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Abstract: Variational Autoencoders (VAEs) suffer from a well-known problem of overpruning or posterior collapse due
to strong regularization while working in a sufficiently high-dimensional latent space. When VAEs are used
to generate tabular data, categorical one-hot encoded data expand the dimensionality of the feature space
dramatically, making modeling multi-class categorical data challenging. In this paper, we propose Tab-VAE,
a novel VAE-based approach to generate synthetic tabular data that tackles this challenge by introducing
a sampling technique at inference for categorical variables. A detailed review of the current state-of-the-
art models shows that most of the tabular data generation approaches draw methodologies from Generative
Adversarial Networks (GANs) while a simpler more stable VAE method is ignored. Our extensive evaluation
of the Tab-VAE with other leading generative models shows Tab-VAE improves the state-of-the-art VAEs
significantly. It also shows that Tab-VAE outperforms the best GAN-based tabular data generators, paving the
way for a powerful and less computationally expensive tabular data generation model.

1 INTRODUCTION

Tabular data is crucial for data-driven industries
across a variety of domains and is essential for many
computationally demanding applications. Analysis of
tabular data can provide valuable insights for com-
panies, but obtaining and sharing real data for anal-
ysis can be difficult due to various factors such as
the cost and difficulty of data collection. Addition-
ally, it may not always be feasible to obtain large
enough amounts of high-quality real-world data. To
overcome these challenges, synthetic data generation
methods have been developed. Synthetic data, based
on real data and preserving its statistical properties,
can be used for product testing, model training, and
data retention while ensuring regulatory compliance.
Moreover, synthetic tabular data can be used to sim-
ulate scenarios where real-world data is limited. By
generating diverse synthetic data and combining it
with real data, the robustness and generalization of
machine learning models can be improved in various
industries.

Deep generative models like variational autoen-
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coders (VAE) (Kingma and Welling, 2013) and gen-
erative adversarial networks (GAN) (Goodfellow Ian
et al., 2014) have had massive success recently in
modeling and generating synthetic images (Karras
et al., 2019) and texts (Guo et al., 2018). Recent ef-
forts have been made to use deep generative models
to create synthetic tabular data in an attempt to repli-
cate the success seen in other domains (Figueira and
Vaz, 2022). While some methods have been success-
ful, they primarily rely on GANs. The reliance on
GANs may be attributed to their success in generat-
ing images, as reported in (Elasri et al., 2022), since
GANS are typically able to produce clearer images.
Nevertheless, in the context of tabular data, the advan-
tages of VAEs could be more effectively utilized, pri-
marily due to several disadvantages associated with
GANs. Training and evaluating them can be challeng-
ing due to their sensitivity to random initialization and
hyperparameter settings. This often leads to gener-
ators with similar architectures and hyperparameters
behaving differently. GANs also struggle with mode
collapse, where the generator produces samples that
only resemble a few modes of the data distribution.
This is a well-known issue, as reported in the litera-
ture such as (Goodfellow, 2016) and (Salimans et al.,
2016). Evaluating the quality of GANs is also dif-
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ficult as determining the likelihood is an intractable
problem. The current standard is to qualitatively ex-
amine the samples produced by the generator, but this
provides limited insight into the generator’s coverage
and makes it difficult to understand mode collapse.
This has been reported in the literature such as (Bo-
janowski et al., 2017).

On the other hand, VAEs have a more straightfor-
ward and stable training process. Additionally, VAEs
do not encounter problems such as mode collapse
because their loss function requires them to recon-
struct the entire dataset, making them less sensitive
and more robust. The latent space of a VAE is also
easy to interpret, as it can be inspected by analyzing
events in different regions of the latent space, as re-
ported in the literature such as (Spinner et al., 2018).
Therefore, it seems more practical to use VAEs for
generating representative synthetic tabular data.

It is important to note that there are unique chal-
lenges when modeling tabular data. One such chal-
lenge is the need to model both discrete and continu-
ous columns simultaneously, as well as the presence
of multi-modal non-Gaussian values within each con-
tinuous column and a severe imbalance of categori-
cal columns. Modeling a multi-class categorical col-
umn is particularly challenging for VAEs due to is-
sues such as overpruning and information preference
property, as reported in the literature such as (Burda
et al., 2015) and (Zhao et al., 2017). This refers to the
tendency of VAEs to neglect a large number of latent
variables when working in high dimensional latent
space due to strong self-regularization, as reported in
(Asperti, 2018), resulting in sub-optimal generative
models.

To address this challenge in VAEs, we adopt a
technique that uses sampling during inference to ex-
tract suppressed information and properly model the
multi-class categorical variable. By combining the
strengths of deep generative models to overcome the
unique challenges of tabular data synthesis and our
own novel approach to address overpruning, we pro-
pose the Tabular Variational Autoencoder (Tab-VAE).
Tab-VAE encodes various types of tabular data fea-
tures using a custom feature transformer, and then
trains a vanilla VAE-based architecture with custom
input and output layers to model the data and gener-
ate representative synthetic data. Our contribution can
be summarised as follows:

• We propose a novel VAE model called Tab-VAE
that can handle various types of tabular data and
can deal with the aforementioned challenges.

• We extensively evaluate Tab-VAE against several
state-of-the-art baselines and show that Tab-VAE
outperforms both the VAE and GAN baselines.

• Our findings demonstrate that Tab-VAE is con-
siderably faster to train than the top-performing
GAN baseline. Across all datasets, we observed
an 86.1% decrease in runtime when compared to
its counterpart, indicating that Tab-VAE is a com-
putationally less expensive alternative.

2 RELATED WORK

One of the earliest approaches to generate synthetic
tabular data is to combine attributes from existing data
points to create new, synthetic data points. An exam-
ple of this approach is the Synthetic Minority Over-
sampling Technique (SMOTE) (Chawla et al., 2002).
Another early approach to generating synthetic tabu-
lar data involves using statistical models that create a
multivariate probability distribution over the columns
of a table, treating each column as a random vari-
able. Synthetic data is then generated by sampling
values from this distribution. Examples of methods
that use this approach include CLBN (Chow and Liu,
1968), PrivBayes (Zhang et al., 2017) and copulas
(Patki et al., 2016),(Sun et al., 2019).

Deep learning approaches have also been used to
model the distribution of synthetic tabular data, pri-
marily through the use of GANs (Goodfellow Ian
et al., 2014). MedGAN (Choi et al., 2017) gen-
erates synthetic patient data and can generate high-
dimensional discrete variables, such as binary and
count features, by combining an autoencoder with a
GAN. CorrGAN (Patel et al., 2018) uses the same
architecture as MedGAN but introduces an addi-
tional term in the reconstruction loss of the auto-
encoder to encourage the decoder to preserve the
attributes’ correlation. (Camino et al., 2018) pro-
poses to improve MedGAN architecture by using the
WGAN (Arjovsky et al., 2017) framework with gradi-
ent penalty. It also models multi-categorical discrete
columns. VeeGAN (Srivastava et al., 2017) mitigates
the mode collapse problem in GANs by variational
learning. Table-GAN (Park et al., 2018) adopts the
very famous image generator architecture DCGAN
(Radford et al., 2015) using a convolutional neural
network but has an additional neural classifier that
predicts the label of the synthetic data.

So far, none of the discussed tabular GANs explic-
itly tackle the issue of highly imbalanced categorical
columns and multi-modal continuous columns. CT-
GAN (Xu et al., 2019), using a conditional WGAN-
GP framework introduces Mode-Specific Normal-
ization (MSN) for modeling multi-modal continu-
ous data, subsequently addressing mode-collapse in
GANs. It also addresses the imbalanced category is-
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sue with a new training approach called training by
sampling. In the same paper they introduce a vanilla
VAE-based tabular data synthesizer called TVAE (Xu
et al., 2019). TVAE is the first of its kind and
compares favorably against CTGAN and other GAN-
based models in extensive evaluation. The most
recent GAN-based approach is CTAB-GAN (Zhao
et al., 2021) and a subsequent enhancement CTAB-
GAN+ (Zhao et al., 2022). It uses a conditional gen-
erator like the CTGAN and uses a lot of elements
like MSN and training by sampling. But it also en-
hances the modeling by introducing a provision for
mixed and long-tailed data types and by adding two
more loss terms. The authors show that CTAB-GAN+
outperforms other state-of-the-art GAN-based mod-
els comprehensively. Finally, the most recent VAE-
based approach has been OVAE (Harsha and Stanley,
2020). It combines differentiable oblivious decision
trees (DODTs) with VAEs, thereby incorporating a
strong inductive bias for tabular data into VAEs. They
compare the OVAE model against several state-of-
the-art baselines including TVAE and CTGAN, and
show that OVAE compares favorably against the base-
lines on 12 real-world datasets.

Previous research on synthetic tabular data gener-
ation has mainly focused on GANs and lacked the use
of VAE-based deep generative models. Additionally,
existing VAE-based models do not address the issue
of overpruning and do not utilize the full capabilities
of VAEs. Our proposed Tab-VAE model addresses
this issue and represents a significant advancement in
VAE-based synthetic tabular data generation.

3 BACKGROUND

Our Tab-VAE model uses the VAE methodology to
model data distribution and is compared with other
deep generative models such as GANs and VAEs. We
will briefly explain these techniques in the following
section.

3.1 Generative Adversarial Network

GANs use an unsupervised learning technique to
identify patterns in input data and generate new sam-
ples that mimic the distribution of the original dataset.
A GAN is composed of two main modules, namely
generator, and discriminator, and it is trained to reach
an equilibrium between the two modules. The gener-
ator G is a neural network that samples a noise vector
z from a prior distribution pz(z) and generates a syn-
thetic data sample G(z;θg), while θg are the param-
eters of the network G. The discriminator D is an-

other neural network that takes an input data x sam-
pled from the data distribution pdata(x) and outputs
a single scalar D(x;θd), denoting whether the pro-
vided data sample is from the original data or not. The
two networks are trained together in a zero-sum game
shown in equation 1, where the generator tries to cre-
ate data that can fool the discriminator, and the dis-
criminator tries to correctly identify whether a piece
of data is real or synthetic.

min
G

max
D

V (D,G) =Ex∼pdata(x)[logD(x)]+

Ez∼pz(z)[log(1−D(G(z))) (1)

The training continues until the generator produces
synthetic data that is indistinguishable from real data
and the discriminator can no longer distinguish be-
tween them. This strategy leads to a trained generator
that can generate synthetic data which is very close to
real data making pdata(x)∼ pz(z).

3.2 Variational Autoencoder

Autoencoder neural networks consist of two neural
networks: an encoder and a decoder. The encoder
maps the input sequence x to meaningful latent space
z and reconstructs the input through the decoder with
minimal error. VAEs are an extension of normal au-
toencoders that regularize the latent space to follow
a Gaussian distribution p(z), which additionally al-
lows sampling data from the latent space. The ob-
jective is to learn the true posterior pθ(z|x), where
θ are the parameters of the network, which can be
learned by using Bayesian inference. However, with-
out any simplifying assumptions on pθ(z|x) or pθ(z),
the problem is intractable since it requires integration
over all possible values of the unobserved variable
z. The classic solution (Kingma and Welling, 2013)
proposes to use a recognition model qφ(z|x) as an ap-
proximation to the true posterior pθ(z|x). By jointly
optimizing for θ and φ, the posterior inference prob-
lem becomes tractable. It can be solved by minimiz-
ing the Kullback-leibler (KL)-divergence between the
two terms (the parameters θ and φ have been omitted
for simplicity):

DKL(q(z|x)) ∥ p(z|x)) =
∫

z
q(z|x)log

(
q(z|x)
p(z|x)

)
dz

= Ez[logq(z|x)]−Ez[log p(x,z)]+ log p(x)
= LELBO(x)+ log p(x)

(2)
Where:

LELBO(x) = log p(x)−DKL(q(·|x) ∥ p(·|x))
Minimizing the KL-divergence term becomes maxi-
mizing the evidence lower bound LELBO(·). We are
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thus maximizing the log-likelihood of the observed
data while simultaneously minimizing the divergence
of the posterior q(·|x) from p(·|x). Once the VAE is
trained using this learning objective, samples can be
drawn through the learned decoder network to gener-
ate synthetic data.

3.2.1 Limitations of VAE for Tabular Data

An important limitation of VAEs is that they tend
to overprune, also called the property of information
preference. Recall that the ELBO loss is a combina-
tion of log p(x) and −DKL(q(z|x) ∥ p(z|x)).

The Gaussian distribution is usually used to model
the conditional distribution (q(z|x)) and the prior dis-
tribution (p(x)). But in light of the loss function, if the
KL-divergence term is to be absolutely minimized it
entails that q(z|x) has to perfectly match p(z|x). This
perfect match can only happen if either q(z|x) doesn’t
require to be Gaussian or q(z|x) must be equivalent
to p(z), which is the unit Gaussian and does not carry
any information about the input sequence x. Anything
other than these two situations will incur a penalty
through the KL-divergence term. Due to strong regu-
larization, the KL-divergence term pushes the condi-
tional distribution towards the unit Gaussian without
carrying any information from x. Due to this phe-
nomenon, VAEs have a tendency not to encode all
the information in the latent space if they can avoid
it, which occurs when the regularization term is too
strong. This issue has been called overpruning in (As-
perti, 2018), posterior collapse in (Guo et al., 2020)
and information preference property in (Zhao et al.,
2017). The main challenge this issue poses while
generating tabular data is in terms of modeling the
categorical columns with multiple imbalanced cate-
gories, n. The categorical columns are normalized us-
ing one-hot-encoding, which creates a sparse matrix
where each category becomes a new variable in an n-
dimensional space. The low-frequency classes carry
very low information, but due to the information pref-
erence property these low information variables get
collapsed and the information gets lost. This makes
modeling the categorical variables with a high num-
ber of categories challenging.

3.3 Gumbel-Softmax Distribution

The Gumbel-softmax distribution was introduced si-
multaneously by two papers (Maddison et al., 2016)
and (Jang et al., 2016). The Gumbel-softmax distribu-
tion is a continuous relaxation of the categorical dis-
tribution, which allows for efficient optimization of
discrete variables in a continuous space. Addition-
ally, a method of sampling from this distribution is

proposed, which we refer to as Gumbel-softmax sam-
pling. Suppose we want to sample from a categori-
cal variable, z with unnormalized class probabilities
π1,π2, . . . ,πk. Gumbel-softmax sampling proceeds in
the following manner:

z = argmax
i

{gi + logπi}

Where g1, . . . ,gk are i.i.d. samples drawn from
Gumbel(0,1). Since argmax is not differentiable, the
authors propose using softmax instead. By combin-
ing all the ingredients, we generate a k-dimensional
vector y = y1, . . .yk as follows:

yi =
exp((logπi +gi)/τ)

∑
k
j=1 exp((logπ j +g j)/τ)

for i = 1, . . . ,k

(3)
Here, τ is a temperature variable to control the soft-
ness or relaxation of y. For lower values of τ, y is
approximately distributed according to π. The proof
is provided that shows that the samples are distributed
according to the softmax probability of the classes in
the appendix. This proof was obtained from an article
by (Adams, 2013).

From equation 3, the use of Gumbel-softmax sam-
pling allows us to draw samples from the probabilistic
distribution of a categorical feature, as opposed to de-
terministically choosing the maximum class. Since
this operation maximizes the class probability of the
samples using the log probability of the unnormalized
classes, it provides minority classes a better chance to
be represented and picked. In the context of overprun-
ing, this makes a huge impact. The strong regular-
ization suppresses low-frequency classes, leading to
information loss in the learned decoder. When sam-
pling from a unit Gaussian and taking the maximum
in a deterministic manner, the maximum class is al-
ways produced, regardless of how small the differ-
ence is with other classes. However, Gumbel-softmax
sampling allows us to sample from these regularized
classes, preserving information that may have been
lost otherwise. Therefore, for all the stated reasons,
we propose to sample using Gumbel-softmax at the
inference step for categorical variables.

4 TABULAR VARIATIONAL
AUTOENCODER

Tab-VAE encodes various types of tabular data fea-
tures by utilizing a custom feature transformer. It then
trains a vanilla VAE architecture with customized in-
put and output layers to model the data distribution.
Synthetic data can then be generated by sampling
from this modeled distribution.
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4.1 Input Data Transformations

The transformer class of the Tab-VAE transforms the
input data based on its column type and prepares it
for encoding. The tabular data T is encoded variable-
by-variable. We make a distinguishment between cat-
egorical and continuous variables. The table T con-
tains Nc continuous columns (C1, . . . ,CNc) and Nd cat-
egorical columns (D1, . . . ,DNd ). Each column is con-
sidered to be a separate random variable, forming a
joint distribution P(C1:Nc ,D1:Nd ). A row denoted r j =
(c1, j, . . . ,cNc, j;d1, j, . . . ,dNd , j) is one observation from
this joint distribution. We employ MSN to handle the
multi-modality of continuous variables, as proposed
in (Xu et al., 2019). MSN first estimates the num-
ber of modes, k of each continuous variable, Ci by
fitting a variational Gaussian mixture model (VGM)
(Bishop and Nasrabadi, 2006). This learned Gaus-
sian mixture is specified as ∑k ωkN (µk,σk), where
N is the normal distribution, ωk,µk and σk are the
weight, mean and standard deviation of each mode
respectively. Each value, ci of the continuous variable
is then associated and normalized using the normal
distribution of the mode having the highest probabil-
ity: αi =

ci−µk
4σk

. Moreover, the mode used is then kept
track by a one-hot-encoding, βi. Finally each contin-
uous value,ci is then represented as a concatenation of
αi and βi.

The transformer also has provisions to tackle
some special column types. A column of timestamps
is neither categorical nor continuous. To encode the
timestamps column with its properties intact we con-
sider the cyclical nature of time and use a sine-cosine
transformation of the timestamps to preserve this. The
hour-minute-second portion of the time is converted
into two variables of sine and cosine as follows:

csin
i = sin(c2π

i ), ccos
i = cos(c2π

i )

The remaining values of a time variable
(month/day/year) are considered as categorical
variables. Additionally, any categorical variable with
only one value is removed to reduce dimensionality.

To encode long-tail distributions effectively, we
adopt the approach from (Zhao et al., 2022). Long-
tail distributions are distributions in which a large
portion of observations are concentrated at the lower
end of the scale. Since VGM has difficulty capturing
and encoding values towards the tail, long-tail data
is pre-processed using a logarithmic transformation.
For such variables each value ci is compressed using
lower bound l and replaced with clog

i .

clog
i =

{
logci if l > 0
log(ci − l + ε) if l ≤ 0

, where ε > 0 (4)

This transformation makes it easier for VGM to en-
code all values, including the ones in the tail, by com-
pressing and decreasing the distance between the tail
and the bulk data.
Finally, the categorical variables are encoded using
one-hot-encoding γi. Each row is thus represented as
a (2Nc +Nd) - dimensional vector, giving us the final
input r j which is then passed to the Encoder (⊕ de-
notes concatenation): r j = α1, j ⊕β1, j ⊕·· ·⊕αNc, j ⊕
βNc, j ⊕ γ1, j ⊕·· ·⊕ γNd , j

4.2 Encoder

The encoder of the Tab-VAE is built to model the con-
ditional distribution qφ(z j|r j), where r j denotes the
encoded row of input data from section 4.1 and z j
is the latent representation produced by the encoder.
This modeling is done using the reparameterization
trick. The encoder actually produces the parameters
of this distribution, the mean, µ and standard devia-
tion σ using two dense layers. Then z j is modeled.
The architecture of the encoder distribution is as fol-
lows:

x1 = ReLU(Dense(r j))

x2 = ReLU(Dense(x1))

µ = Dense(x2)

σ = exp(Dense(x2))

qφ(z j|r j)∼ N (µ,diag(σ))

4.3 Decoder

Tab-VAE’s decoder is constructed to model the dis-
tribution pθ(r j|z j). The decoder generates αi, j and
βi, j for continuous columns and γi, j for the categori-
cal columns. Tab-VAE assumes that each αi, j has a
normal distribution (with a column-specific variance
δi). It also assumes that βi, j and γi, j has categorical
probability mass function. The architecture of the de-
coder distribution is as follows:

x1 = ReLU(Dense(z j))

x2 = ReLU(Dense(x1))

ᾱi, j = tanh(Dense(x2))

α̂i, j ∼ N (ᾱi, j,δi)

β̂i, j ∼ GumbelSo f tmax(Dense(x2))

γ̂i, j ∼ GumbelSo f tmax(Dense(x2))

pθ(r j|z j) =
Nc

∏
i=1

P(α̂i, j = αi, j)
Nc

∏
i=1

P(β̂i, j = βi, j)

Nd

∏
i=1

P(γ̂i, j = γi, j)
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Figure 1: Architectual overview of the Tab-VAE model.

Specifically, α̂i, j is modeled from the continuous por-
tion of the output r̂ j using a tanh activation func-
tion. β̂i, j and γ̂i, j are modeled as a normalized cat-
egorical distribution on the probability simplex us-
ing GumbelSo f tmax activation function. After that,
we simply set the maximum value in each vector to
1, and all other values to 0. This category is cho-
sen as the category of the categorical variable for this
sampled row r̂ j. The parameters of both the encoder
and the decoder are trained by stochastic gradient de-
scent maximizing the evidence lower bound, ELBO
(Kingma and Welling, 2013). The network is trained
using Adam optimizer. The reconstruction loss for
the continuous features, αi, j is calculated using mean
squared error. For categorical features γi, j and the
modes βi, j, the reconstruction loss is calculated us-
ing cross-entropy loss between the real data and re-
constructed unnormalized class probabilities. For an
overview of the specific hyperparameters, please refer
to the Appendix.

5 EXPERIMENTS

In this section, we are going to compare Tab-VAE us-
ing two evaluation frameworks. First, we are going
to benchmark it using the ML Efficacy framework
as proposed in (Xu et al., 2019) against the state-
of-the-art baselines discussed in 2, except CTAB-
GAN+. Then we will evaluate Tab-VAE against
CTAB-GAN+ using SDMetrics quality report mea-
suring the synthetic data fidelity(sdm, 2022) and run-
time analysis.

Experiment 1. ML Efficacy. Within the efficacy
framework, we consider several datasets, where every
dataset T is first split into Ttrain and Ttest . We then
use Ttrain to train the model to generate Tsyn of the
same size. Tsyn is used to train a set of standard clas-
sifiers or regressors and is evaluated with Ttest . The
hyperparameters of these classifiers and regressors are
kept the same as the benchmark to enable fair compar-
isons. For regression tasks, the average R2 is reported,

while for classification tasks metrics like F1, Macro
F1, and accuracy are averaged and reported. The met-
rics are chosen dependent on the dataset following the
benchmark. We also report “Identity”, which simply
trains the classifiers and regressors on Ttrain instead of
Tsyn of the real datasets. Identity serves as an upper
bound for all our scores.

The datasets we are using are adopted from (Xu
et al., 2019) to allow for a fair comparison. Par-
ticularly, we consider eight real-world datasets. Six
commonly used machine learning datasets were used:
adult, census, credit, covertype, intrusion and
news from the UCI machine learning repository (Dua
and Graff, 2017), with features and label columns in a
tabular form. Two datasets mnist28 and mnist12 are
obtained by binarizing 28 × 28 and 12 × 12 MNIST
images (LeCun et al., 2010) into feature vectors (with
an additional label column indicating the target digit).
Among these eight datasets one has a continuous vari-
able as its dependent variable, namely news, while the
rest are classification datasets.

Our model is compared with several baseline
models discussed in 2. Two of them are Bayesian net-
works, CLBN (Chow and Liu, 1968) and PrivBayes
(Zhang et al., 2017). Four of them are state-of-the-
art GAN models, medGAN (Choi et al., 2017), VEE-
GAN (Srivastava et al., 2017), TableGAN (Park et al.,
2018) and CTGAN (Xu et al., 2019). The remain-
ing two are state-of-the-art VAE models, TVAE (Xu
et al., 2019) and OVAE (Harsha and Stanley, 2020).
The model parameters and other specifications for the
experiments can be found in the Appendix.

Experiment 2. SDMetrics Fidelity & Runtime. In
the previous experiment, one competing GAN-based
network CTAB-GAN+(Zhao et al., 2022) is missing,
as the authors used a different framework for eval-
uation where they comprehensively showed CTAB-
GAN+ to be the best performing GAN-based tabular
data generator. Nevertheless, to make the evaluation
of Tab-VAE comprehensive, we run experiments to
compare Tab-VAE against CTAB-GAN+. We con-
sider the fidelity of the generated synthetic data and
the computational efficiency of the generation process
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in this comparison.
One approach for evaluating dataset fidelity fo-

cuses on comparing individual column distributions
and correlations between columns. One such method-
ology is called the SDMetrics Quality Score (sdm,
2022). It is part of a broader ecosystem of libraries
dedicated to synthetic data generation called the Syn-
thetic Data Vault (SDV)(Patki et al., 2016). The SDV
project is carried by the DATA to AI Lab team at MIT.
This framework calculates the overall quality scores
along two properties: “Column shapes” and “column
pair trend”. The “column shapes” score measures
how well the synthetic dataset captures the shape of
the distribution of each column. It is calculated using
a metric based on the Kolmogorov-Smirnov statistic
for continuous columns, and a metric based on the to-
tal variation complement for categorical and Boolean
columns. On the other hand “column pair trend”
measures if the synthetic data capture trends between
pairs of columns. It is calculated using Pearson corre-
lation similarity between two continuous columns and
contingency similarity between categorical columns.
For both these properties, a score is given from 0
(worst) to 1 (best). The overall quality score is the
mean score of these two individual scores.

In this experiment, we generate synthetic datasets
based on the same datasets as in the previous ML Ef-
ficacy experiment with the exception of the MNIST
datasets, using both the Tab-VAE and CTAB-GAN+.
We used the provided code base 1 for generating syn-
thetic datasets using CTAB-GAN+. We report the
SDMetrics quality score. We also report the total
runtime for training these datasets in the competing
models. Both models were trained on Amazon Sage-
maker Studio using ml.g4dn.xlarge, which includes 4
vCPUs, and 1 NVIDIA T4 GPU with 16 GB of GPU
memory.

6 RESULTS

6.1 Experimental Results

Experiment 1. Table 1 shows the detailed results of
the experiments and Table 2 shows the overall result
of the experiments using the ML Efficacy framework.
The boldfaced results indicate the best result and the
underlined ones indicate the second-best result for
each dataset. The values in the Tab-VAE row are from
our experiments, the ones in the OVAE row are ob-
tained from (Harsha and Stanley, 2020), while all the
other results are obtained from (Xu et al., 2019). It

1https://github.com/Team-TUD/CTAB-GAN-Plus

is important to note that Tab-VAE beats all the other
models on 4 of the 8 datasets and ties with TVAE on
one dataset. For the remaining three datasets, Tab-
VAE comes second. The three datasets where Tab-
VAE outscores other models by a significant margin
are census, covertype, and intrusion. Interest-
ingly, all these three datasets have a significant num-
ber of categorical features. This shows Tab-VAE’s
superiority in modeling categorical features. On the
other hand, Tab-VAE comes second with a signifi-
cant margin in the credit dataset which doesn’t have
a single categorical feature except for the target col-
umn. In the MNIST datasets, Tab-VAE comes second
but within a very respectable margin. Overall, Tab-
VAE is the best-performing model on both the classi-
fication and regression datasets as shown in table 2.

Experiment 2. Table 3 displays the outcomes of the
experiments conducted using SDMetrics Fidelity to
evaluate the synthetic data generated by Tab-VAE and
CTAB-GAN+. The results indicate that Tab-VAE out-
performs CTAB-GAN+ on five out of the six datasets,
demonstrating the superior ability of our proposed
model to maintain the statistical properties of the orig-
inal datasets. Notably, CTAB-GAN+ also produces
high-quality synthetic data, as reflected by its high
quality scores on most datasets. To further investi-
gate the performance of the models, we also com-
pared their runtimes in generating the synthetic data.

Table 4 reports the total runtime of the two mod-
els in generating the datasets. We also included
the dataset dimensions in the table for understand-
ing the reported results. As can be seen from the
table, Tab-VAE generally outperforms CTAB-GAN+
in terms of runtime, with significantly faster gener-
ation times observed on all datasets. The runtime
differences are particularly pronounced on datasets
with larger numbers of rows and columns, such as
census, intrusion, and covertype. For instance,
on the census dataset, Tab-VAE runs in 29 minutes,
which is 22 times faster than CTAB-GAN+, which
takes almost 642 minutes (more than 10 hours). One
notable exception is the credit dataset. It exhibits a
smaller difference in runtime between the two mod-
els despite being a very large dataset. This result
can be attributed to the absence of any categorical
columns in the dataset, except for the target column.
This limits the increase in dataset dimensionality fol-
lowing preprocessing. Overall, the results in Table 4
demonstrate that the Tab-VAE algorithm exhibits an
86.1% improvement in total runtime when compared
to CTAB-GAN+. To calculate the total runtime, the
individual runtimes of CTAB-GAN+ and Tab-VAE
are summed across all datasets.
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Table 1: Evaluation of Tab-VAE with other models using the ML Efficacy framework on 8 real-world datasets.

Model adult census credit cover. intru. mnist12 mnist28 news
Macro- Macro- Micro- Micro-

F1 F1 F1 F1 F1 F1 F1 R2

Identity 0.67 0.49 0.72 0.65 0.86 0.89 0.92 0.14

CLBN 0.33 0.31 0.40 0.32 0.38 0.74 0.18 -6.28
PrivBayes 0.41 0.12 0.19 0.27 0.38 0.12 0.08 -4.49
medGAN 0.38 0.00 0.00 0.09 0.30 0.09 0.10 -8.80
VEEGAN 0.24 0.09 0.00 0.08 0.26 0.19 0.14 -6.5e6
TableGAN 0.49 0.36 0.18 0.00 0.00 0.10 0.00 -3.09
CTGAN 0.60 0.39 0.67 0.32 0.53 0.39 0.37 -0.43

TVAE 0.63 0.38 0.10 0.43 0.51 0.79 0.79 -0.20
OVAE 0.60 0.38 0.51 0.45 0.53 0.83 0.84 -0.30
Tab-VAE 0.63 0.42 0.61 0.50 0.65 0.81 0.81 0.005

Table 2: Evaluation of Tab-VAE with other models us-
ing ML Efficacy framework averaged over 8 real-world
datasets.

Model Classification Regression
Avg. F1 Avg. R2

Identity 0.743 0.14

CLBN 0.382 -6.28
PrivBayes 0.225 -4.49
medGAN 0.137 -8.80
VEEGAN 0.143 -6.5e6
TableGAN 0.162 -3.09
CTGAN 0.469 -0.43

TVAE 0.519 -0.20
OVAE 0.591 -0.30
Tab-VAE 0.633 0.005

Table 3: Evaluation of Tab-VAE against CTAB-GAN+ for
synthetic data fidelity using SDMEtrics quality score on 6
real-world datasets.

Dataset CTAB-GAN+ Tab-VAE

adult 90.4% 96.0%
census 84.0% 97.0%
credit 84.6% 97.0%
covertype 98.5% 97.0%
intrusion 68.9% 93.9%
news 94.0% 95.9%

Table 4: Comparison of runtime between CTAB-GAN+ and
Tab-VAE on 6 real-world datasets.

Dataset Dataset properties Runtime in minutes Percentage reduction
Rows Columns CTAB-GAN+ Tab-VAE in runtime

adult 33k 15 19.3 3.4 82.4%
census 300k 41 641.9 29.0 95.5%
credit 284k 30 38.0 20.5 46.3%
covertype 581k 55 372.5 71.8 80.7%
intrusion 494k 41 346.8 65.9 81.0%
news 39k 59 26.6 10.1 62.2%

Total 1731k - 1445.1 200.7 86.1%

Table 5: Ablation analysis for Tab-VAE.

Method adult census credit covertype intrusion

Tab-VAE 0.63 0.42 0.61 0.50 0.65
w/o GS 0.57 0.19 0.00 0.43 0.59

6.2 Impact of Gumbel-Softmax

An ablation analysis was done to check the usefulness
of the novel component Gumbel-softmax for inferring
categorical variables in our model.

Table 5 shows the scores with and without
(“w/o GS”) this component for the five classification
datasets used in the ML Efficacy framework. The
most notable difference can be found in the census
and credit datasets. Interestingly the credit dataset
only has one single categorical column: the target col-
umn. This column only has two classes where one
class accounts for 99.8% of instances and the other
class accounts for only 0.2% of instances, making it
very imbalanced. Because of this huge imbalance,
the synthetic dataset without Gumbel-softmax com-
pletely ignores this minority class, leading to an F1-
score of 0.

On the other hand, among these 5 datasets only
census has more multi-class categorical columns
than continuous columns. Particularly 31 of its 41
columns are multi-class categorical, while 7 of these
columns have more than 30 classes. Inspecting it fur-
ther reveals that most of these columns are imbal-
anced. One example of such a column is ’detailed
household and family stat’, which has 38 classes in
the original dataset. The synthetic dataset generated
by Tab-VAE generates all 38 classes, whereas the one
without Gumbel-softmax generated 34 classes, com-
pletely ignoring/collapsing the information carried by
the other four classes. To illustrate it further, like
credit, census is also a binary classification dataset.
The target variable has one class that accounts for
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93.7% of the instances, making it also highly imbal-
anced. The synthetic dataset generated by Tab-VAE
preserves this ratio whilst the one without Gumbel-
softmax has 97.5% of this class, again suppressing
the information of the minority class. All this fac-
tored into this very low score on the census dataset in
the ablation analysis.

For the remaining three datasets, the performance
difference is not as significant, as these datasets
rely less on categorical variables for encoding in-
formation. Interestingly, the adult dataset also has
one multi-class categorical column with 41 classes,
whereas the model without Gumbel-softmax gener-
ates only 9 of these columns. Still, the impact of this
column is not as prevalent as in the case of credit
and census datasets. Similarly to these two datasets,
adult is the only other binary classification dataset,
but it has a good ratio of 75%-25% of its two classes.
Therefore, the magnitude of the obtained results high-
lights the importance of Gumbel-softmax in modeling
categorical columns in tabular datasets.

7 CONCLUSIONS AND FUTURE
WORK

In this paper, we introduced Tab-VAE, which ad-
dresses the challenge of modeling multi-class cate-
gorical variables in tabular data using a VAE gener-
ative model. Our approach is motivated by the belief
that VAEs can generate high-quality synthetic data,
with added benefits of being simpler, more stable,
and more computationally efficient. We corroborated
this claim by comparing our model against a host of
state-of-the-art models using two evaluation frame-
works and an ablation analysis. Tab-VAE continu-
ously showed high-level performance across multiple
datasets by outperforming state-of-the-art models of
both GANs and VAEs. In the future, the model can be
made more robust by incorporating additional encod-
ing methods for different types of data, such as mixed
data. Overall, Tab-VAE represents a significant ad-
vancement in the field of tabular data generation and
has the potential for broad applications in various do-
mains.
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