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Abstract: Generative Adversarial Networks (GANs) have revolutionized image generation, allowing the production of
high-quality images from latent codes in the latent space. However, manipulating the latent space to achieve
specific image attributes remains challenging. Existing methods often lack disentanglement, leading to unin-
tended changes in other attributes. Moreover, most of the existing techniques are limited to one-dimensional
conditioning, making them less effective for complex multidimensional modifications. In this paper, we pro-
pose a novel approach that combines an auxiliary map composed of convolutional layers and Conjugate Gradi-
ent (CG) to enhance latent space manipulation. The proposed auxiliary map provides a versatile and expressive
way to incorporate external information for image generation, while CG facilitates precise and controlled ma-
nipulations. Our experimental results demonstrate better performance compared to state-of-the-art methods.

1 INTRODUCTION

Generative Adversarial Networks (GANs) have
emerged as a groundbreaking paradigm in the field of
image generation, revolutionizing the way of produc-
ing high-quality images. Developed by Ian Goodfel-
low et al. Goodfellow et al. (2014), GANs have since
become a cornerstone of modern machine learning
and artificial intelligence research. They achieve re-
markable success in image synthesis, producing high-
fidelity images from randomly sampled latent codes
in the latent space. However, the ability to manipu-
late the latent space to generate images with specific
attributes or properties remains a challenging task,
particularly when it comes to achieving multidimen-
sional conditioning.

While existing methods for latent space manipu-
lation have shown promising results, they often face
limitations in disentangling manipulations, leading to
unintended changes in other attributes. Moreover,
many techniques are restricted to one-dimensional
conditioning, limiting their applicability for complex
modifications that require multidimensional informa-
tion. In this article, we introduce a groundbreaking
methodology for latent space manipulation by har-
nessing the synergistic potential of an innovative aux-
iliary map composed of convolutional layers, Swish
activation Ramachandran et al. (2017), and group nor-
malization Wu and He (2018). This approach repre-

sents a novel paradigm in the realm of latent space
manipulation, offering an unparalleled and dynamic
avenue to seamlessly integrate external information
into the image generation process. Furthermore, we
introduce the utilization of CG, which helps over-
come the challenges associated with optimization-
based methods. By training an auxiliary mapping
network that induces a CG method, we enable more
precise and disentangled manipulations in the latent
space. In order to assess the effectiveness of our
proposed method, we conduct a series of quantita-
tive experiments utilizing various metrics to evalu-
ate the disentanglement capabilities of different ma-
nipulation techniques using Flickr-Faces-HQ (FFHQ)
Karras et al. (2019) and CelebAHQ datasets Kar-
ras et al. (2017). Our approach is then compared
to the state-of-the-art methods to establish its perfor-
mance. The results from these quantitative experi-
ments demonstrate the superiority of our method in
achieving highly effective disentanglement and pre-
cise control over image manipulations. This paper
marks a substantial progression in GAN-based im-
age manipulation, ushering in fresh avenues for gen-
erating images that incorporate multidimensional in-
formation, including keypoints and textual descrip-
tions. By harnessing the power of convolutional lay-
ers within an auxiliary map and leveraging the CG
methodology, we have propelled the boundaries of la-
tent space manipulation. The main contributions of
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this paper are the followings:
• We propose a pioneering utilization of auxiliary

map composed of convolutional layers for latent
space manipulation, unlocking innovative possi-
bilities in GAN image generation.

• We leverage CG for precise and controlled latent
space manipulations, effectively addressing opti-
mization challenges faced by existing techniques.

• We introduce disentangled and multidimensional
conditioning, overcoming limitations with at-
tribute adjustments and supporting complex mod-
ifications in GANs.

The remainder of this paper is organized into the
following sections. In Section II, we discuss re-
lated works and examine different techniques for la-
tent space manipulation in GANs. We provide an
overview of the existing attribute manipulation ap-
proaches. Section III presents our proposed method-
ology, detailing the use of auxiliary mapping, classi-
fier, and CG for latent space manipulation. In Section
IV, we depict the evaluation metrics and the imple-
mentation details of our extensive experiments. Sec-
tion V evaluates the performance of our approach
on facial attribute editing. We compare our results
with the state-of-the-art methods and discuss the out-
comes and their implications, highlighting the signifi-
cant performance of our method in achieving accurate
and visually appealing attribute manipulations. Fi-
nally, in Section VI, we conclude and highlight the
main perspectives of this work.

2 RELATED WORK

Within this section, we delve into the world of Gen-
erative Adversarial Networks (GANs) and their re-
markable impact on image synthesis. Going deeper,
we unveil the intricacies of manipulating latent spaces
through cutting-edge techniques.

2.1 Generative Adversarial Networks

Recent advancements in generative models have led
to remarkable progress in generating high-quality,
photo-realistic images. Notably, various GAN mod-
els, such as PG-GAN Karras et al. (2017), BigGAN
Brock et al. (2018), StyleGAN Karras et al. (2019),
have demonstrated their ability to synthesize realis-
tic face images with diverse attributes, expressions,
ages, backgrounds, and viewing angles. These GANs
encode rich semantic information in intermediate fea-
tures and latent spaces, enabling high-quality face im-
age generation. However, one limitation of GANs is

the absence of inference functions or encoders, re-
stricting the application of latent space manipulations
solely to GAN-generated images and not real-world
images. To address this limitation, GAN inversion
methods have been proposed, such as the works in-
vestigated by Abdal et al. Abdal et al. (2019) and Xia
et al. Xia et al. (2021), allowing the inversion of real
images back into the latent space of pre-trained GAN
models. This process bridges the gap between real
and fake face image domains, resulting in improved
quality of the generated face images. However, ex-
isting GAN inversion methods are often specific to
individual GAN architectures which can limit their
broader application.

2.2 Manipulation on Latent Vector

Vector arithmetic in the latent space, as introduced by
early GAN research Radford et al. (2015), enables se-
mantic editing of generated images and has been fur-
ther explored in recent works. However, a compre-
hensive understanding of a well-trained GAN’s latent
space and its encoded semantics remains incomplete.

Concurrent research by Jahanian et al. Jaha-
nian et al. (2019) and Yang et al. Yang et al.
(2021) has made significant contributions to explor-
ing latent semantics in GANs. In [10], authors pro-
posed Interface-GAN, a novel framework for seman-
tic face editing, interpreting latent semantics learned
by GANs. They discovered that the well-trained
generative models learn a disentangled representation
through linear transformations in the latent space, en-
abling precise control of facial attributes. Interface-
GAN demonstrated the manipulation of various fa-
cial attributes, including gender, age, expression, eye-
glasses, face pose, and artifact fixing. This method
even allows for real image manipulation when it is
combined with GAN inversion methods or encoder-
involved models.

GANSpace, proposed by Härkönen et al.
Härkönen et al. (2020), provides a simple technique
to analyze GANs and create interpretable controls
for image synthesis. They identify important latent
directions using Principal Component Analysis
(PCA) applied either in the latent space or feature
space. By perturbing the latent space along these
principal directions, GANSpace allows for diverse
and interpretable image edits, such as changes in
viewpoint, aging, lighting, and time of day. The re-
searchers extended their approach to control BigGAN
with layer-wise inputs in a StyleGAN-like manner,
achieving impressive results across different GAN
architectures and datasets.

Additionally, the Surrogate Gradient Field (SGF)
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method proposed by Wang et al. Li et al. (2021)
enables manipulation with multidimensional condi-
tions, such as keypoints and captions. The algo-
rithm searches for a new latent code that satisfies the
target conditions by leveraging the Surrogate Gradi-
ent Field. This approach opens up possibilities for
controlling and manipulating GAN-generated images
based on complex and high-dimensional attributes,
providing a powerful tool for creative image syn-
thesis. In addition to these works, attribute manip-
ulation in generated images has been studied using
both supervised and unsupervised methods. Shen et
al. in Shen et al. (2018) employed a linear Sup-
port Vector Machine (SVM) as an additional classi-
fier to label properties and adjust attributes in the la-
tent space. On the other hand, self-supervised learn-
ing Voynov and Babenko (2020), directly discover se-
mantically meaningful directions. These diverse ap-
proaches collectively contribute to the understanding
and the capability to control and interpret the latent
representations learned by GANs for image synthe-
sis and editing. While current approaches to latent
space manipulation have displayed encouraging out-
comes, they frequently encounter challenges in ef-
fectively disentangling manipulations, which can re-
sult in inadvertent alterations to other attributes. Fur-
thermore, numerous methodologies are confined to
single-dimensional conditioning, curtailing their util-
ity for intricate modifications necessitating multidi-
mensional information.

3 ENHANCED LATENT VECTOR
SYNTHESIS VIA CG METHOD

In this section, we delve into the methodology that
underpins our approach, which enables the synthe-
sis of optimized latent vectors through the applica-
tion of the CG method. By employing this technique,
we address the challenge of latent space manipulation
within GANs with the aim of achieving specific im-
age attributes.

3.1 Problem Statement

Latent space manipulation within Generative Adver-
sarial Networks (GANs) entails the deliberate adjust-
ment of latent vectors to achieve specific attributes in
the resulting generated images. In the context of a
pretrained GAN generator G : Z→ X , where Z is a d-
dimensional latent space and X represents the space
of generated images, a classifier network C : X → C
predicts semantic properties c from generated images
x. Given an initial latent vector z0 ∈ Z associated with

properties c0 =Φ(z0) and a desired target property c1,
the primary objective is to determine a new latent vec-
tor z1 ∈ Z such that when fed through the generator
G, it produces an image whose predicted properties
Φ(z1) align precisely with the target property c1. This
process enables a controlled transformation of latent
vectors to achieve precise image attribute manipula-
tion.

3.2 Learning the Auxiliary Mapping

StyleGAN2, renowned for its exceptional power, ef-
fortlessly generates a diverse array of images with the
desired properties c1. However, our primary objective
is to achieve these properties with minimal undesired
alterations to the image. Intuitively, we can perturb
the vector z0 in the Z space to obtain a new vector
z1 that closely aligns with z0. Nevertheless, empiri-
cally, the existing gradient field is unsuitable for this
purpose. Hence, our focus lies in introducing a novel
gradient field that effectively addresses this limitation.

To achieve this, we introduce an auxiliary map-
ping F : Z×C→ Z, satisfying the condition:

F(z,Φ(z)) = z, ∀z ∈ Z (1)

where F is implemented as a multi-layer neural net-
work and trained using a simple reconstruction loss.

3.3 Deriving the CG Update Process

The CG method introduces a powerful iterative ap-
proach for dynamically refining latent vectors within
the latent space. This iterative update process is for-
malized as follows:

xn+1 := xn +αndn, (2)

dn+1 :=−∇ f (xn+1)+βn+1dn. (3)

In this specific context, let’s delve into the signifi-
cance of each variable:

• xn is the current latent vector being adjusted
within the latent space.

• f is the loss function, and ∇ f (xn+1) represents the
gradient of the loss function concerning the latent
vector at the subsequent iteration. This gradient
guides the optimization process by indicating the
direction of steepest ascent.

• dn symbolizes the search direction in the latent
space. It guides the update direction for the la-
tent vector, providing a trajectory that facilitates
convergence.
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• αn, where n ∈ N, is a sequence of step sizes.
These step sizes control the magnitude of the up-
dates applied to the latent vector. They balance the
trade-off between faster convergence and over-
shooting.

• βn+1 ∈R+ is a coefficient that modulates the com-
bination of the current search direction dn+1 and
the previous search direction dn. This coefficient
is crucial for maintaining conjugacy and efficient
convergence.

The determination of the direction dn+1 at the
(n+1)-th iteration embodies insights from both the
current gradient ∇ f (xn+1) and the historical search
direction dn. This amalgamation of information fa-
cilitates a balanced and informed adjustment process
that enhances efficiency and efficacy.

3.4 Algorithm: CG Method for Latent
Space Manipulation

The CG method for latent space manipulation algo-
rithm aims to optimize a latent vector in the context
of GANs. Given a Generator (G), Classifier (C), and
Auxiliary mapping (F), the algorithm iteratively up-
dates the latent vector to achieve a desired target at-
tribute.

Algorithm 1: CG Method for Latent Space Manipulation.

Require: Generator G, Classifier C, Auxiliary map-
ping F , Initial latent vector z0, Target attributes
c1, Number of iterations n, Learning rate α

Ensure: Optimized latent vector zn
1: c0←C(G(z0))
2: δc← α(c1− c0)

3: c(0)← c0
4: d(0)← 0 ▷ Initialize search direction
5: z(0)← z0
6: for i = 1 to n do
7: g(i−1)← ∇zC(G(z(i−1)))

8: β(i)← |g(i−1)|2
|g(i−2)|2 ▷ Compute CG coefficient

9: d(i)←−g(i−1)+β(i)d(i−1) ▷ Compute search
direction

10: z(i)← z(i−1)+αd(i) ▷ Update latent vector
using search direction

11: c(i)←C(G(z(i)))
12: if c(i) is close to c1 then
13: return z(i)

14: end if
15: end for
16: return zn

The proposed Algorithm 1 takes as input the initial

latent vector z0, target attributes c1, number of itera-
tions n, and learning rate α. It starts by computing
the initial attribute value c0 using the classifier on the
generated image from z0. The difference between c1
and c0 is scaled by the learning rate α to obtain δc. In
each iteration, the algorithm updates the latent vector
z using the auxiliary mapping F , the previous latent
vector z(i−1), and the current attribute value c(i). The
search direction d is computed based on the gradi-
ent of the classifier’s output with respect to the latent
vector and a CG coefficient β. The latent vector is
then updated by adding the search direction scaled by
the learning rate α. The classifier is applied to the
updated latent vector to obtain the current attribute
value c(i). If c(i) is close to c1, the algorithm termi-
nates and returns the optimized latent vector z(i). The
algorithm repeats this process for the specified num-
ber of iterations n. If no satisfactory attribute value is
achieved, it returns the last latent vector zn. The CG
method as depicted in Fig.2 and algorithm 1 offers
an efficient and effective approach for optimizing the
latent space in GANs, enabling precise manipulation
of the generated images’ properties. We opt to use
the CG method for latent space manipulation in Gen-
erative Adversarial Networks (GANs) stems from its
exceptional efficiency Shewchuk et al. (1994). Un-
like conventional gradient-based techniques, the CG
method excels in navigating non-convex optimization
landscapes, a characteristic vital for precise and con-
trolled latent vector adjustments Powell (1984). The
CG method’s ability to iteratively refine latent vectors
while determining optimal step sizes enhances our
manipulation process’s quality and efficiency. In con-
trast to evolutionary algorithms that may suffer from
slow convergence, the CG method strikes a balance
between convergence speed and computational feasi-
bility. This choice not only ensures the accuracy and
stability but also broadens the horizons of GAN-based
image generation applications

Generator G Classifier C

Auxiliary Mapping F

Z
Sampling

Trainning

Inference

C

(Z,C) Z

Figure 1: Principle of the CG method.
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3.5 Implementation Details of the
Auxiliary Mapping F

The auxiliary map embodies a sophisticated mecha-
nism designed to facilitate intricate transformations
within the latent space of StyleGAN2. This map acts
as an intermediary between latent vectors and associ-
ated label information, orchestrating a multi-step pro-
cess of latent vector manipulation.

Comprising a series of convolutional layers, nor-
malization procedures, and activation functions, the
auxiliary map endeavors to reshape latent vectors in a
purposeful manner. These convolutional layers serve
as adaptable filters, allowing the map to identify and
emphasize specific features within the latent vectors.
The subsequent normalization steps ensure that the
transformed vectors maintain a balanced distribution,
preventing distortions during the manipulation pro-
cess. Activation functions like Swish are strategically
applied to induce non-linearity, introducing complex
relationships between latent vector components Ra-
machandran et al. (2017). The basic network archi-
tecture of the auxiliary mapping network is illustrated
in Fig.3. As the manipulation unfolds, the auxil-
iary map collaborates with the provided label infor-
mation. This interaction serves as a guiding force,
steering the map’s transformations toward desired at-
tribute changes. By iteratively applying these trans-
formations, the map progressively molds the latent
vectors to adhere to the intended alterations. The re-
sulting manipulated latent vectors can then be used to
generate images that exhibit the targeted attributes. In
essence, the auxiliary map acts as a dynamic bridge
between the latent space and the generated images,
enabling deliberate control over specific image at-
tributes. Its ability to delicately adjust latent vec-
tors based on label cues opens up innovative avenues
for generating images with customized characteris-
tics while preserving the essential attributes encoded
within the latent space.

4 EXPERIMENTS

4.1 Generator Models and Datasets

To assess facial attributes editing, we utilize a pre-
trained FFHQ StyleGAN2 Karras et al. (2020) and
CelebAHQ StyleGAN2 Karras et al. (2017) alterna-
tively as the generator. For the classifier, we fine-
tuned a pretrained SEResNet50 Hu et al. (2018)
model obtained from the VGGFaces2 Cao et al.
(2018) dataset. FFHQ represents a premium collec-
tion of facial data, comprising 70,000 high-definition

C

N

Z

Conv2d

SWISH GN

Conv2d

SWISH GN

Conv2d

SWISH GN

CZ

CZ

Figure 2: The architecture of the auxiliary mapping net-
work.

face images in PNG format, each boasting a reso-
lution of 1024×1024. This dataset exhibits a wide
range of age groups, ethnicities, and image back-
grounds, which results in prominent variations in fa-
cial attributes. As a consequence, it presents an excel-
lent opportunity for the development of face attribute
classification or face semantic segmentation models.
The CelebA-HQ dataset is a high-quality version of
CelebA that consists of 30,000 images at 1024×1024
resolution.

4.2 Evaluation Metrics

4.2.1 Manipulation Disentanglement Score
(MDS)

evaluates the balance between accuracy and disentan-
glement in achieving a manipulation goal. It involves
altering an image to reach a desired outcome. To
compute the MDS, we plot a Manipulation Disentan-
glement Curve (MDC) by gradually increasing ma-
nipulation strength and recording accuracy and dis-
entanglement measures. A method with an MDC
closer to 1 indicates superior overall disentangle-
ment. In experiments involving attributes manipu-
lation with N samples, manipulation accuracy is the
success rate of achieving the target attributes. Ma-
nipulation disentanglement is calculated based on the
number of attributes, other than the target attribute,
that have changed during manipulation. We consider
an attribute which is changed if the score changes
more than 0.5 during the manipulation. Suppose that
there are Ns samples which successfully have their at-
tributes changed to the target attributes. The manip-
ulation accuracy is then the success rate Ns/N. For
sample i, if ni attributes other than the target attribute
have changed, we can use the following sum to quan-
tify the manipulation disentanglement:
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1
N

N

∑
i=1

(
1− ni

M−1

)
, (4)

Where, N represents the total number of samples,
and M is the total number of attributes. The term ni

M−1
calculates the ratio of attributes other than the target
attribute that have changed for sample i. This sum
evaluates the average manipulation disentanglement
across all samples.”

4.2.2 Mean Square Error loss

Given a dataset with n samples, let yi be the observed
or ground truth value, and ŷi be the predicted or es-
timated value for the i-th sample. The Mean Square
Error (MSE) is computed as follows:

MSE =
1
n

n

∑
i=1

(yi− ŷi)
2. (5)

A lower MSE indicates that the predicted values
are closer to the ground truth values, suggesting bet-
ter accuracy and performance. Conversely, a higher
MSE indicates larger discrepancies between the pre-
dicted and actual values, implying lower accuracy and
higher error in the predictions.

4.3 Implementation Details

The auxiliary map F is constructed of a convolutional
model, composed of a series of convolutional layers
that facilitate latent space manipulation. This inno-
vative model architecture consists of multiple layers.
Each convolutional layer is strategically integrated
with the group normalization and Swish activation
function, promoting disentanglement and attribute-
conditioned mappings. The convolutional model is
trained with a batch size of 8 using the Adam opti-
mizer with a learning rate of 0.0002. This novel archi-
tecture successfully achieves the disentanglement of
attributes and latent codes, facilitating effective latent
space manipulation while ensuring network stability.
Moreover, we incorporate the CG method to enhance
latent space manipulation. This iterative algorithm
adjusts latent vectors to achieve the desired attribute
alterations while adhering to specific constraints. By
integrating the CG method into our framework, we
achieve precise and controlled manipulations within
the latent space, further enhancing the versatility of
our approach for various image generation tasks.

5 RESULTS AND DISCUSSION

In this section, we present the results of our com-
prehensive analysis and evaluations. We delve into a
detailed comparison of MDS for facial attribute edit-
ing using various methodologies on both the FFHQ-
Attributes and CelebAHQ-Attributes datasets. Addi-
tionally, we explore the quality of the generated out-
puts through the MSE comparisons. These results
shed light on the performance of our proposed method
in comparison to state-of-the-art techniques. We dis-
cuss the implications and significance of these find-
ings, highlighting the potential of our approach for
advancing the field of generative models and its prac-
tical applicability in real-world scenarios.

5.1 MDS Comparison

Table 1 shows a comprehensive comparison of MDS
for facial attribute editing on the FFHQ-Attributes
dataset. Notably, our proposed approach achieves an
outstanding MDS score of 0.855, surpassing all other
reference methods. GANSpace, InterfaceGAN, and
Surrogate Gradient Field attain MDS scores of 0.531,
0.721, and 0.837, respectively. These results highlight
the superior performance of our method, which har-
nesses the power of the auxiliary mapping and lever-
ages CG to manipulate the latent space. The signif-
icantly higher MDS score attained by our approach
signifies its exceptional ability to disentangle and ma-
nipulate facial attributes effectively, outperforming
state-of-the-art techniques. This demonstrates the po-
tential of our approach in achieving more accurate and
visually appealing facial attribute editing results.

Table 1: MDS comparison on facial attribute editing on
FFHQ dataset.

Method MDS

GANSpace Härkönen et al. (2020) 0.531
InterfaceGAN Jahanian et al. (2019) 0.721
Surrogate Gradient Field Li et al. (2021) 0.837
CG method (ours) 0.855

Table 2 presents a similar comparison of MDS for
facial attribute editing on the CelebAHQ-Attributes
dataset. InterfaceGAN and Surrogate Gradient Field
achieve MDS scores of 0.758 and 0.876, respectively.
However, our CG method outperforms both with an
MDS score of 0.88. These results further demonstrate
the consistency and robustness of our proposed ap-
proach across different datasets.
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Table 2: MDS comparison on facial attribute editing on
CelebAHQ dataset.

Method MDS

InterfaceGAN Jahanian et al. (2019) 0.758
Surrogate Gradient Field Li et al. (2021) 0.876
CG method (ours) 0.88

5.2 MSE Loss Comparison

The quality of generated outputs from various meth-
ods is critically evaluated through MSE values, as
presented in Tables 3 and 4. MSE serves as a
fundamental metric for quantifying the discrepancy
between generated images and their corresponding
ground truth images. Lower MSE values indicate a
higher level of image fidelity and alignment with the
desired attributes.

Table 3: MSE Loss comparison using FFHQ dataset.

Method MSE

CG method (ours) 7.8 e-05
SGF 9 e-04

Table 4: MSE Loss comparison using CelebAHQ dataset.

Method MSE

CG method (ours) 9 e-05
SGF 4 e-04

Examining the FFHQ dataset results (Table 3), we
observe a distinct contrast in MSE values between
our proposed CG method and the SGF method. Our
CG method stands out with an impressively low MSE
of 7.8× 10−5, which reflects its proficiency in gen-
erating images that closely resemble the intended at-
tributes. In comparison, the SGF method yields a rel-
atively higher MSE of 9× 10−4, signifying a com-
paratively greater deviation from the target attributes.
This underscored difference emphasizes that our CG
method excels in not only preserving the desired at-
tributes but also maintaining a high level of precision
and accuracy in the generated images. Turning our at-
tention to the CelebAHQ dataset (Table 4), the supe-
riority of our CG method persists, exhibiting an MSE
of 9× 10−5. In contrast, the SGF method records an
MSE of 4×10−4. This consistent performance across
datasets reaffirms the robustness of our approach in
consistently generating images that align well with
the target attributes, while maintaining realistic and
visually coherent appearances. The exceptional capa-
bility of our proposed CG method in minimizing MSE
values can be attributed to the synergistic integration
of the auxiliary mapping and CG technique. Lever-

Figure 3: A performed Conjugate Gradient Method to ef-
ficiently edit images via manipulating the latent codes of
GANs.

aging the auxiliary mapping enhances the model’s ca-
pacity to capture intricate latent space patterns related
to the desired attributes. Meanwhile, the CG tech-
nique facilitates an informed exploration of the la-
tent space, leading to better optimization and con-
sequently, more faithful image generation. Beyond
the numerical aspect, the implications of lower MSE
values extend to the perceptual quality of the gener-
ated images. A lower MSE signifies more visually
realistic and accurate images, essential for tasks like
image editing, synthesis, and manipulation. Such at-
tributes are integral for real-world applications where
the quality of generated content is paramount. In
summary, our CG method demonstrates exceptional
prowess in multiple dimensions: facial attribute edit-
ing, latent space manipulation, and image generation.
The combination of significantly lower MSE values
and superior MDS scores underscores the pragmatic
effectiveness of our approach. These findings not only
contribute to the advancement of generative models
but also lay the groundwork for enhancing the preci-
sion and visual appeal of facial attribute editing ap-
plications. The established superiority of our method
indicates a promising trajectory for future advance-
ments, positioning it as a compelling contender for
diverse real-world applications and catalyzing inno-
vation within the realm of computer vision and image
processing.

In addition to the quantitative evaluations, the
qualitative results of our proposed method further af-
firm its efficacy in enhancing latent space manipula-
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tion within GANs. As depicted in Fig.1, we present
a selection of meticulously manipulated face images,
showcasing attribute transformations from one to an-
other. Our pioneering approach leverages convolu-
tional layers within an auxiliary mapping network,
along with the integration of the CG method. These
results vividly demonstrate the precision and control
our method offers in manipulating diverse attributes,
including but not limited to smile, age, glasses, gen-
der, hair, and beard. The seamless transitions from
one attribute to another highlight the strength of our
method in disentangling complex interactions within
the latent space. These qualitative results provide
compelling visual evidence of the versatility and po-
tential of our approach for generating images that ef-
fectively reflect desired attribute changes while main-
taining the essential characteristics of the underlying
latent vectors.

6 CONCLUSION

In this paper, we presented a pioneering approach
to enhance latent space manipulation in GANs us-
ing convolutional layers and CG. Our method lever-
ages the power of auxiliary mapping to disentangle
latent semantics and achieve precise attribute manip-
ulations. Through extensive experiments on facial at-
tribute editing, we demonstrated the effectiveness and
superiority of our approach, surpassing existing state-
of-the-art methods in manipulation disentanglement
and image quality. The combination of auxiliary map-
ping and CG offers a promising direction for advanc-
ing GAN-based image generation and opens possibil-
ities for more sophisticated applications, such as gen-
erating images with multidimensional information.
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