Keywords:

Abstract:

Enabling On-Device Continual Learning
with Binary Neural Networks and Latent Replay

Lorenzo Vorabbi!2®?2 Davide Maltoni?®®, Guido Borghi2 ¢ and Stefano Santi!

1Datalogic Labs, Bologna, 40012, Italy
2Department of Computer Science and Engineering (DISI), University of Bologna, Cesena, Italy

Binary Neural Networks, On-Device Learning, TinyML, Continual Learning.

On-device learning remains a formidable challenge, especially when dealing with resource-constrained de-
vices that have limited computational capabilities. This challenge is primarily rooted in two key issues: first,
the memory available on embedded devices is typically insufficient to accommodate the memory-intensive
back-propagation algorithm, which often relies on floating-point precision. Second, the development of learn-
ing algorithms on models with extreme quantization levels, such as Binary Neural Networks (BNNs), is critical
due to the drastic reduction in bit representation. In this study, we propose a solution that combines recent ad-
vancements in the field of Continual Learning (CL) and Binary Neural Networks to enable on-device training
while maintaining competitive performance. Specifically, our approach leverages binary latent replay (LR)
activations and a novel quantization scheme that significantly reduces the number of bits required for gradient
computation. The experimental validation demonstrates a significant accuracy improvement in combination
with a noticeable reduction in memory requirement, confirming the suitability of our approach in expanding

the practical applications of deep learning in real-world scenarios.

1 INTRODUCTION

In recent times, the integration of Artificial Intelli-
gence into the Internet of Things (IoT) paradigm (Mo-
hamed, 2020; Alshehri and Muhammad, 2020), en-
abling the provision of intelligent systems capable of
learning even within embedded or tiny devices, has
garnered significant attention in the literature. This
trend has been facilitated by various factors, includ-
ing the evolution of microchips, which have led to the
availability of cost-effective chips in many everyday
objects. Additionally, the exploration of new learning
paradigms, such as Continual Learning (CL) (Parisi
et al., 2019; Masana et al., 2022), has contributed to
the development of techniques for training neural net-
works continuously, on small data portions (denoted
as experiences) at a time, mitigating the issue of catas-
trophic forgetting (Kirkpatrick et al., 2017). In this
manner, a neural network, in contrast to the traditional
machine learning paradigm, does not learn from a sin-
gle large dataset accessible entirely during the train-

https://orcid.org/0000-0002-4634-2044
@ https://orcid.org/0000-0002-6329-6756
¢ https://orcid.org/0000-0003-2441-7524

Vorabbi, L., Maltoni, D., Borghi, G. and Santi, S.

Enabling On-Device Continual Learning with Binary Neural Networks and Latent Replay.
DOI: 10.5220/0012269000003660

Paper published under CC license (CC BY-NC-ND 4.0)

ing phase but rather from small data portions accessi-
ble gradually over time. This limited amount of data
needed by the training procedure effectively simpli-
fies the adoption of a CL training implementation on
embedded devices.

Despite the keen interest of the scientific commu-
nity, numerous challenges still persist, rendering the
utilization of deep learning models on devices par-
ticularly demanding. These challenges are primarily
associated with the computational requirements typi-
cally demanded by deep neural networks, even though
based on CL strategies. Indeed, embedded devices
often have limited available memory, preventing the
storage of a vast amount of data. Furthermore, a
powerful GPU is usually absent due to cost, space
constraints, and energy consumption. These compet-
ing needs have given rise in the last few years to a
specific branch of machine learning and deep learn-
ing called TinyML (Banbury et al., 2020), focused
on shrinking and compressing neural network models
with respect to the target device characteristics. One
of the most interesting TinyML approaches, is Binary
Neural Networks (BNNs) (Courbariaux et al., 2016;
Rastegari et al., 2016; Qin et al., 2020), where a sin-
gle bit is used to encode weights and activations; un-

25

In Proceedings of the 19th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2024) - Volume 2: VISAPP, pages

25-36
ISBN: 978-989-758-679-8; ISSN: 2184-4321

Proceedings Copyright © 2024 by SCITEPRESS — Science and Technology Publications, Lda.

VISAPP 2024 - 19th International Conference on Computer Vision Theory and Applications

Frozen layers
1-bit

iLatent Replay !
1-bit | Py

7

Replay Memory (1-bit)

EConcatenate al mini-
batch level

Layer m

Quantized Backpropagation

Figure 1: Continual Learning with latent replay memory. When using a BNN the activations stored in the replay memory can

be quantized to 1-bit.

fortunately, solutions based on BNNs in combination
with Continual Learning algorithms are still lacking.
A previous work (Vorabbi et al., 2023a) explored
the possibility of training a BNN model on-device by
freezing the binary backbone and allowing the adapta-
tion of only the last classification layer where forget-
ting is mitigated by CWR* (Lomonaco et al., 2020;
Graffieti et al., 2022). Unfortunately, the reported re-
sults are interesting but the final accuracy is signifi-
cantly lower w.r.t. a system where all the layers can be
tuned. Pellegrini et al. (Pellegrini et al., 2020) showed
that a good accuracy/efficiency tradeoff in CL can be
achieved by only some convolutional layers (typically
from 3 to 5), placed before the classification head. Re-
playing part of old data (stored in a replay memory
or buffer), interleaved with new samples, was proved
to be an effective approach to mitigate catastrophic
forgetting (Kirkpatrick et al., 2017). If past samples
are stored as intermediate activations (instead of raw
data), the replay technique takes the name latent re-
play (Pellegrini et al., 2020) (see Fig. 1). Latent re-
play is particularly interesting when combined with
BNN (as proposed in this paper) since the latent acti-
vations can be quantized to 1-bit, leading to a remark-
able storage saving. Unfreezing some intermediate
layers requires to back-propagate gradients along the
model to update weights; on the edge, the implemen-
tation of this process, usually referred to as on-device
learning, requires an efficient and lightweight back-
propagation implementation, which is not yet avail-
able in the most popular training frameworks. The
reduction of bitwidths during backward pass, made
possible by a fixed point (many low-power CPUs are
not equipped with floating-point unit) implementa-

26

tion, can speedup the learning phase but the tradeoffs
between accuracy loss and efficiency need to be eval-
uated with attention.

In this paper, we propose a solution to combine
the Continual Learning paradigm with training on the
edge using BNNs. Specifically, through the introduc-
tion of a back-propagation and input binarization al-
gorithm, we demonstrate how it is possible to con-
tinuously tune a CNN model (including classifica-
tion head and convolutional layers) with low mem-
ory requirements and high efficiency. Our work rep-
resents a step beyond the classical quantization ap-
proach of BNNs published in the literature, where
binarization is typically considered only during for-
ward pass and a binary model is trained using latent
floating-point weights (Helwegen et al., 2019). Some
works showed (Cai et al., 2020; Lin et al., 2022)
good improvements in reducing both the memory de-
mand and the computational effort to enable training
on the edge, but they did not focus on the Continual
Learning (CL) scenario, which we primarily address.
We conducted experiments with multiple BNN mod-
els, evaluating the advantages offered by the proposed
methodology in comparison to the method outlined
in (Vorabbi et al., 2023a) where only the classifica-
tion head is tuned.

The main contributions of this work can be sum-
marized as follows:

1. Reduced Replay Memory Requirement: our
replay memory stores intermediate activations
quantized to 1-bit allowing a relevant storage sav-
ing. We investigate the trade-offs required to
maintain model accuracy while simultaneously
reducing memory consumption.

Enabling On-Device Continual Learning with Binary Neural Networks and Latent Replay

2. Improved Model Accuracy: by enabling the
continual adaptation of intermediate convolu-
tional layers (besides the final classification head)
our BNN-based model significantly outperforms
the closest previous solution (Vorabbi et al.,
2023a).

3. Quantization of Backpropagation for Non-
Binary Layers: we introduce a quantization
approach for the back-propagation step in non-
binary layers, enabling the preservation of accu-
racy while eliminating floating-point operations.

4. Optimized Binary Weight Quantization: we
present an optimized quantization strategy tai-
lored for binary weights, leading to a remark-
able 8x reduction in memory requirements. Bi-
nary layers are typically trained by storing latent
floating-point representations of weights that are
subsequently binarized during inference. Repli-
cating this schema on-device would result in an
unacceptable increase of memory usage and com-
putational overhead.

5. Optimized Back-Propagation Framework: we
implemented a comprehensive back-propagation
framework capable of supporting various quanti-
zation levels both inference and back-propagation
stages.

The paper is organized as follows. In Section 3.1
we describe the latent replay mechanism providing
an estimation of the memory saved when applied to
a binary layer. In Section 3.2 we detail the quanti-
zation approach used for both forward and backward
passes. Then, in Section 3.3 we describe the method
used to quantize gradient computation. A comprehen-
sive experimental evaluation is proposed in Section 4,
focusing on the accuracy comparison with respect to
the CWR* algorithm (Sect. 4.1), the reduction of the
storage needed by the replay memory (Sect. 4.2) and
the efficiency in the backpropagation algorithm (Sect.
4.4).

2 RELATED WORK

Continual Learning: Some works in the literature
addressed the on-device learning task proposing
solutions to primarily reduce the memory require-
ment of the learning algorithm: Ren et al. (Ren
et al., 2021) brought the transfer learning task on
tiny devices by adding a trainable layer on top of
a frozen inference model. Cai et al. (Cai et al.,
2020) proposed to freeze the model weights and
retrain only the biases reducing the memory stor-
age during forward pass. Lin et al. (Lin et al.,

2022) introduced a sparse update technique to
skip the gradient computation of less important
layers and sub-tensors. QLR-CL (Ravaglia et al.,
2021) relies on low-bitwidth quantization (8-bit)
to speed up the execution of the network up to
the latent layer and at the same time reduce the
memory requirement of the latent replay vectors
from the 32-bit floating point to 8-bit; compared
to our solution, QLR-CL optimizes the computa-
tion pipeline for a specific ultra low-power CPU
based on RISC-V ISA. In addition, backpropa-
gation is performed with floating-point precision.
In (Nadalini et al., 2022; Nadalini et al., 2023),
Nadalini et al. introduced a framework to execute
on-device learning on tiny devices using floating-
point (32 and 16 bits) computation. Our solu-
tion differs considerably even in this case because
we introduce a quantized fixed-point implemen-
tation for binary and non-binary layers instead
of performing a post-training quantization of the
frozen layers and then executing backpropagation
with floating-point precision. Additionally, to the
best of the author’s knowledge, this is the first
work that implements on-device learning by quan-
tizing the back-prop of binary layers using low
bitwidths.

As in (Vorabbi et al., 2023a) the proposed ap-
proach uses CWR* for class-bias correction in
the classification head (see (Masana et al., 2022)).
CWR* maintains two sets of weights for the out-
put classification layer: cw are the consolidated
weights used during inference while tw are the
temporary weights that are iteratively updated
during back-propagation. cw are initialized to O
before the first batch and then updated accord-
ing to Algorithm 1 of (Lomonaco et al., 2020),
while tw are reset to 0 before each training mini-
batch. CWR¥*, for each already encountered class
(of the current training batch), reloads the consoli-
dated weights cw at the beginning of each training
batch and, during the consolidation step, adopts a
weighted sum based on the number of the training
samples encountered in the past batches and those
of current batch.

Binary Neural Networks: Quantization is a use-

ful technique to compress Neural Network models
compared to their floating-point counterparts, by
representing the network weights and activations
with very low precision. The most extreme quan-
tization is binarization, where data can only have
two possible values, namely —1(0) or +1(1). By
representing weights and activations using only 1-
bit, the resulting memory footprint of the model is
dramatically reduced and the heavy matrix mul-

27

VISAPP 2024 - 19th International Conference on Computer Vision Theory and Applications

tiplication operations can be replaced with light-
weighted bitwise XNOR operations and Bitcount
operations. According to (Bannink et al., 2021),
which compared the speedups of binary layers
w.r.t. the 8-bit quantized and floating point layers,
a binary implementation can achieve a lower in-
ference time from 9 to 12x on a low power ARM
CPU. Therefore, Binary Neural Networks com-
bine many hardware-friendly properties including
memory saving, power efficiency and significant
acceleration; for some network topologies, BNN
can be executed on-device without the usage of
floating-point operations (Vorabbi et al., 2023b)
simplifying the deployment on ASIC or FPGA
hardware.

3 METHOD

In this section, we introduce our solution to efficiently
deploy CL methods using Latent Replay and BNNSs.
In particular, the CWR* approach (briefly summa-
rized in Sect. 2) is used to correct class-bias in the
classification head.

3.1 Continual Learning with Latent
Replays

In Fig. 1 we illustrate the CL process with Latent
Replay. When new data becomes available, they are
fed to the neural network that during the forward pass
produces their latent activations, which represent the
feature maps corresponding to a specific intermediate
layer. We denote this layer as [(where [€ [0,L)), with
L representing the total number of layers within the
model. Activations of new data are joined (at mini-
batch level) with the replay activations (previously
stored) and forward/backward passes on the remain-
ing layers, specifically those with index from [+ 1 to
L — 1. To elucidate further, if By denotes the mini-
batch size of the newly acquired latent activations, a
subset of replay vectors (Bg) is extracted from the re-
play memory and merged, thus forming a minibatch
of total size By = By + Bg. In contrast, the layers with
an index less than / are maintained in a frozen state
and are not included in the learning process. After
the conclusion of each training experience, the replay
memory is updated by including samples from the last
experience and using class-balanced reservoir sam-
pling (Vitter, 1985), which ensures a double balanc-
ing: (i) in terms of samples per classes, (ii) in terms
of samples from experience (see Algorithm 1).

28

Algorithm 1: Procedure used to populate the replay memory
(RM). RM is initially pre-populated using training samples
of the first experience. The reservoir sampling is used on a
class basis to maintain the balance among different classes.
This approach prevents a skewed representation of classes
within RM.
Input: N = max number of samples per class
Input: C = max number of classes
1 RMsize =C-N;
// C-N is the max size of RM
populated during the first
experience.

2 for each on-device experience do

// T is the number of classes

// M; = samples of class t

// RM; = samples of class t
already in RM

3 forr =0to7T —1do

B; = RM;UM; ;

// # is the cardinality
operator

5 RM7®" = apply Reservoir sampling to

extract #RM; samples from By;
remove not selected RM; samples ;
update RM with RM";

6
7

8 end
9 end

3.2 Quantization of Activations and
Weights

Quantization techniques have gained widespread
adoption to diminish the data size associated with
model parameters and the activations of layers. Em-
ploying quantization strategies enables the reduction
of data bitwidth from the conventional 32-bit floating-
point representation to a lower bit-precision format,
typically 8 bits or even less, while typically incur-
ring a negligible loss in accuracy during the forward
pass of the model. For the quantization of non-binary
layers that need to be trained on-device, we adopted
the approach proposed in the work of Jacob et al. (Ja-
cob et al., 2018) which is further implemented in the
GEMMLOWP library (Jacob et al., 2017).

By representing the dynamic range of the activa-
tions at the i-th layer of the network as [al,;,,d;

.) : min’ max] s
we can define the quantized activations a, as:

P a P a —d .
ag = castjo,q_i], S, = (1)

where g denotes the number of quantization bits used
(8,16,32), a' represents the full-precision activations

; ; . oo
and a,,,,,, a,,;, are determinated through calibration on

Enabling On-Device Continual Learning with Binary Neural Networks and Latent Replay

Frozen layers

qr = qp
\
Forward pass
1-3
W‘If W1 bzt Wl blt
-4 l 1-3 -2
ag, ag, aqf aqf q
|j_.| ’ ! £(a%GT)
1-3
Wqy | qb | qu | W% |
i Trainable -3 -2 -1
Non Trainable :gqb 95, qu gflb
ﬁNon-binaryIayer @ Non-binary layer S < < —
. Binary layer 6 Binary layer Eackiadipes

Figure 2: Quantization scheme that uses a different number of bitwidth for forward (¢7) and backward (g;,) pass. Usually,
trainable non-binary layers are Batch Normalization (Ioffe and Szegedy, 2015), Addition and Concatenation layers.

the training dataset. Weight quantization can be ac-
complished using an equation analogous to equation
1. However, as recommended in Vorabbi et al. (Vor-
abbi et al., 2023a), we utilize two separate sets of
quantization bits for both the forward and backward
passes. For binary layers, during the forward pass,
binarization is executed according to the following
equation:

STE (x) = {f}
as proposed in (Courbariaux et al., 2016). In back-
ward pass, STE computes the derivative of sign as
if the binary operation was a linear function. This
approximation has been further improved by other
works (Liu et al., 2018; Liu et al., 2020) and in gen-
eral it is model dependent.

x>0
otherwise

2

3.3 Quantized Backpropagation
Drawing upon the findings presented in the works of
Gupta et al. (Gupta et al., 2015), Das et al. (Das et al.,
2018), and Banner et al. (Banner et al., 2018), it is ev-
ident that the quantization of gradients stands out as
the primary contributor to accuracy degradation dur-
ing the training process. Therefore, we advocate for
a quantization scheme akin to that introduced in (Vor-
abbi et al., 2023a). In this scheme, we employ two
distinct sets of quantization bits for the forward and
backward passes.

The back-propagation algorithm operates in an it-
erative manner to calculate the gradients of the loss
function (denoted as£) with respect to the input a'~!
for the layer [:

oL

8= 3)
starting from the last layer. Every layer in the net-
work is tasked with computing two sets of gradients
to execute the iterative update process. The first set
corresponds to the layer activation gradient w.r.t. the
inputs, which serves the purpose of propagating gra-
dients backward to the previous layer. Considering a

linear layer, where @/ = W/ -a/~! and -2 = W/, the
gradients can be computed as follows:

. oL od

I-1 _ — Wil 4)

" 9d 9a T
The other set is used to update the weights of layer
index [:

1_%.8701_1—11 (5)
8= 9 awl —

Based on Egq. 4 and 5, the backward
pass requires approximately twice Multiply-And-
Accumulate (MAC) operations compared to the for-
ward pass and therefore the gradient quantization be-
comes essential to efficiently train neural network
models on-device. The quantization of weights and
gradients (Eq. 4 and 5) is implemented through Eq. 1
and can be visually summarized in Fig. 2; as shown
in (Banner et al., 2018; Vorabbi et al., 2023a), back-
ward pass usually needs higher bitwidth to preserve
the directionality of the weight tensor and, based on
that, we propose to use lower bitwidth during forward
pass (Fig. 2, gy bits, green path) to minimize latency
and more bits for the backward pass to be more accu-
rate in gradient representation (Fig. 2, g, bits, purple
path). Considering the constrained memory resources
available on embedded devices, accurately estimating

29

VISAPP 2024 - 19th International Conference on Computer Vision Theory and Applications

Table 1: The table represents a comparison of memory usage (# parameters) for different BNN models. With B we report
the number of binary weights that can be updated during back-propagation; with NB the number of non-binary weights. The
choice of latent replay (LR) level is discussed in Section 4. It is worth noting that the largest part of memory weights is used

by binary weights.

. # B = bin, # NB = non-bina B
total weights | LR shape weights afteiriR weights after Ll;~y B+NB
BiReal-18 11.2M (4,4,512) 7.0M 19K 99.7%
BiReal-18 11.2M (8,8,256) 10.1M 28K 99.7%
React-18 11.1M (4,4,512) 7.0M 18K 99.7%
React-18 11.1M (8,8,256) 8.3M 24K 99.7%
VGG-Small 4.6M (8,8,512) 2.3M 86K 96.4%
QuickNet 12.7M (7,7,256) 9.5M 36K 99.6%
QuickNet 12.7M (14,14,128) 11.9M 43K 99.6%
QuickNetLarge 22.8M (7,7,256) 14.2M 40K 99.7%
QuickNetLarge 22.8M (14,14,128) 21.3M 56K 99.7%

the memory requirements of the learning algorithm
becomes imperative. We can categorize memory into
two distinct types: the memory utilized by the CL
method (e.g. the replay memory) and the memory
necessary to store intermediate tensors during the for-
ward pass, which are subsequently used in the back-
propagation, along with the model weights. In this
context, we will focus mainly on the latter aspect,
particularly for binary layers where g is fixed at 1-
bit while g, can vary depending on the desired level
of accuracy. In Table 1, we present an assessment
of the memory usage for representing binary weights
of trainable layers on-device. It is worth noting that
binary weights, as indicated in the fifth column of the
same table, constitute a substantial portion of the total
model parameters. Consequently, reducing ¢, to 1-bit
offers significant memory savings in comparison to a
more conventional approach where g, is set to 16 bits.
The reduction in memory usage exhibits an almost
linear relationship with the number of bits utilized.
We distinguish g, between binary and non-binary lay-
ers to apply different quantization bitwidts, as elabo-
rated in Section 4, which demonstrates that it is feasi-
ble to maintain accuracy while significantly reducing
g for binary layers. Denoting ¢/ and qZO”_bi" as the
quantization settings for binary and non-binary layers,
respectively, in Section 4 we illustrate that setting g5
to 1-bit results in minimal accuracy loss compared to
higher quantization bitwidths.

4 EXPERIMENTS

We evaluate our methods on three classifica-
tion datasets: CORe50(Lomonaco and Maltoni,
2017), CIFAR10 (Krizhevsky et al., 2009) and
CIFAR100(Krizhevsky et al., 2009) with different

30

BNN architectures. The BNN models employed for
CORe50 have been pre-trained on ImageNet through
the Larq repository!; differently, the models used for
CIFARI10 and CIFAR100 have been pre-trained on
TinyImageNet(Le and Yang, 2015). For each dataset,
we conducted several tests using a different number
of quantization bits (both for forward and backward
passes) with the same training procedure. In addition
to the work of Vorabbi et al.(Vorabbi et al., 2023a), in
our experiments we kept different bitwidths for binary
and non-binary layers because, as reported in Table 1,
memory of trainable binary weights is predominant.
Hereafter we report some details about the dataset
benchmarked and related CL protocols:

CORe50 (Lomonaco and Maltoni, 2017). It is a
dataset specifically designed for Continuous Ob-
ject Recognition containing a collection of 50 do-
mestic objects belonging to 10 categories. The
dataset has been collected in 11 distinct sessions
(8 indoor and 3 outdoor) characterized by differ-
ent backgrounds and lighting. For the continuous
learning scenarios (NI, NC) we use the same test
set composed of sessions #3, #7 and #10; the ac-
curacy on test set is measured after each learning
experience. The remaining 8 sessions are split in
batches and provided sequentially during training
obtaining 9 experiences for NC scenario and 8 for
NI. No augmentation procedure has been imple-
mented since the dataset already contains enough
variability in terms of rotations, flips and bright-
ness variation. The input RGB image is standard-
ized and rescaled to the size of 128 x 128 x 3.

CIFAR10 and CIFAR100 (Krizhevsky et al., 2009).
Due to the lower number of classes, the NC sce-
nario for CIFAR10 contains 5 experiences (adding

Uhttps://docs.larq.dev/zoo/api/sota/

Enabling On-Device Continual Learning with Binary Neural Networks and Latent Replay

2 classes for each experience) while 10 are used
for CIFAR100. For both datasets the NI sce-
nario is composed by 10 experiences. Similar to
COReS50, the test set does not change over the
experiences. The RGB images are scaled to the
interval [—1.0;+1.0] and the following data aug-
mentation was used: zero padding of 4 pixels for
each size, a random 32 x 32 crop and a random
horizontal flip. No augmentation is used at test
time.

On CORe50 dataset, we evaluated the three binary
models reported below:

Quicknet and QuicknetLarge (Bannink et al,
2021). This network follows the previous works
(Liu et al., 2018; Bethge et al., 2019; Martinez
et al., 2020) proposing a sequence of blocks,
each one with a different number of binary 3 x 3
convolutions and residual connections over each
layer. Transition blocks between each residual
section halve the spatial resolution and increase
the filter count. QuicknetLarge employs more
blocks and feature maps to increase accuracy.
For Quicknet, latent replay memory has been
set to quant_conv2d_16 layer by storing 1-bit
activations; for QuicknetLarge the latent replay
level is quant_conv2d_30. At this level (both
for Quicknet and QuicknetLarge) activation has
a dimensionality of (7,7,256) and storing in
the replay memory 1-bit activations leads to a
considerable memory saving.

In contrast to the findings presented in (Vorabbi
et al., 2023a), our study did not include the Realto-
binary (Martinez et al., 2020) model, as it achieved
notably lower accuracy levels that were not aligned
with our research objectives and goals.

For CIFAR10 and CIFAR100 datasets, whose in-
put resolution is 32 x 32, we evaluated the following
networks (pre-trained on Tiny Imagenet):

BiRealNet (Liu et al., 2018). It is a modified ver-
sion of classical ResNet that proposes to preserve
the real activations before the sign function to
increase the representational capability of the 1-
bit CNN, through a simple shortcut. Bi-RealNet
adopts a tight approximation to the derivative of
the non-differentiable sign function with respect
to activation and a magnitude-aware gradient to
update weight parameters. We used the instance
of the network that uses /8-layers?. The latent re-
play layer has been set to add_12. At this level
activation has a dimensionality of (4,4,512).

ZRefer to the following https://github.com/liuzechun/
Bi-Real-net repository for all the details.

ReactNet (Liu et al., 2020). To further compress
compact networks, this model constructs a base-
line based on MobileNetV1 (Howard et al., 2017)
and adds a shortcut to bypass every 1-bit convo-
lutional layer that has the same number of input
and output channels. The 3 x 3 depth-wise and
the 1 x 1 point-wise convolutional blocks of Mo-
bileNet are replaced by the 3 x 3 and 1 x 1 vanilla
convolutions in parallel with shortcuts in React
Net3. As for Bi-Real Net, we tested the version of
React Net that uses /8-layers. The latent replay
layer has been set to add_12 layer. At this level
activation has a dimensionality of (4,4,512).

In our experimental setup, we discovered that re-
ducing the number of epochs in each learning expe-
rience had minimal impact on model accuracy. Con-
sequently, we empirically set the number of epochs
to 5, thus constraining the training time on-device
platform. Across all classification tasks, we uti-
lized the Cross Entropy loss function in conjunction
with Stochastic Gradient Descent (SGD) as the op-
timizer. The former was chosen due to its simplic-
ity in derivative computation when combined with
the Softmax activation function. The latter was pre-
ferred for its computational efficiency, offering lower
overhead compared to more complex algorithms like
Adam (Kingma and Ba, 2014). In our experiments,
the ratio of By to the batch size of the latent ac-
tivations sampled from the replay memory is set at
1/4. Both weight and activation binarization were
performed during training, including both the first
training experience and on-device stages. This choice
requires the implementation of a quantized backward
pass technique for all the non-differentiable functions,
specifically the binarization functions (using Eq. 4
and 1). To assess model accuracy during on-device
training, we developed the quantized backward steps
for all layers employed by the previously described
models.

Our experiments primarily concentrated on the
NC scenario. As highlighted in (Pellegrini et al.,
2020), the adoption of a latent replay memory did not
significantly enhance model accuracy in the NI con-
text. Moreover, the NC scenario more closely resem-
bles real-world applications where the model’s recog-
nition capability must be expanded to accommodate
new, previously unknown classes.

4.1 Accuracy Comparison

To assess the accuracy of our proposed solution,
we initiated our evaluation by comparing it with

3Refer to the following https:/github.com/liuzechun/
ReActNet repository for all the details.

31

VISAPP 2024 - 19th International Conference on Computer Vision Theory and Applications

Quicknet on CORe50

071 BNN+CWR*- float
----- BNN+LR+CWR*- float
—— BNN+CWR*- 32-bit
064 - BNN+LR+CWR*- 32-bit
—— BNN+CWR*- 16-bit
---- BNN+LR+CWR*- 16-bit 5
BNN+CWR*- 8-bit o
505 BNN-+LR+CWR*- 8-bit
o ot
g .
g
g
<
% 0.4
g
K
0.3
0.2
0 1 2 3 4 5 6 7 8
Experiences
Figure 3: Accuracy comparison of our solution

(BNN+LR+CWR¥*) with previous work BNN+CWR* (Vor-
abbi et al., 2023a) on CORe50 using quick model.

QuicknetLarge on CORe50

—— BNN+CWR*-float
079 . BNN-+LR+CWR*-float
—— BNN+CWR*- 32-bit
----- BNN+LR+CWR*- 32-bit
0.6 1 —— BNN+CWR*- 16-bit
----- BNN+LR+CWR*- 16-bit
BNN+CWR*- 8-bit
g 05 BNN+LR+CWR*- 8-bit
]
]
g
<
204
8
0.3
0.2
0 1 2 3 4 5 6 7 8
Experiences
Figure 4: Accuracy comparison of our solution

(BNN+LR+CWR*) with previous work BNN+CWR* (Vor-
abbi et al., 2023a) on CORe50 using QuickNetLarge model.

Reactnet-18 on CIFAR10

—— BNN+CWR*-float
..... BNN-+LR+CWR*-float
0.551 —— BNN+CWR*- 32-bit
----- BNN-+LR+CWR*- 32-bit
—— BNN+CWR*- 16-bit
----- BNN+LR+CWR*- 16-bit
0.45 BNN+CWR™-g-bit
> BNN-+LR+CWR*- 8-bit)y — __——
g _
5
3
g
<
7035
°
0.25
0 1 2 3 4
Experiences
Figure 5: Accuracy comparison of our solution

(BNN+LR+CWR#*) with previous work BNN+CWR* (Vor-
abbi et al., 2023a) on CIFAR10 using Reactnet model.

prior work, specifically BNN+CWR* (Vorabbi et al.,
2023a), where only the final classification layer is
trained on-device, without employing a replay mem-
ory. We conducted a series of tests with varying

32

Birealnet-18 on CIFAR10

—— BNN+CWR*-float
----- BNN+LR+CWR*-float
—— BNN+CWR*- 32-bit
0.559 «eeen BNN+LR+CWR*- 32-bit
—— BNN+CWR*- 16-bit
----- BNN+LR+CWR*- 16-bit
BNN+CWR*- 8-bit
2 0.454 BNN+LR+CWR*- 8-bit
<
%
2 0.35
0.25 4
0 1 2 3 4
Experiences
Figure 6: Accuracy comparison of our solution

(BNN+LR+CWR*) with previous work BNN+CWR* (Vor-
abbi et al., 2023a) on CIFAR10 using Birealnet model.

Reactnet-18 on CIFAR100

0.35
—— BNN+CWR*-float

----- BNN+LR+CWR*-float
—— BNN+CWR*- 32-bit
----- BNN+LR+CWR*- 32-bit
—— BNN+CWR*- 16-bit
----- BNN+LR+CWR*- 16-bit
0.25 4 BNN+CWR*- 8-bit
BNN+LR+CWR*- 8-bit

Test Accuracy

0.15 4

Experiences

Figure 7: Accuracy comparison of our solution
(BNN+LR+CWR*) with previous work BNN+CWR* (Vor-
abbi et al., 2023a) on CIFAR100 using Reactnet model.

Birealnet-18 on CIFAR100

—— BNN+CWR*-float
0.35 ---e- BNN+LR+CWR*-float
—— BNN+CWR*- 32-bit
----- BNN+LR+CWR*- 32-bit
—— BNN+CWR*- 16-bit
----- BNN+LR+CWR*- 16-bit
BNN+CWR*- 8-bit
BNN+LR+CWR*- 8-bit

o
N
o

Test Accuracy

0.151

Experiences

Figure 8: Accuracy comparison of our solution
(BNN+LR+CWR*) with previous work BNN+CWR* (Vor-
abbi et al., 2023a) on CIFAR100 using Birealnet model.

quantization bitwidths for both forward and back-
ward passes. In Fig. 3, 4, 5, 6, 7 and 8 we present
accuracy comparisons between BNN+CWR* with
the current method, denoted as BNN+LR+CWR#*,

Enabling On-Device Continual Learning with Binary Neural Networks and Latent Replay

across different datasets: CORe50, CIFAR10 and CI-
FAR100. Each figure illustrates the performance im-
provement of the new method for all quantization set-
tings tested, encompassing floating-point arithmetic,
32-bit, 16-bit and 8-bit quantized representations. It
is noteworthy that, in this assessment, we applied
the same quantization bitwidths (gp) for both bi-
nary (¢7™) and non-binary (¢;”*~”") layers during the
backward pass, as BNN+CWR* does not distinguish
these cases. The results consistently demonstrate that
our BNN+LR+CWR* approach outperforms previ-
ous results, not only when using floating-point arith-
metic but also for quantized implementations. This
underscores the superior performance achieved by
BNN+LR+CWR*, In our solution, we observed that
employing g, = 8 in BNN+LR+CWR* leads to a no-
table drop in accuracy compared to higher quantiza-
tion bitwidth settings, aligning with the outcomes ob-
tained by BNN+CWR*. This reaffirms the impor-
tance of using higher bitwidth representations dur-
ing the backward pass to preserve model accuracy.
For the experiments, we utilized LR, = 1500 for
CORe50, LR, = 300 for CIFARIO and LR, =
3000 for CIFAR100 as our replay memory sizes.

4.2 Reducing Storage in Latent Replay

The storage requirements of the latent replay mem-
ory are closely interlinked with the bitwidths utilized
to represent latent activations. As the bitwidths in-
crease, so does the memory footprint of LR. In our ap-
proach we capitalize on the 1-bit activations inherent
to BNNSs to significantly mitigate the need for high-
memory storage while maintaining a minimal accu-
racy gap, as depicted in Fig. 9. Our experiments
demonstrate that BNN models can attain a minimal
accuracy gap on both CIFAR10 and CORe50 datasets,
even when adopting 1-bit latent activations for LR.
This translates to a huge memory reduction of 32x
when compared to using floating-point latent activa-
tions. In our analysis, we considered various sizes
for the LR memory, with 15,20 and 30 elements al-
located for each class. Importantly, we observed that
the number of past samples in LR had a relatively mi-
nor impact on model accuracy, with the accuracy loss
being within 1%. Utilizing 1-bit latent activations for
LR opens the possibility to scale up applications to
accommodate thousands of classes, as illustrated in
Fig. 9, thanks to the substantial reduction in memory
constraints achieved.

100

0.590
80

0.585
60
mm | R=150
mmm LR=200
mm | R=300

Test Accuracy

0.580

LR Memory (MB)

40

0.575
20

0.570

float 8-bit 1-bit

(a) Reactnet-18 on CIFAR10.

| 0.7125
l/\ F0.7100

F0.7075

50

40

30 L
= 1R=750 0.7050

== LR=1000

= R=1500 07025

LR Memory (MB)
Test Accuracy

r 0.7000

0 r0.6975

r 0.6950

8-bit

(b) Quicknet on CORe50.

Figure 9: LR memory requirement using different quantiza-
tion levels and corresponding test set accuracy on CIFAR10
(a) and CORe50 (b). We considered 15,20 and 30 elements
for each class inside LR; for case (a) we adopted Reactnet-
18 model while in (b) we used Quicknet.

bin non—>bin

4.3 Splitting g, in ¢,"" and ¢,

As highlighted in Table 1, the memory footprint of
BNN weights is predominantly occupied by train-
able binary weights, encompassing nearly 100% of
the memory. Conventionally, a binary layer is trained
using latent floating-point weights (Helwegen et al.,
2019). However, if we were to replicate this approach
on the device, it would result in a substantial increase
in memory storage requirements during backpropaga-
tion stage, as it would require setting qzi” =32 — bit.
The quantization methodology proposed in Section
3.3 offers a potential solution to mitigate this con-
straint by reducing g, to 8 bits. However, as de-
picted in Figure 10a and 10b, such a reduction in
bitwidths would lead to a noticeable accuracy drop
in the model. To address this challenge, we evalu-

33

VISAPP 2024 - 19th International Conference on Computer Vision Theory and Applications

50

40

30

o
0
vl

Test Accuracy

20 . A 0.2

0.50
10

q» Weights Memory Usage (MB)

0.45

float qr=16 qr=8 =8 \ q=8. qr=8
=16 qp=8 atn=8 \ qbin=4 “._ qbn=1
qgan—mn=16 qzwn—mn=16 qgs(v—mn=16

15°

B Quicknet — g —e— Quicknet
i i 14 4
Quicknet — qJon=bin —A— QuicknetLarge

- QuicknetL arge — qp" 13

B QuicknetL arge — q°" 0"

3.8 4.0 4.2

(a) Quicknet and QuicknetLarge on CORe50.

q» Weights Memory Usage (MB)
Test Accuracy

float qr=16 qr=8 qr=8 qr=8 qr=8
qr=16 Qb=8, qgm=8 qgm=4 qgm=1
. qpon-bin=16 ggen-bin=16 qor-bn=16
mmm Reactnet— qf" %
Reactnet — q°" "
mmm BiRealnet— qf"

BN BiRealnet — qJO" 0N

—8— Reactnet — accuracy
—&— BiRealnet— accuracy

(b) Reactnet-18 on CIFAR10.

Figure 10: g, memory requirement using different quan-
tization bitwidths for backward layer on CORe50 (a) and
CIFARIO (b).

ated the impact of distinct quantization levels for bi-
nary weights (qu”) and non-binary weights (qZ”"*b .
Specifically, we experimented with representing q’gi”
using both 4 bits and 1 bit. Our findings, as shown
in Figure 10, indicate that 4-bit representation for bi-
nary layers does not introduce a substantial accuracy
loss. Moreover, employing a 1-bit representation of
weights during the back-propagation stage is feasi-
ble, as binary weights remain frozen during on-device
learning. In this scenario, the model still effectively
preserves accuracy. This latest result carries signifi-
cant implications for on-device learning, as it simpli-
fies the computational burden by requiring backward
steps only for non-binary layers, primarily those em-
ploying q’;""*b’” = 16 — bits, as observed in our ex-
periments.

34

4.4 Efficiency Evaluation

To demonstrate the applicability of our approach on
real-world embedded boards, we provide an estima-
tion analysis of the on-device performance. For this
evaluation, we select two popular boards commonly
used in the IoT paradigm, both based on the single-
thread ARMVS platform: Raspberry Pi 3B and Rasp-
berry Pi 4B. Based on the efficiency analysis reported
in (Bannink et al., 2021; Pellegrini et al., 2020), we
report in Table 2 the inference and backward tim-
ings of our BNN+LR+CWR* method compared to
a non-binary solution (using a Mobilenetv2) (Pelle-
grini et al., 2020): the results obtained adopting Mo-
bilenetv2 rely on floating-point precision for layers
from LR up to the classification head. The frozen
backbone is quantized using 8-bit (latent activations
are stored with 8-bit precision) and executed with
Tensorflow-Lite. Instead, BNN+LR+CWR* employs
Quicknet model with the following quantization set-
ting: gy = 8,40 = 8,¢}" """ = 16; the framework
used to execute binary inference is LCE (Bannink
etal., 2021). The image input size considered is 224 x
224 and the batch size is 1. Our empirical evaluation
for backward pass shows that our BNN+LR+CWR*
can achieve a minimum speedup of 2x compared to
a non-binary solution. In our evaluation we consider
the worst-case scenario for backward step by setting
gy = 8; instead, by setting g7 = 1, the speedup re-
ported in the fifth column of Table 2 should improve
significantly.

S CONCLUSION

On-device training holds great potential in the realm
of the IoT, as it can facilitate the widespread adop-
tion of deep learning solutions. In this study, our pri-
mary focus was the implementation of Binary Neu-
ral Networks (BNNs) in combination with Contin-
ual Learning algorithms, an approach not yet fully
investigated in the literature. In particular, we pro-
pose the use of the CWR* method with the support of
a replay memory, implementing several customized
quantization schemes tailored to alleviate memory
constraints and computational bottlenecks during the
back-propagation stage. Summarizing, experimental
achievements in this work include the following:

* Reduced Memory Usage: we significantly re-
duced the memory storage required for replay
memory by employing 1-bit latent activations, as
opposed to the state-of-the-art approach that em-
ploys 8-bit precision. A limited storage require-
ment is a key element in addressing on-device

Enabling On-Device Continual Learning with Binary Neural Networks and Latent Replay

Table 2: Efficiency comparison of our method implemented on two different embedded boards, i.e. Raspberry Pi 3B and 4B,
using Mobilenetv2 and Quicknet model. As shown, our solution achieves up to 2.2 x speedup on the same platform.

Model Raspberry | Binary | Quantization | Forward Backward | Speedup
3B 4B qr q» (ms)
Mobilenetv2 (Howard et al., 2017) v 8-bit float 340 134 1.0x
Quicknet (Bannink et al., 2021) v 1-bit 16-bit 160 55 2.0x
Mobilenetv2 (Howard et al., 2017) v 8-bit float 225 90 1.0x
Quicknet (Bannink et al., 2021) v 1-bit 16-bit 105 38 2.2%

training, especially with embedded systems with
a limited storage capability.

* Improved Model Accuracy: we improve the ac-
curacy obtained across different binarized back-
bones and the BNN+CWR* approach. Specifi-
cally, we reduce the gap in performance that com-
monly affects BNNs by introducing a latent replay
approach as a safeguard against catastrophic for-
getting.

 Efficiency in Backpropagation: we minimize
the computational effort related to the backpropa-
gation of the latent replay through a proper quan-
tization scheme. In this manner, we combine the
good performance of the model with limited com-
putation requirements for the learning phase. This
achievement, in combination with reduced mem-
ory usage, paves the way for future on-device and
real-world training of learning systems.

A variety of future work can be planned based on
the technological advancements introduced in this pa-
per. For instance, we plan to effectively implement
and optimize the approach proposed in this paper for
the specific ARM CPUs, a popular family of proces-
sors often used in IoT devices. In addition, we envis-
age the possibility of exploiting their instruction set,
including NEON extensions, to further optimize the
proposed method in terms of computational load and
efficiency.

REFERENCES

Alshehri, F. and Muhammad, G. (2020). A comprehensive
survey of the internet of things (iot) and ai-based smart
healthcare. IEEE Access, 9:3660-3678.

Banbury, C. R., Reddi, V. J., Lam, M., Fu, W., Fazel, A,
Holleman, J., Huang, X., Hurtado, R., Kanter, D.,
Lokhmotov, A., et al. (2020). Benchmarking tinyml
systems: Challenges and direction. arXiv preprint
arXiv:2003.04821.

Banner, R., Hubara, 1., Hoffer, E., and Soudry, D. (2018).
Scalable methods for 8-bit training of neural net-
works. Advances in neural information processing
systems, 31.

Bannink, T., Hillier, A., Geiger, L., de Bruin, T., Overweel,
L., Neeven, J., and Helwegen, K. (2021). Larq com-
pute engine: Design, benchmark and deploy state-of-
the-art binarized neural networks. Proceedings of Ma-
chine Learning and Systems, 3:680—695.

Bethge, J., Yang, H., Bornstein, M., and Meinel, C. (2019).
Back to simplicity: How to train accurate bnns from
scratch? arXiv preprint arXiv:1906.08637.

Cai, H., Gan, C., Zhu, L., and Han, S. (2020). Tinytl: Re-
duce memory, not parameters for efficient on-device
learning. Advances in Neural Information Processing
Systems, 33:11285-11297.

Courbariaux, M., Hubara, 1., Soudry, D., El-Yaniv, R.,
and Bengio, Y. (2016). Binarized neural networks:
Training deep neural networks with weights and ac-
tivations constrained to+ 1 or-1. arXiv preprint
arXiv:1602.02830.

Das, D., Mellempudi, N., Mudigere, D., Kalamkar,
D., Avancha, S., Banerjee, K., Sridharan, S.,
Vaidyanathan, K., Kaul, B., Georganas, E., et al.
(2018). Mixed precision training of convolutional
neural networks using integer operations. arXiv
preprint arXiv:1802.00930.

Graffieti, G., Borghi, G., and Maltoni, D. (2022). Continual
learning in real-life applications. IEEE Robotics and
Automation Letters, 7(3):6195-6202.

Gupta, S., Agrawal, A., Gopalakrishnan, K., and
Narayanan, P. (2015). Deep learning with limited nu-
merical precision. In International conference on ma-
chine learning, pages 1737-1746. PMLR.

Helwegen, K., Widdicombe, J., Geiger, L., Liu, Z., Cheng,
K.-T., and Nusselder, R. (2019). Latent weights do
not exist: Rethinking binarized neural network opti-
mization. Advances in neural information processing
systems, 32.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D.,
Wang, W., Weyand, T., Andreetto, M., and Adam,
H. (2017). Mobilenets: Efficient convolutional neu-
ral networks for mobile vision applications. arXiv
preprint arXiv:1704.04861.

Ioffe, S. and Szegedy, C. (2015). Batch normalization: Ac-
celerating deep network training by reducing internal
covariate shift. In International conference on ma-
chine learning, pages 448—456. pmlr.

Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard,
A., Adam, H., and Kalenichenko, D. (2018). Quan-
tization and training of neural networks for efficient
integer-arithmetic-only inference. In Proceedings of

35

VISAPP 2024 - 19th International Conference on Computer Vision Theory and Applications

the IEEE conference on computer vision and pattern
recognition, pages 2704-2713.

Jacob, B., Warden, P, and Guney, M. (2017). gemm-

lowp: a small self-contained low-precision
gemm library.(2017). URL https://github.
com/google/gemmlowp.

Kingma, D. P. and Ba, J. (2014). Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J.,
Desjardins, G., Rusu, A. A., Milan, K., Quan, J.,
Ramalho, T., Grabska-Barwinska, A., et al. (2017).
Overcoming catastrophic forgetting in neural net-
works. Proceedings of the national academy of sci-
ences, 114(13):3521-3526.

Krizhevsky, A., Hinton, G., et al. (2009). Learning multiple
layers of features from tiny images.

Le, Y. and Yang, X. (2015). Tiny imagenet visual recogni-
tion challenge. CS 231N, 7(7):3.

Lin, J., Zhu, L., Chen, W.-M., Wang, W.-C., Gan, C., and
Han, S. (2022). On-device training under 256kb mem-
ory. Advances in Neural Information Processing Sys-
tems, 35:22941-22954.

Liu, Z., Shen, Z., Savvides, M., and Cheng, K.-T. (2020).
Reactnet: Towards precise binary neural network with
generalized activation functions. In Computer Vision—
ECCV 2020: 16th European Conference, Glasgow,
UK, August 23-28, 2020, Proceedings, Part X1V 16,
pages 143—159. Springer.

Liu, Z., Wu, B., Luo, W,, Yang, X., Liu, W., and Cheng, K.-
T. (2018). Bi-real net: Enhancing the performance of
1-bit cnns with improved representational capability
and advanced training algorithm. In Proceedings of
the European conference on computer vision (ECCV),
pages 722-737.

Lomonaco, V. and Maltoni, D. (2017). Core50: a new
dataset and benchmark for continuous object recog-
nition. In Conference on robot learning, pages 17-26.
PMLR.

Lomonaco, V., Maltoni, D., and Pellegrini, L. (2020).
Rehearsal-free continual learning over small non-iid
batches. In CVPR Workshops, volume 1, page 3.

Martinez, B., Yang, J., Bulat, A., and Tzimiropou-
los, G. (2020). Training binary neural networks
with real-to-binary convolutions. arXiv preprint
arXiv:2003.11535.

Masana, M., Liu, X., Twardowski, B., Menta, M., Bag-
danov, A. D., and Van De Weijer, J. (2022). Class-
incremental learning: survey and performance eval-
uation on image classification. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence,
45(5):5513-5533.

Mohamed, E. (2020). The relation of artificial intelligence
with internet of things: A survey. Journal of Cyberse-
curity and Information Management, 1(1):30-24.

Nadalini, D., Rusci, M., Benini, L., and Conti, F. (2023).
Reduced precision floating-point optimization for
deep neural network on-device learning on microcon-
trollers. arXiv preprint arXiv:2305.19167.

36

Nadalini, D., Rusci, M., Tagliavini, G., Ravaglia, L.,
Benini, L., and Conti, F. (2022). Pulp-trainlib: En-
abling on-device training for risc-v multi-core mcus
through performance-driven autotuning. In Interna-
tional Conference on Embedded Computer Systems,
pages 200-216. Springer.

Parisi, G. 1., Kemker, R., Part, J. L., Kanan, C., and
Wermter, S. (2019). Continual lifelong learning with
neural networks: A review. Neural networks, 113.

Pellegrini, L., Graffieti, G., Lomonaco, V., and Maltoni, D.
(2020). Latent replay for real-time continual learn-
ing. In 2020 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 10203—
10209. IEEE.

Qin, H., Gong, R., Liu, X., Bai, X., Song, J., and Sebe, N.
(2020). Binary neural networks: A survey. Pattern
Recognition, 105:107281.

Rastegari, M., Ordonez, V., Redmon, J., and Farhadi, A.
(2016). Xnor-net: Imagenet classification using bi-
nary convolutional neural networks. In European con-
ference on computer vision, pages 525-542. Springer.

Ravaglia, L., Rusci, M., Nadalini, D., Capotondi, A., Conti,
F., and Benini, L. (2021). A tinyml platform for
on-device continual learning with quantized latent re-
plays. IEEE Journal on Emerging and Selected Topics
in Circuits and Systems, 11(4):789-802.

Ren, H., Anicic, D., and Runkler, T. A. (2021). Tinyol:
Tinyml with online-learning on microcontrollers. In
2021 International Joint Conference on Neural Net-
works (IJCNN), pages 1-8. IEEE.

Vitter, J. S. (1985). Random sampling with a reser-
voir. ACM Transactions on Mathematical Software
(TOMS), 11(1):37-57.

Vorabbi, L., Maltoni, D., and Santi, S. (2023a). On-device
learning with binary neural networks. arXiv preprint
arXiv:2308.15308.

Vorabbi, L., Maltoni, D., and Santi, S. (2023b). Optimizing
data-flow in binary neural networks.

