave-one-out cross-validation. This
efficiency isn’t always consistent across different
scenarios. Considering execution time is crucial
when comparing models and datasets.

Moving forward, it would be beneficial to further
validate the accuracy of group importance estimated
by our method. This necessitates conducting exper-
iments with a broader range of generated and real
datasets to establish its credibility and robustness
more comprehensively.
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group lasso for logistic regression. Journal of the
Royal Statistical Society Series B: Statistical Method-
ology, 70(1):53–71.

Nardi, Y. and Rinaldo, A. (2008). On the asymptotic prop-
erties of the group lasso estimator for linear models.

Tibshirani, R. (1996). Regression shrinkage and selection
via the lasso. Journal of the Royal Statistical Society
Series B: Statistical Methodology, 58(1):267–288.

Tomioka, R. and Scientific, K. (2015). Machine Learn-
ing with Sparsity Inducing Regularizations. MLP Ma-
chine Learning Professional Series. Kodansha.

Yang, H., Xu, Z., King, I., and Lyu, M. R. (2010). On-
line learning for group lasso. In Proceedings of the
27th International Conference on Machine Learning
(ICML-10), pages 1191–1198.

Yuan, M. and Lin, Y. (2006). Model selection and esti-
mation in regression with grouped variables. Journal
of the Royal Statistical Society Series B: Statistical
Methodology, 68(1):49–67.

ICPRAM 2024 - 13th International Conference on Pattern Recognition Applications and Methods

204


