
VP-DARTS: Validated Pruning Differentiable Architecture Search

Tai-Che Feng and Sheng-De Wang
Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan

Keywords: Deep Learning, Model Optimization, Neural Architecture Search, Differentiable Architecture Search, Model
Compression, Model Pruning, Soft Pruning.

Abstract: Recently Differentiable Architecture Search (DARTS) has gained increasing attention due to its simplicity
and efficient search capability. However, such search methods have a significant chance of encountering
overfitting, which can result in the performance collapse problem of the discovered models. In this paper, we
proposed VP-DARTS, a validated pruning-based differentiable architecture search method using soft pruning,
to address this issue. Firstly, unlike previous search methods, we consider the differentiable architecture
search process as a model pruning problem. It prunes or removes unimportant operations from the supernet
that contains all possible architectures to obtain the final model. We also show that the traditional hard
pruning method would gradually reduce the capacity of the search space during training, leading to local
optimal results. To get better architectures than hard pruning, we proposed using a parameterized soft pruning
approach in our training process. Secondly, the original DARTS method selects the operation with the
maximum architecture parameter on each edge to form the final architecture after training. But we found
that this approach cannot truly reflect their importance. Therefore, we estimate the impact on the supernet of
each candidate operation by using a subset of the validation set to evaluate its degree of importance. Finally,
we implement our method on the NAS-Bench-201 search space, and the experimental results show that VP-
DARTS is a robust search method that can obtain architectures with good performance and stable results.

1 INTRODUCTION

Early machine learning models were all manually
crafted by experts, and these models achieved great
success in tasks such as image recognition, includ-
ing ResNet (He et al., 2016), VGG (Simonyan and
Zisserman, 2015), MobileNet (Howard et al., 2017;
Sandler et al., 2018), and others. However, designing
these neural networks requires a lot of expertise
and time. To address this issue, neural architecture
search (NAS) has gradually gained attention. Its
main objective is automatically to search for the
most suitable model architecture without requiring
specialized knowledge.

However, since the search space of NAS is not
continuous, early methods could only rely on Re-
inforcement Learning (Zoph and Le, 2017) or Ge-
netic Algorithms (Real et al., 2019), which require
a lot of computing resources and time. H. Liu (Liu
et al., 2019b) proposed a differentiable method called
DARTS to reduce search costs. The method still has
some limitations. First, during the training process,
skip connections are more likely to appear in the final
architecture. This phenomenon is called performance

collapse, which can decrease the stability and accu-
racy of the network. Secondly, since the training is
done through continuous relaxation, each candidate
operation is assigned a trainable architecture parame-
ter, which is used to determine the final architecture
by choosing the one with the highest value after
training. However, we found that these parameters do
not truly represent the importance of the operations.
In this paper, we propose using a portion of validating
set to estimate the degree of importance of operations
in the supernet.

The proposed approach is called VP-DARTS and
includes the following three main concepts: 1) con-
sidering the differentiable architecture search training
process as a model pruning problem, 2) using a
general parameterized soft pruning techniques based
on soft pruning (He et al., 2018) to solve the problem,
and 3) using a portion of validating set to estimate the
degree of importance of operations in the supernet. In
summary, our contributions are as follows:

• We found that the training process of the differen-
tiable architecture search method can be viewed
as a model pruning problem. And, a generalized

Feng, T. and Wang, S.
VP-DARTS: Validated Pruning Differentiable Architecture Search.
DOI: 10.5220/0012296700003636
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 16th International Conference on Agents and Artificial Intelligence (ICAART 2024) - Volume 2, pages 47-57
ISBN: 978-989-758-680-4; ISSN: 2184-433X
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

47



software pruning approach is proposed to solve
the problem.

• The previous methods of selecting operations can-
not correctly reflect their true importance. There-
fore, we propose estimating the impact of each
candidate operation on the supernet by using a
subset of the validation set to validate the supernet
rather than simply using the values of their archi-
tecture parameters.

2 RELATED WORKS

2.1 DARTS

DARTS (Liu et al., 2019b) aims to solve the problem
of discontinuous search space for NAS. It uses the
cell-based search space to narrow the search range
and maps the discrete optimization space to a contin-
uous interval.

In this cell-based search space, each searched cell
can be viewed as a directed acyclic graph (DAG),
where each node represents a feature map, and each
edge represents a type of operation performed. The
method first constructs a supernet that contains all
possible architectures, where each edge (i, j) be-
comes a mixed operation o(i, j)(x) of all candidate
operations o ∈ O, with an architecture parameter α

(i, j)
o

assigned to it. These architecture parameters α on
the same edge will pass through a Softmax activation
function, as shown in Equation 1. Through the
continuous relaxation approach, NAS can be trained
simply using gradient descent. This reduces the train-
ing cost significantly compared to the Reinforcement
Learning or Genetic Algorithm approaches.

o(i, j)(x) = ∑
o∈O

exp(α(i, j)
o )

∑o′∈O exp(α(i, j)
o′ )

o(x) (1)

At the end of the search, these architecture pa-
rameters can be regarded as the index of importance
of each operation on the corresponding edge since
a larger value α represents a higher proportion of
the results produced by that operation on the edge.
Therefore, we only need to select the best one based
on the maximum architecture parameter on each edge
after training to form the final architecture. This
approach reduces the search cost from thousands of
GPU days to just hours and achieves comparable or
even better results to other non-differentiable NAS
methods.

2.2 Soft Pruning

Hard pruning (Han et al., 2015; Han et al., 2016;
Guo et al., 2020; Liu et al., 2019a; Liu et al., 2019c;
He et al., 2020) is the most common pruning tech-
nique. Generally, the importance scores are computed
based on certain criteria at a specific stage, and those
weights that do not satisfy are directly removed.
Afterward, the remaining weights are fine-tuned to
recover the performance of the pruned model.

Soft pruning (He et al., 2018; He et al., 2019;
Cai et al., 2021) is another pruning technique. The
main difference between soft and hard pruning is that
the pruned weights are not permanently removed but
were allowed to participate in the iterative update
of the next epoch. Those considered unimportant
components have a second chance to regain their
importance at the latter training stage. Therefore,
the model capacity can be restored from the pruned
model during training, allowing the discovery of
better models that achieve higher accuracy. On the
other hand, in hard pruning, the pruned weights are
permanently removed, reducing the model’s capacity
during training and causing a loss in performance.
It also increases the probability that the final search
result will be unstable. Since if different components
are removed, the subsequent training will search from
diverse remaining search spaces, resulting in signifi-
cant differences in the search result. Furthermore, soft
pruning does not need to fine-tune the pruned model
after training. This approach significantly saves time
compared to the fine-tuning stage required by hard
pruning.

In the original soft pruning method (He et al.,
2018), the unimportant weights are set to zero for
the next epoch. However, directly setting the pruned
weights to zero may be too aggressive. Thus, to grad-
ually discard the pruned weights, SofteR Pruning (Cai
et al., 2021) is introduced, which gradually increases
the pruning strength for these pruned weights during
the training process with a monotonic decreasing
parameter, leading to better pruning results.

3 APPROACH

3.1 DARTS Pruning

While in the differentiable architecture search
method, the goal is to choose the most considerable
operation on each edge to form the final architecture.
Assuming we look from a different perspective, the
operation selection problem can be considered a
model pruning problem. In other words, we prune the
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Figure 1: The pruning concept of DARTS (a) DARTS
constructs a supernet that contains all possible sub-networks
and is trained using continuous relaxation (b) After
training, operation-level pruning is performed to remove all
unimportant operations at once from the supernet, leaving
only one between each pair of nodes.

unimportant operations on each edge and keep the
best one, and these remaining operations become the
final architecture. In the case of DARTS (Liu et al.,
2019b), as shown in Figure 1, the simplest pruning
method was employed. It sets the pruning ratio to
the maximum and prunes all unimportant operations
at the same time. However, the drawback of this
approach is that it may easily remove some crucial
components and lead to unstabilized results.

Therefore, it is necessary to change the pruning
technique to improve the search for more suitable
architectures in DARTS. One possible solution is
to avoid directly setting the pruning ratio to the
maximum but use a progressive approach, increasing
the pruning ratio step by step so that unimportant op-
erations can be removed gradually from the supernet
in the training process. This approach is adopted in
the Search Space Approximation of PDARTS (Chen
et al., 2019) and SGAS (Li et al., 2020), which aims to
search for better architectures by gradually selecting
the edge operations.

However, these various hard pruning approaches
still cannot solve the problem of excessive skip con-
nections. After conducting experiments, we found
that although the gradual pruning approach can in-
deed find better combinations of operations than the
original DARTS with one-time pruning, skip connec-
tions still frequently appear in the final architecture,
which suffers from the performance collapse prob-
lem. Moreover, these gradual pruning approaches
use a similar greedy algorithm to decide which op-
erations to prune at each step and heavily rely on
the current training results. Once the unimportant

ones are pruned, they are permanently removed and
cannot appear in the final architecture. This reduces
the search space and compromises the performance
during training, leading to an unstable search result.

3.2 Soft Pruning-Based DARTS

Therefore, to address the problem of performance
collapse and stabilize the search results, we adopts
the soft pruning (He et al., 2018; He et al., 2019;
Cai et al., 2021) approach as the pruning technique
in differentiable architecture search. The reason is
that in this type of model architecture search, our
goal is to find the best combination of operations. If
we use the traditional hard pruning, those considered
unimportant operations at the selection moment will
be permanently removed. It reduces the capacity
of the search space and the diversity of operation
combinations in the later stages of training.

These unimportant operations will not perma-
nently remove if soft pruning is used. Instead, the
values of their coefficients will reduce or set to 0 in
each epoch and continue to be trained. As shown in
Figure 2, these operations still exist in the supernet
and allow iterative updates giving those unimportant
ones to regain their importance. This approach also
ensures the capacity of the search space and the
diversity of operations combination during training,
avoiding the aforementioned problems and enabling
us to search for better architectures.

The generalized soft pruning decay strategy for-
mula can be written as Equation 2.

α1 = α0(1−
K

max epoch
) , 0 ≤ K < max epoch (2)

where α0 represents the original value, α1 repre-
sents the pruned value, max epoch represents the
total number of pruning epochs, and the coefficient
K represents the reduced rate of value, which can
control the decaying speed in each epoch. As we
fixed the value of K as max epoch during the training
process, the original soft pruning (He et al., 2018)
approach is used. That is, the unimportant operation
coefficients will be set to zero at the beginning of
each epoch. On the other hand, since directly setting
the pruned weights to zero may be too aggressive,
SofteR Pruning (Cai et al., 2021) gradually increases
the pruning strength during the training process, in
which the value of K is adjustable. This approach
improves the drawbacks of the original soft pruning
since the value of the operation coefficients will not be
directly set to 0. In this case, the operation can regain
their importance more easily and the search can retain
more promising architectures.

VP-DARTS: Validated Pruning Differentiable Architecture Search

49



Figure 2: Hard pruning vs. soft pruning in DARTS. In the soft pruning training process, (a) no operation is removed from
the supernet during the middle of the training. Instead it is allowed to be continuously updated and let the unimportant
operations recover their importance; (b) the capacity of the search space will not decrease, and all possible architectures will
exist throughout the training process.

For example, as shown in Figure 3(a), the pruning
strength can be set up as the ratio between the cur-
rent epoch and the total number of pruning epochs.
This method is known as the linear decay strategy
in SofteR Pruning. Another strategy is called the
exponential decay strategy. However, compared to
filter pruning, the convergence speed is significantly
slower in the differentiable architecture search train-
ing process, where operation-based pruning is per-
formed. If the exponential decay strategy is used,
the coefficient values will drop in the early stages
of training significantly, as shown in Figure 3(b),
reducing the chances of recovering operations that are
considered unimportant. Therefore, we only consider
using the linear decay strategy to attempt to train
better architectures. The difference between these
two approaches is shown in Figure 4, where the fixed
value K will directly set the coefficient to 0, and
the adjustable K will set the value according to the
decaying strategy.

Furthermore, since we treat the selection of op-
erations in DARTS as a model pruning problem, we
consider the architecture parameters as general model
weights just like others, rather than the probability
distribution on each edge. Therefore, we do not
use softmax to normalize the architecture parameters.
Instead, we train the unnormalized weights directly,
as shown in Equation 3.

o(i, j)(x) = ∑
o∈O

α
(i, j)
o o(x) (3)

There are two benefits while not using Softmax.
First, since softmax normalizes the weights and forces
the sum of all values to 1, when one value increases,
the others are compressed and become smaller. This
emphasizes the importance of the operations having
higher values. While this is fine for fair compe-
tition in other methods, skip connections make the
competition unfair in DARTS, as some papers (Chen
et al., 2019; Chu et al., 2020) have pointed out
that its convergence speed is much faster than other
operations. Therefore, using softmax only makes
the architecture parameters of skip connections grow
faster, making it difficult for other operations to be
selected. Moreover, since softmax is applied to
the architecture parameters on the same edge, it’s
unable to distinguish the importance between two
operations located on different edges and leads to
unfair comparisons between operations in the search
process.

3.3 Determine Operation Strength
Using Validation Set

In the original DARTS method, the importance of
each operation is determined based on the magnitude
of its architecture parameter. However, according to
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Figure 3: Different decay strategy while using adjustable K.

Figure 4: Comparison of using fixed K and adjustable K.

Figure 5: Comparison of Kendall τ coefficient between
using the magnitude of architecture parameters α, the re-
maining supernet validation accuracy without the operation,
and the real ranking.

some studies (Zhou et al., 2021; Wang et al., 2021),
these coefficients do not accurately reflect their true
importance. The operation with the highest coeffi-
cient may not be the most important one. Therefore,

we attempt to address this issue by estimating the
impact of all operations on the supernet instead of
directly looking at their architecture parameters.

Algorithm 1: Determine Operation Strength Using
Validation Accuracy.

Input : Supernet S; Two operations o1, o2
Output: The more important operation o1, o2

Valo1 = Validation accuracy of the remaining
supernet S when o1 is removed;

Valo2 = Validation accuracy of the remaining
supernet S when o2 is removed;

if Valo1 >Valo2 then
o2 is more important than o1;
return o2;

end
else

o1 is more important than o2;
return o1;

end

VP-DARTS: Validated Pruning Differentiable Architecture Search
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We used the Kendall τ coefficient (Kendall, 1938)
to verify the above situation. The Kendall τ co-
efficient is a commonly used measurement of the
correlation between two rankings. It can be calculated
as

Kendall τ =
C−D
C+D

(4)

where C represents the number of concordant pairs,
and D represents the number of discordant pairs. The
resulting correlation value always falls between -1
and 1, where -1 and 1 represent perfect negative and
positive correlations, respectively, and 0 indicates that
the two rankings are completely independent.

Therefore, if we wish the predicted ranking to be
similar to the actual rank, the calculated Kendall τ

coefficient should be as high as possible. As shown
in Figure 5, we calculated the Kendall τ coefficient
between the magnitude of architecture parameters, the
supernet validation accuracy without the operation,
and the actual rank after the DARTS training method.
We random sample 100 cell architectures and replace
the edges to be evaluated for importance with all
candidate operations. We sort them based on the
accuracy of the models they construct and calculate
the average rank, which serves as the actual ranking
for those operations on that edge.

After experiments, we found that using the valida-
tion accuracy to determine the importance can better
reflect the operations ranking. Using the magnitude
of architecture parameters resulted in a Kendall τ

value of -0.2 while using validation accuracy as the
measurement achieved a value of 0.6. This result
shows that using the original magnitude of the ar-
chitecture parameters cannot correctly determine the
importance, leading to select the wrong operations to
form the final architecture.

Therefore, according to the above findings, we
propose estimating the impact on the supernet of each
candidate operation to determine their importance.
The overall process is summarized in Algorithm 1.
If the validation accuracy decreases significantly after
removing one of the operations from the supernet,
it indicates that the removed one is quite important
because the model performance can only improve by
adding it back. On the other hand, if the difference
in accuracy before and after removing an operation
is negligible, the importance of that operation is
relatively low because even without it, the model can
still maintain its performance.

3.4 VP-DARTS: Validated Pruning
Differentiable Architecture Search

In summary, this study uses the soft pruning approach
to conduct the differentiable architecture search
method and change the way of determining the
importance of operations by estimating their impact
on the supernet using the validation set. We name
the approach Validated Pruning Differentiable
Architecture Search (VP-DARTS). The whole VP-
DARTS method is shown in Figure 6, with the
following steps:

• To ensure fair competition between all operations,
a warmup strategy is employed in the early train-
ing, where all architecture parameters are frozen,
and only the weights on the model are trained.

• While the warmup stage is completed, at the
beginning of each epoch, all candidate opera-
tions are removed individually from the super-
net, and the validation accuracy of the remaining
model is measured to determine their importance.
Since testing with the entire validation set is time-
consuming, we randomly sample a subset in each
epoch to reduce the search cost.

• After every operation strength has been deter-
mined, the soft pruning method is used to remove
all operations that are considered unimportant
temporarily. This approach sets their architecture
parameters to α1 with parameter K as shown
in Equation 2, which allows them to participate
in the next iteration update to regain their im-
portance. It ensures the search space and the
model capacity are not reduced during training,
which allows all possible operation combinations
to continue existing and find better architectures.

• Repeat the above two steps in each epoch until
the training is complete. After training, remove
each operation and test the validation set accuracy
again to determine the importance of each one,
and select the best one with the lowest accuracy
to form the final cell architecture.

4 EXPERIMENTS

4.1 Search Space: NAS-Bench-201

NAS-Bench-201 (Dong and Yang, 2020) is a widely-
used benchmark for neural architecture search, which
fixes the hyperparameters such as the size of search
space, the number of candidate operations, the value
of learning rate, and data augmentation techniques
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Table 1: Results of VP-DARTS on NAS-Bench-201.

Method CIFAR-10 CIFAR-100 ImageNet16-120 Search Cost
validation test validation test validation test (h)

Random (baseline) 90.93 ± 0.36 93.70 ± 0.36 70.93 ± 1.09 71.04 ± 1.07 44.45 ± 1.10 44.57 ± 1.25 -
Reinforce (Zoph and Le, 2017) 91.09 ± 0.37 93.85 ± 0.37 71.61 ± 1.12 71.71 ± 1.09 45.05 ± 1.02 45.24 ± 1.18 -
Genetic (Real et al., 2019) 91.19 ± 0.31 93.92 ± 0.30 71.81 ± 1.12 71.84 ± 0.99 45.15 ± 0.89 45.54 ± 1.03 -

DARTS (1st) (Liu et al., 2019b) 39.77 ± 0.00 54.30 ± 0.00 15.03 ± 0.00 15.61 ± 0.00 16.43 ± 0.00 16.32 ± 0.00 2.0
DARTS (2nd) (Liu et al., 2019b) 39.77 ± 0.00 54.30 ± 0.00 15.03 ± 0.00 15.61 ± 0.00 16.43 ± 0.00 16.32 ± 0.00 -
SNAS (Xie et al., 2019) 90.10 ± 1.04 92.77 ± 0.83 69.69 ± 2.39 69.34 ± 1.98 42.84 ± 1.79 43.16 ± 2.64 -
PCDARTS (Xu et al., 2020) 89.96 ± 0.15 93.41 ± 0.30 67.12 ± 0.39 67.48 ± 0.89 40.83 ± 0.08 41.31 ± 0.22 -
SGAS (Li et al., 2020) 85.06 ± 0.00 88.33 ± 0.03 70.80 ± 0.65 70.76 ± 1.29 42.97 ± 2.53 43.04 ± 2.76 -
iDARTS (Zhang et al., 2021) 89.86 ± 0.60 93.58 ± 0.32 70.57 ± 0.24 70.83 ± 0.48 40.38 ± 0.59 40.89 ± 0.68 -
ReNAS (Xu et al., 2021) 90.90 ± 0.31 93.99 ± 0.25 71.96 ± 0.99 72.12 ± 0.79 45.85 ± 0.47 45.97 ± 0.49 -
DARTS- (Chu et al., 2021) 91.03 ± 0.44 93.80 ± 0.40 71.36 ± 1.51 71.53 ± 1.51 44.87 ± 1.46 45.12 ± 0.82 -
DrNAS (Chen et al., 2021) 91.55 ± 0.00 94.36 ± 0.00 73.49 ± 0.00 73.51 ± 0.00 46.37 ± 0.00 46.34 ± 0.00 3.9
β-DARTS (Ye et al., 2022) 91.55 ± 0.00 94.36 ± 0.00 73.49 ± 0.00 73.51 ± 0.00 46.37 ± 0.00 46.34 ± 0.00 3.2

VP-DARTS (Fixed K)VP-DARTS (Fixed K)VP-DARTS (Fixed K) 91.34 ± 0.0691.34 ± 0.0691.34 ± 0.06 94.15 ± 0.0794.15 ± 0.0794.15 ± 0.07 72.64 ± 0.9472.64 ± 0.9472.64 ± 0.94 72.77 ± 0.5772.77 ± 0.5772.77 ± 0.57 45.81 ± 0.2845.81 ± 0.2845.81 ± 0.28 45.91 ± 0.4345.91 ± 0.4345.91 ± 0.43 2.82.82.8
VP-DARTS (Adjustable K)VP-DARTS (Adjustable K)VP-DARTS (Adjustable K) 91.55 ± 0.0091.55 ± 0.0091.55 ± 0.00 94.36 ± 0.0094.36 ± 0.0094.36 ± 0.00 73.49 ± 0.0073.49 ± 0.0073.49 ± 0.00 73.51 ± 0.0073.51 ± 0.0073.51 ± 0.00 46.37 ± 0.0046.37 ± 0.0046.37 ± 0.00 46.34 ± 0.0046.34 ± 0.0046.34 ± 0.00 2.82.82.8

Optimal 91.61 94.37 73.49 73.51 46.77 47.31

Figure 6: Overview of VP-DARTS.

during the search stage, providing a fair competi-
tion platform for all NAS methods in three datasets:
CIFAR-10, CIFAR-100 and ImageNet16-120, an Im-
ageNet subset down-sampled version. The objective
of the search space is to find the best cell architecture,
which can be represented as a directed acyclic graph
(DAG) consisting of four nodes and six edges. The
search space consists of five candidate operations: Ze-
roize, Skip Connection, 1x1 Convolution, 3x3 Con-
volution, and 3x3 Avg Pooling. For more detailed

settings, please refer to the NAS-Bench-201 paper
(Dong and Yang, 2020).

4.2 Implementation Details

We conducted 20 warmup epochs at the beginning of
the search, where we froze all architecture parameters
and only trained the weights of the supernet itself, and
since skip connection has a faster convergence speed,
we added dropout with the probability of 0.2 behind
to suppress it, to ensure fair competition among all
operations. After the warmup stage, we applied
the soft pruning approach for the last 30 epochs by
random sampling 50% of validation sets accuracy
in each epoch to determine the importance. The
final pruning ratio is used during the whole search
phase, which means that the training is performed
by considering four unimportant operations to be
masked on each edge in every epoch. We set K =
max epoch in Equation 2 as the fixed K approach. For
the adjustable K approach, we use the linear decay
strategy mentioned in Section 3.2 to determine the
strength of pruning in each epoch. We performed
both search methods on CIFAR-10 and evaluated the
performance on all datasets.

4.3 Search Results

The experimental results are shown in Table 1, where
we conducted five search processes with different
random seeds and reported their average accuracy ±
variance. The results show that VP-DARTS, while
using the fixed parameter K achieves comparable
performance on all datasets in NAS-Bench-201 with
94.15% test accuracy on CIFAR-10, 72.77% test
accuracy on CIFAR-100, and 45.91% test accuracy
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Figure 7: The searched cell of VP-DARTS (adjustable K) on NAS-Bench-201 with CIFAR-10.

on ImageNet16-120, which is better than most of the
search methods using the hard pruning approach, such
as DARTS and SGAS.

Furthermore, VP-DARTS using the adjustable K
approach can achieve even better results than the
fixed value K, which could find better architectures
on all datasets with 94.36% test accuracy on CIFAR-
10, 73.51% test accuracy on CIFAR-100 and 46.34%
test accuracy on ImageNet16-120. This approach
achieves state-of-the-art performance and completes
the search process in just 2.8 hours, requiring less
time than other methods. The searched architecture
of VP-DARTS using adjustable K is shown in Figure
7, from which we observe that VP-DARTS effectively
solves the problem of excessive skip connections
in DARTS, resulting in well-performing searched
architectures. Moreover, since using the adjustable
K does not directly set the architecture parameters of
unimportant operations to zero, it is easier to let them
regain importance at the beginning of the training
process and select the more suitable and stable one.
Therefore, adjustable K can get more stable results
than the fixed value.

In summary, compared to using hard pruning
methods like DARTS or SGAS, VP-DARTS, which
uses the soft pruning approach, maintains the ca-
pacity of the search space unchanged during train-
ing, enabling the discovery of better and more sta-
ble architectures. Moreover, using the adjustable
K approach, VP-DARTS achieves superior results
by gradually increasing the pruning strength during
the search process with less training cost than other
search methods. These results indicate that applying
soft pruning in differentiable architecture search with
directly estimating the impact on the supernet can
obtain excellent architectures.

5 ABLATION STUDY

5.1 Soft Pruning vs. Hard Pruning

In this paper, we proposed VP-DARTS, which utilizes
the technique of generalized soft pruning to reduce
unimportant weights and the validated accuracy as
the operation selection criterion. In contrast, tradi-

tional hard pruning methods determine the strength
of the operations by the architecture parameter on the
current training status and permanently remove them
from the search space.

Here we conducted an ablation study to compare
the differences between soft pruning and hard pruning
in DARTS on NAS-Bench-201 search space. Both
methods are trained with the same settings mentioned
in Section 4.2, 50 epochs search phase with a 20
epochs warmup at the beginning, dropout rate of 0.2,
and using 50% of the validation set accuracy to deter-
mine the importance of operations. In traditional hard
pruning, we prune all unimportant ones at the end of
the training, similar to DARTS. In progressive hard
pruning, we use the Search Space Approximation
from PDARTS (Chen et al., 2019) and divide the later
search phase into three stages. The search space size
is set to 5, 3, and 2, respectively, gradually pruning
unimportant operations in the search phase.

We used different random seeds for five search
processes and reported their average accuracy ± vari-
ance. As shown in Table 2, the experiment results
demonstrate that utilizing hard pruning as the search
strategy in DARTS leads to lower performance in the
obtained network architecture, regardless of whether
traditional hard pruning or progressive hard pruning is
employed. Moreover, using soft pruning also shows a
more stable result. The experiment shows that using
the soft pruning approach to maintain the capacity
of the search space during training is helpful for the
differentiable architecture search method.

5.2 Validation Accuracy vs. Alpha
Value

In Section 3.3, we mentioned that using the same
approach as DARTS to directly determine the impor-
tance of operations based on the magnitude of α may
not accurately reflect the actual ranking compared
to using validation accuracy. Here, we compare
the impact of using these two approaches again.
We use the fixed value K approach in VP-DARTS
while changing the way of directly determining the
importance of operations based on the magnitude of
α and compare it with the original method of using
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Table 2: Comparison between using hard pruning and soft pruning approach.

Method CIFAR-10 CIFAR-100 ImageNet16-120
validation test validation test validation test

Hard Pruning 87.97 ± 3.58 91.41 ± 2.24 67.67 ± 5.10 67.97 ± 5.23 40.42 ± 7.95 37.99 ± 53.90
Gradually Hard Pruning 89.79 ± 0.15 93.11 ± 0.10 69.88 ± 1.04 70.29 ± 1.66 42.74 ± 5.36 43.55 ± 4.93
Soft Pruning (Fixed K)Soft Pruning (Fixed K)Soft Pruning (Fixed K) 91.34 ± 0.0691.34 ± 0.0691.34 ± 0.06 94.15 ± 0.0794.15 ± 0.0794.15 ± 0.07 72.64 ± 0.9472.64 ± 0.9472.64 ± 0.94 72.77 ± 0.5772.77 ± 0.5772.77 ± 0.57 45.81 ± 0.2845.81 ± 0.2845.81 ± 0.28 45.91 ± 0.4345.91 ± 0.4345.91 ± 0.43

Table 3: Comparison of using the magnitude of α and validation accuracy determining the importance of operations.

Method CIFAR-10 CIFAR-100 ImageNet16-120
validation test validation test validation test

α Value 85.27 ± 1.50 88.86 ± 1.49 62.47 ± 7.53 62.99 ± 9.45 35.90 ± 11.78 35.11 ± 12.37
Val AccuracyVal AccuracyVal Accuracy 91.34 ± 0.0691.34 ± 0.0691.34 ± 0.06 94.15 ± 0.0794.15 ± 0.0794.15 ± 0.07 72.64 ± 0.9472.64 ± 0.9472.64 ± 0.94 72.77 ± 0.5772.77 ± 0.5772.77 ± 0.57 45.81 ± 0.2845.81 ± 0.2845.81 ± 0.28 45.91 ± 0.4345.91 ± 0.4345.91 ± 0.43

validation accuracy.
The experimental results are shown in Table 3.

From the result, we can observe that utilizing vali-
dation accuracy enables us to discover architectures
with superior performance. It achieves accuracy
rates exceeding 5% across all datasets and even 10%
accuracy boosts on CIFAR-100 and ImageNet16-120.
This once again confirms that directly determining the
importance of operations based on the magnitude of α

cannot accurately represent the actual ranking.

5.3 The Impact of Validation Set
Proportion

Since we use validation accuracy to determine the
importance of operations, a large amount of validation
set testing is required in each epoch. Here we
compare the influence of using different proportions
of validation set sizes to determine the importance of
operations on the final results. For the cases that use
a partial subset, we randomly sampled the validation
set during each epoch instead of using a fixed subset.

The results are shown in Figure 8. We can observe
that employing a higher proportion of the validation
set for testing leads to better and more stable results of
the searched architecture. On the contrary, a smaller
proportion of the validation set results in decreased
accuracy and stability of the searched architecture
since different parts of the validation set are used each
time. However, it can significantly reduce the search
time since fewer data are used for testing each time
when determining the importance of operations.

The search results are relatively consistent when
the proportion is 50% or above but would experience
a significant drop when it is below 50%. Therefore,
our method chooses to use the 50% ratio, which
strikes a balance between training cost and accuracy.

6 CONCLUSION

In this paper, we propose VP-DARTS, a differentiable
architecture search method based on soft pruning,
and determining the importance of each operation by
directly estimating its impact on the supernet using
validation accuracy. This method effectively solves
the issue of excessive skip connections causing the
performance collapse problem and can result in better
architectures. With the fixed value K of VP-DARTS,
we achieved a comparable result on the NAS-Bench-
201 search space, with accuracy rates of 94.15%,
72.77%, and 45.91% on CIFAR-10, CIFAR-100, and
ImageNet-16-120, respectively. It outperformed other
NAS methods using the hard pruning approach in the
training process.

Moreover, using the adjustable value K, VP-
DARTS can achieve even better results than the
fixed value, obtaining accuracy rates of 94.36% on
CIFAR-10, 73.51% on CIFAR-100, and 46.34%
on ImageNet-16-120. It achieves state-of-the-art
performance with stable results and lower search
costs than other NAS methods. Furthermore, in the
ablation study, we showed that soft pruning could
obtain better and stable results than traditional hard
pruning among differentiable architecture search
methods. The main reason is that the software
pruning does not reduce the capacity of search
space during training while hard pruning does. The
experiments show that VP-DARTS is a robust search
method and can find neural architectures with good
performance.
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