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Abstract: Mixed integer linear programs are presented that simplify polylines such that edges follow only some pre-

defined directions from a given set. Under this constraint, solutions are computed that are closest to the

given vertices, or only close to the original data, but with a minimum number of edges, or with a minimum

length. The algorithms are applied to 3D building modeling from point clouds. Boundaries of roof facets (roof

polygons) are simplified by considering directions of roof plane gradients and intersection lines between roof

planes.

1 INTRODUCTION

Many polyline or contour simplification procedures
map a long list of points to a small sub-list consisting
of the vertices of the simplified polyline. In general,
there are three strategies for condensing a given se-
quence of points into vertices of a simplified polyline:
One can iteratively select points to become vertices
of the simplified polyline, one can iteratively remove
points until only relevant vertices remain, or one can
specify the vertices of the simplified polyline by fea-
ture values that only need to be computed once.

A popular example of iterative vertex selection is
the Ramer-Douglas-Peucker algorithm, see (Ramer,
1972) and (Douglas and Peucker, 1973). It connects
the end vertices of the given input polyline with an
edge and determines a vertex that is furthest away
from that edge. If the distance exceeds a threshold
value, the vertex is included in the simplified polyline,
and the algorithm is applied recursively to both parts
of the given polyline that are separated by the selected
vertex. Other algorithms, that iteratively select ver-
tices based on distances between vertices and straight
lines through vertices are the Reumann-Witkam al-
gorithm (Reumann and Witkam, 1973), its variant,
the Opheim routine, the Lang algorithm, see (Lang,
1969), and many more.

Visvalingam’s algorithm is a method of iterative
vertex removal, see (Visvalingam and Whyatt, 1992):
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Three successive vertices define a triangle. The tri-
angle with a smallest area is determined. If the area
is below a threshold value, the middle vertex is re-
moved. The procedure is then repeated until only
the vertices of the simplified polyline remain. As no
endpoints are required, this method can be applied
directly to closed contours and will then produce a
closed polyline (polygon). The Zhao-Saalfeld sleeve-
fitting algorithm deletes vertices that lie within locally
computed angle tolerances (Zhao and Saalfeld, 1997).

Reducing a polyline to every n-th vertex (nth point
algorithm) is a naive example of non-iterative ver-
tex selection. More sophisticated is the use of domi-
nant corners, e.g. by applying curvature methods, see
(Pinheiro and Ghanbari, 2010). Another example is
to compute a sub-list of vertices such that the result-
ing polyline consists of a minimum number of edges
(shortcuts) under distance constraints. Such an algo-
rithm is presented in (Funke et al., 2017). It is based
on mixed integer linear programming.

However, all these methods use vertices that are
present in the given polyline. But it may be neces-
sary to introduce different vertices if the original poly-
line is only a coarse approximation of a real curve
and the simplified polyline has to fulfill some restric-
tions imposed by the underlying application scenario.
The Imai-Iri algorithm (Imai and Iri, 1986) computes
a polyline that is close to the given one but has a min-
imum number of (new) vertices. In (Aronov et al.,
2005), a theoretical discussion of polyline approxi-
mation in terms of complexity is given.

Goebbels, S. and Rethmann, J.
Polyline Simplification with Predefined Edge Directions by Mixed Integer Linear Programs.
DOI: 10.5220/0012263600003660
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 19th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2024) - Volume 1: GRAPP, HUCAPP
and IVAPP, pages 203-210
ISBN: 978-989-758-679-8; ISSN: 2184-4321
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

203



Our contribution consists of mixed integer linear
programs (MIPs) that compute a simplified polyline
with edges that run only in given directions. Whereas
coordinates are represented as floating point numbers,
binary decision variables are required to assign edges
to given directions and vertices. The programs are al-
lowed to introduce vertices other than the given ones,
but they ensure that the simplified polyline is close
to the original curve and satisfies certain criteria for
optimality. The approach makes it easy to add other
application specific features, such as requiring an end-
point to be on a particular line.

The algorithms are motivated by determining the
boundary polygons of roof facets when deriving 3D
building models from airborne laser scanning (ALS)
point clouds. We assume that each roof facet is (ap-
proximately) planar, i.e., it lies on a plane. That ex-
cludes cupolas from our considerations but fits with
the CityGML description standard (Gröger et al.,
2012) of city models.

3D reconstruction of roofs from ALS data can be
achieved by a combination of model-based and data-
based approaches. Model-based methods fit param-
eterized standard roofs to point clouds. Data-based
methods detect individual plane segments and com-
bine them into a watertight roof. While the model-
based approach results in well-structured roof topolo-
gies, they may differ significantly from reality. On
the other hand, sparse ALS point clouds make it dif-
ficult to correctly locate the boundaries of individual
plane segments. While ridge lines can be easily calcu-
lated by intersecting planes, step edges between plane
segments of building parts with different numbers of
floors or between dormers and the surrounding roof
are more difficult to locate accurately.

Roof planes can be easily found by applying the
RANSAC algorithm to a point cloud or by normal-
based region growing. This results in a 2D map of
a roof with regions representing roof facets. One
may need additional region growing to complete the
map, and the boundary of each region is only a some-
what noisy approximation. But typically roof facet
polylines have edges that are perpendicular or paral-
lel to the gradient of the roof plane or its neighbor,
or edges that follow intersection lines between roof
planes. This limits the possible directions to a few that
can be defined by normal vectors, so that the MIPs can
be applied to the roof facet boundaries. The perfor-
mance and the usability of the approach are evaluated
within a workflow for 3D city model generation.

There are many alternative solutions for obtaining
roof facet contours. Recently, deep learning has been
applied in a number of papers. For example, in (Nau-
ata and Furukawa, 2020), a convolutional neural net-

work (CNN) is applied to aerial images. But it is also
combined with mixed integer linear programming to
fuse geometric primitives. Deep neural networks that
find edges in unstructured point clouds are described
in (Bode et al., 2022) and (Årøe, 2022). See (Bode
et al., 2022) for a literature review. Even complete
graphs of intersection edges of roofs can be obtained
using deep point features obtained with PointNet++,
see (Li et al., 2022). However, many of these tech-
niques also require some sort of post-processing and
polyline simplification.

In the next section, we construct MIPs that sim-
plify polylines under several optimization objectives.
We then describe their application to the creation of
3D roof models. Finally, we evaluate the results.

2 MIXED INTEGER LINEAR

PROGRAMS

Let ~v1 = (~v1.x,~v1.y), . . . ,~vS = (~vS.x,~vS.y) be the ver-
tices of a given polyline in the order of its traversal.
The range of vertex coordinates can be limited to non-
negative intervals. We consider the given polyline to
be a representation of a contour. Since solving MIPs
in general is an NP-hard task, it may be necessary
to sample long contours at fewer vertices so that the
number of variables can be reduced. The selection of
sample points can be done with the polyline simplifi-
cation algorithms described earlier. Then, thresholds
must be chosen so that not too much information is
lost.

The simplified polyline consists of the vertices
~p1 =(~p1.x,~p1.y), . . . ,~pM = (~pM.x,~pM.y) that are con-
nected by edges. Here, M is the maximum number
of vertices to consider. Since less than M vertices
may be sufficient to represent the polyline, we allow
subsequent vertices to be equal. A minimum num-
ber of relevant edges with non-zero length then cor-
responds to a maximum number of consecutive equal
vertices. If we do not minimize the number of edges,
it may be possible to merge adjacent edges into larger
edges. Thus, vertices can be intermediate points of
these larger edges. With respect to running times of
linear programs, the number M should be chosen as
small as possible. Again, the polyline simplification
algorithms described earlier can help to obtain an ini-
tial estimate of M. If no feasible solution exists, then
one may wish to increase M.

We only allow edges that are perpendicular to one
normal vector from a given list ~r1, . . . ,~rN . All these
normal vectors are normalized to have length one:
|~rl | = 1 for l ∈ [N] := {1,2, . . . ,N}. We add vec-
tors pointing in opposite directions: ~rl := −~rl−N for
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l ∈ {N + 1, . . . ,2N}. These additional vectors are
needed later to measure the length of the edges be-
tween points ~pk and ~pk+1 with a linear constraint.

If a closed polyline (a polygon) is given, let ~p1 =
~pM . Otherwise and with respect to our application,
each endpoint of the polyline is either assigned to an
endpoint~v1 or~vS (so that it coincides with it or so that
their coordinates differ from each other by a maxi-
mum of ε) or it must be placed on an edge, e.g. de-
fined by vertices Q1,Q2 via the linear constraint

~p1 = Q1 +λ(Q2 −Q1) (1)

with a variable 0 ≤ λ ≤ 1.
We discuss three optimization objectives. Most

of the constraints are used with all objectives. We
first state the common constraints and explain them
afterwards. Let C > 0 be a large number (greater than
a longest edge) and

ak,l ∈ {0,1} for (k, l) ∈ [M− 1]× [2N],

∀k∈[M−1]

2N

∑
l=1

ak,l = 1, (2)

∀(k,l)∈[M−1]×[2N]

− (1− ak,l)C ≤ (~pk+1 −~pk) ·~rl ≤ (1− ak,l)C,
(3)

bk,s ∈ {0,1} for (k,s) ∈ [M− 1]× [S],

∀s∈[S]
M−1

∑
k=1

bk,s = 1, (4)

d+
s ,d−

s ,δ+s ,δ
−
s ∈ R, d+

s ,d−
s ,δ+s ,δ

−
s ≥ 0, for s ∈ [S],

λs ∈ R, λs ≥ 0, for s ∈ [S],

∀(k,s,l)∈[M−1]×[S]×[2N]

−C(2− ak,l − bk,s)

≤ (~pk.x+(λs+ δ+s − δ−s )(−~rl .y))

− (~vs.x+(d+
s − d−

s )~rl .x) (5)

≤C(2− ak,l − bk,s),

∀(k,s,l)∈[M−1]×[S]×[2N]

−C(2− ak,l − bk,s)

≤ (~pk.y+(λs+ δ+s − δ−s )~rl .x)

− (~vs.y+(d+
s − d−

s )~rl .y) (6)

≤C(2− ak,l − bk,s),

Lk ∈ R, Lk ≥ 0 for all k ∈ [M− 1],

∀(k,l)∈[M−1]×[2N]

−C(1− ak,l)≤ Lk − (~pk+1 −~pk) · (−~rl .y,~rl .x) (7)

≤C(1− ak,l)

∀(k,s)∈[M−1]×[S] λs ≤ Lk +C(1− bk,s). (8)

The conditions (2) and (3) deal with feasible di-
rections for edges. If the inner product (marked with

a dot) between ~pk+1 −~pk and~rl is zero, i.e.,

(~pk+1 −~pk) ·~rl = 0, (9)

then the edge between ~pk and ~pk+1 is perpendicular
to~rl . Binary variables ak,l are used to assign a normal
vector to each edge of the simplified polyline. Thus,
ak,l = 1 is equivalent to assigning ~rl to the edge be-
tween ~pk and ~pk+1. The condition (2) requires that
exactly one normal vector is assigned to each edge.
If ak,l = 1, the condition (3) implies (9). If ak,l = 0,
then the inner product in (3) has to be within the in-
terval [−C,C]. In MIPs, it is a standard trick to model
conditions by using large constants C so that being an
element of [−C,C] does not represent a real restric-
tion. Note that, independent of ak,l , (3) is also not a
restriction if the length of the edge is zero.

Within a certain distance, the edges of the simpli-
fied polyline must coincide with the vertices of the
given polyline. We measure the distance between
each given vertex~vs and exactly one edge of the sim-
plified curve. This edge is indicated by the binary
variable bk,s, which is one. Due to (4), exactly one
edge is assigned to each given vertex.

We compute the absolute value of the distance be-
tween ~vs and the straight line through the associated
edge but also consider the endpoints of the edge. Let
~rl be the normal with length one, assigned to the edge
such that (−~rl .y,~rl .x) points into the same direction
as the vector ~pk+1 −~pk with length Lk if Lk > 0. Then
we solve

~pk + λ̃s(−~rl .y,~rl .x) =~vs + ds~rl

to obtain λ̃s and ds. The distance of ~vs to the line
through the edge is |ds|, and the nearest point on the

straight line to ~vs is ~pk + λ̃s(−~rl .y,~rl .x). This is the
orthogonal projection of ~vs to the line. If this point
lies inside the edge, i.e., λ̃s ∈ [0,Lk], we measure the
distance of ~vs to the edge with the value |ds|. Other-
wise, we consider the distance between this point and
~pk, which is |λ̃s|, and the distance to ~pk+1, which is

|λ̃s−Lk|. Then, we measure the distance of~vs and the

edge as |ds|+min{|λ̃s|, |λ̃s −Lk|}. We translate this
into linear constraints.

Since the computation of absolute values is non-
linear, another standard trick of linear programming
is to write potentially negative numbers as the dif-
ference of two non-negative numbers. In the con-
text of using these variables in an objective function
where the sum of the variables must be minimal, one
of these variables will be zero and the other variable
will contain the absolute value which is also the sum
of both variables. For each point ~vs, we introduce
two pairs of non-negative variables d+

s , d−
s and δ+s ,

δ−s , which appear in a sum that is minimized by the
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+
s − δ

−
s |

⃗vs

⃗p1

⃗p4 = ⃗p5 = … = ⃗pM⃗r1
⃗r2

⃗r3 = − ⃗r1⃗r4 = − ⃗r2

⃗p2

⃗p3

= ⃗vS

⃗v1 =

Figure 1: The dotted lines represent the shortest distances
of points to polyline edges.

objective functions. These non-negative variables are
used to express the distance of ~vs to the correspond-
ing edge, ds = d+

s − d−
s , and for an optimal solution:

δ+s = δ−s = 0 if the orthogonal projection lies inside

the edge, and δ+s + δ−s = min{|λ̃s|, |λ̃s − Lk|} other-
wise.

The conditions (5) and (6) only become relevant,
if bk,s = ak,l = 1. Then normal~rl will be assigned to
the edge between ~pk and ~pk+1, and the direction of
the edge is given by (−~rl .y,~rl .x). The given vertex~vs

is also assigned to the edge. The conditions (5) and
(6) are used to compute the point ~pk + λ̃s(−~rl .y,~rl .x)
that is closest to~vs and lies on the straight line. Since
~rl is perpendicular to the line, this point also has a
representation of ~vs + (d+

s − d−
s )~rl , and by solving

these two linear equations (5) and (6) one obtains λ̃s

and ds = d+
s − d−

s . The distance between ~vs and the
straight line is |d+

s − d−
s | and will equal d+

s + d−
s for

an optimal solution.
Note that we cannot use the direction vector ~pk+1

−~pk instead of (−~rl .y,~rl .x) because we would multi-

ply the structure variables ~pk+1 and ~pk with λ̃s. Thus,
we would loose linearity.

The normal~rl assigned to the edge between ~pk and
~pk+1 can be chosen so that vectors (−~rl .y,~rl .x) and
~pk+1 −~pk point in the same direction (constraints (7)
and Lk ≥ 0), because we have added negative normals
to the initial list of normal vectors. The inner product
between vectors pointing in the same direction is non-
negative, and the length of the edge is given by (7):

Lk := (~pk+1 −~pk) · (−~rl .y,~rl .x)

= |~pk+1 −~pk||(−~rl .y,~rl .x)|cos(0) = |~pk+1 −~pk|.

The factor λ̃s is decomposed into the sum λs + δ+s −
δ−s . With condition (8), there is λs ∈ [0,Lk]. If and
only if the nearest point lies within the edge between
~pk and ~pk+1, the variables δ+s and δ−s become zero.
Otherwise, in conjunction with the objective func-
tions, δ+s + δ−s is the absolute distance from the clos-
est point to~vs on the straight line through the edge to

Figure 2: Four vertices are connected with a minimum num-
ber of horizontal and vertical edges of a closed polyline.

the nearest endpoint of the edge, see Figure 1. Thus,
for an optimal solution, each point ~vs is closer to its
associated edge than
√

(d+
s −d−

s )2+(δ+s −δ−s )2 ≤
√

2max{d+
s ,d

−
s ,δ

+
s ,δ

−
s },

because two of the four variables become zero.
For performance reasons, we define SOS 1 sets of

binary variables that sum up to at most one. For each
k ∈ [M−1] variables ak,l , l ∈ [2N], and for each s∈ [S]
variables bk,s, k ∈ [M− 1], constitute such sets.

normals min. dist. min. length min. edges

Figure 3: The three objective functions lead to different re-
sults: Red vertices are fixed endpoints.

We discuss the following optimization goals for
which Figure 3 shows the principal differences:

1. [min. dist.] Find a polyline (with a limited num-
ber of vertices) that minimizes a linear combina-
tion of the distances to the given points and its
length. The coefficients α > β > 0 of the linear
combination can be chosen so that the focus is on
the minimization of the distances. However, the
length of the polyline must also be considered, so
that the graph in Figure 2 will not be an optimal
solution.

minimize

α
S

∑
s=1

(d+
s + d−

s + δ+s + δ−s )+β

(

M−1

∑
k=1

Lk

)

.

(10)

2. [min. length] Find a polyline of minimum length
so that all given points are within a threshold dis-
tance defined by ε > 0. To this end, let d+

s ,d−
s ,

δ+s ,δ
−
s ≤ ε. Then

minimize

(

M−1

∑
k=1

Lk

)

.

However, we also want to minimize the distances
to given points. With (cf. (10))

minimize
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(

M−1

∑
k=1

Lk

)

+
µ

S ·2ε

S

∑
s=1

(d+
s + d−

s + δ+s + δ−s )

(11)

we find polylines that may slightly exceed the min
length up to µ > 0. But they are generally closer
to the given points. If one deals with closed con-
tours, then the objective will result in a polygon
that may be slightly smaller than the given poly-
line, see Figure 3.

3. [min. edges] Find a polyline with a minimum
number of edges such that all given points are
within a threshold distance defined by ε. Similar
to before, among all polylines that meet these con-
ditions, we select one that is closest to the given
points. To also count edges, we add constraints
d+

s ,d
−
s ,δ+s ,δ

−
s ≤ ε and

ck ∈ {0,1} for k ∈ [M− 1]

∀k∈[M−1]

−C(1− ck)≤ ~pk.x−~pk+1.x ≤C(1− ck) (12)

−C(1− ck)≤ ~pk.y−~pk+1.y ≤C(1− ck) (13)

ck +
S

∑
s=1

bk,s ≥ 1. (14)

Then the task is to

maximize
(

M−1

∑
k=1

ck

)

− 1

4Sε

S

∑
s=1

(d+
s + d−

s + δ+s + δ−s ).

(15)

If and only if the consecutive points ~pk and ~pk+1

are equal, ~pk = ~pk+1, the binary variable ck can
and will be set to one, see (12) and (13) in con-
junction with the objective function. The primary
optimization goal in (15) is to maximize the num-
ber of equal points, i.e., to minimize the num-
ber of vertices of the simplified polyline. As a
secondary objective in (15), the sum of the dis-
tances between the given vertices and the edges
of the simplified polyline is minimized. Each of
the S summands is bounded by ε. Thus, the sum
does not exceed Sε and its factor limits the size
at 0.5. As a consequence, it is more important to
save a vertex then to have edges that are closer to
given vertices. However, among all solutions with
a minimum number of vertices, a solution with
edges closest to the given vertices is chosen (in the
sense of the l1-norm realized by the secondary ob-
jective). Without the condition (14), the polygon
in Figure 2 would be optimal since it is allowed to
use edges that are far away from all sample points.

Figure 4: The first polygon has seven but the second poly-
gon has eight edges. Thus the second layout is not optimal
with respect to (15). However, the second polyline is shorter
than the first one.

To avoid this, (14) prescribes every edge of pos-
itive length to be assigned to a given vertex. In
some tests with the solver GLPK1, the running
time was reduced significantly by an additional
constraint to avoid the assignment of given points
with edges of zero length:

∀(k,s)∈[M−1]×[S] bk,s ≤ 1− ck.

If one uses too few sample points, an optimal so-
lution may not be the intended one, see Figure 4.

In general, our goal is to map simple polylines to
simple polylines. However, the MIPs do not check
for self-intersections, so complex polylines may oc-
cur. Self-intersection must be corrected in a post-
processing step.

3 APPLICATION TO ROOF

FACET BOUNDARIES

We detect roof planes using RANSAC on ALS points
of roof segments with homogeneous gradient direc-
tion. Then we generate a 2D map showing regions
of points belonging to individual roof facets and fill
the map with region growing. Each pixel represents a
square of 10cm×10cm. Then we detect the contours
of the regions and mark the critical points where more
than two facets are adjacent (counting the outside of
the building footprint as a facet). All non-black points
are critical in Figure 5. Points near the intersection
points of three or more adjacent roof planes are iden-
tified with the intersection points. Now, contour seg-
ments between critical points are simplified using the
MIPs. In what follows, we describe how the param-
eters and normals are chosen, see Figure 6 for some
results.

A simpler but somewhat similar MIP approach to
ours is used in (Goebbels and Pohle-Fröhlich, 2017),
where the edges are adjusted to the cadastral foot-
print directions they are already close to. However,
only existing vertices are moved slightly within given
bounds and the number of edges basically remains

1GLPK LP/MIP Solver 5.0, http://www.gnu.org/
software/glpk/glpk.html (all websites accessed: September
14, 2023)
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Figure 5: Typical roof, projected onto the 2D ground plane:
A dormer is placed in a surrounding roof facet. The red ver-
tex is an intersection point of three roof planes. Their facets
are adjacent to the vertex. Blue vertices lie on a cadastral
footprint edge. Green is used for other critical points that
are adjacent to more than two facets. Dotted lines corre-
spond with intersection lines between roof planes. Arrows
indicate gradient directions.

Figure 6: Examples for roof layout simplification with
ε = 6 pixels. Closed contours were optimized with the
min. edges goal (15) and all other contours were treated
with the min. length objective (11).

fixed. Here, we also consider a longest footprint di-
rection and its perpendicular direction but only when
a polyline separates two flat roofs. Otherwise we use
the gradients of non-zero length of the two roof facets
that are separated by the polyline to be simplified.
We also consider their perpendicular directions and
the direction of an intersection line of the two facet
planes, if it exists. This results in a list of normals~rl .

The roof facet boundaries form a graph. Be-
fore applying optimization procedures, we reduce the
number of edges with the Ramer-Douglas-Peucker al-
gorithm while keeping in particular the critical points
as vertices. We discuss several cases:

The first case deals with a closed polyline that sep-
arates exactly two roof facets. Often, such a poly-
gon is a rectangle defining a dormer. This poly-
gon is either simplified by the min. edges or by the
min. dist. objective. Minimizing the length of the
polyline would result in polygons that are slightly too
small, see Figure 3. The other cases deal with open
polylines that have critical points as endpoints.

Open polylines can be simplified with any of the

Figure 7: An example with self-intersection and intersec-
tion with the enclosing building footprint.

three objective functions. We need to determine how
to handle their endpoints.

• An endpoint must remain in place, if it is an inter-
section point of three or more adjacent roof planes
or a vertex of the cadastral footprint.

• For each other endpoint that lies on a footprint
edge, we add a constraint that the simplified poly-
line must end on that line, cf. (1). In Figure 5, the
blue critical points have to stay on the footprint.

• In our test data (see next section), the previous two
cases already cover over 90% of the contour seg-
ments that have more than one edge. In principle,
the remaining endpoints can be moved. However,
since we are optimizing contour segments itera-
tively, we must avoid undoing improvements that
have already been made. If such a remaining end-
point is used for the first time in an optimization
problem, its coordinates are allowed to vary by ε.
However, if it has already been used, it may be
moved by a maximum of ε on all the straight lines
that lie on the edges where it was the endpoint
in a result of a previous optimization problem. If
an endpoint already lies on two straight lines with
linearly independent directions, it is fixed.

The position of an endpoint of an open polyline
may depend on two optimization problems that are
solved sequentially. This is much faster than solving
combined problems that deal with multiple polylines.

The resulting polylines may have self-intersec-
tions. Also intersections with boundaries of enclosing
roof facets and the cadastral footprint are possible, see
Figure 7. Such intersections become unlikely if small
distance bounds ε are used, contours are sampled with
sufficiently many points, and normal vectors fit with
the contour. We generally remove intersections in a
post-processing step.

4 EXPERIMENTS

We evaluated the approach for one square kilome-
ter of the city center of Krefeld with 5,467 buildings
shown in Figure 8 on a computer with a 2.3 GHz dual-
core Intel Core i5 with 16 GB of RAM. The corre-
sponding ALS point cloud was provided by GeoBasis
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Figure 8: The final 3D model of one square kilometer.

0 10 20 30 40 50 60 70

min. edges

min. dist.

Figure 9: Running times for 111 closed contours with
existing solutions in seconds, red: 111 solutions for the
minimum distances goal (10), black: 95 solutions of the
min. edges objective (15).

NRW2. The parameters are set as follows: C = 1000,
α = C, β = ε, µ = 1, ε := 3 pixels. Since we want to
reduce complexity, the maximum number M of poly-
line vertices is chosen to be equal to the number S of
given vertices if the contour is not closed. Otherwise
we set M := S+ 1 to ensure that the startpoint and
endpoint of the simplified polyline are the same. We
have integrated the MIPs into a workflow for creating
3D city models using the C-API of the IBM CPLEX
12.8.0. optimizer3. Instead of working with optimal
solutions, we are satisfied with a best solution found
within a time-limit of 60 seconds. This time-limit is
checked with a callback function that is invoked by
CPLEX at irregular time steps. Thus, running times
may exceed 60 seconds slightly. The optimization
problems had between 21 and 2,118 variables includ-
ing 6 to 1,813 binary variables. We used up to 60,796
constraints.

We simplified 111 closed polylines with the two
objective functions (10) and (15). In 33 and 34 prob-
lems, respectively, the time-limit was reached. Nev-
ertheless, we obtained a feasible solution for all of
the problems when minimizing distances with the
min. dist. objective (10), while no feasible solution
was obtained for 16 instances with the min. edges goal
(15). The reasons for this behavior are the same as for
open polylines and are discussed below. The running
times are compared in Figure 9.

Open polylines had an average of 18,352 fixed
endpoints, 38,280 endpoints that were restricted to

2https://www.bezreg-koeln.nrw.de/geobasis-nrw
3https://www.ibm.com/de-de/analytics/

cplex-optimizer, the newer CPLEX version 22.1.1
showed almost exactly the same running times

0 0.004 0.008 0.012 0.016
. . .

60 80

min. edges

min. length

min. dist.

Figure 10: Running times for open contours with existing
solutions in seconds, red: minimum distances optimization
with (10), blue: minimum length objective (11), black: min-
imum number of edges goal (15).

input min. dist. min. length min. edges

Figure 11: The three optimization goals may result in
slightly different roof layouts.

vary on edges, and 1,343 endpoints that were allowed
to move freely within the coordinate-wise tolerance ε.
Figure 10 compares the running times due to the dif-
ferent objectives. Problems with the min. dist. condi-
tion (10) took slightly longer to solve than problems
with the other two objectives. However, more feasible
solutions were found for this objective (10) than for
the other goals because distances were not bounded
by ε, see Table 1. However, in some examples this re-
sulted in larger changes which can be avoided by also
requiring d+

s ,d−
s ,δ+s ,δ

−
s ≤ ε. In general, the qualita-

tive results differ only slightly between the chosen ob-
jective functions, see Figure 11. If, unlike in our test
scenario, models are created interactively, all three
optimization goals can be offered as tools so that the
best fitting result can be selected.

Table 1: Feasible solutions for polylines with critical end-
points, found with the three objectives; problem instances
that have exceeded the time-limit also contribute to the
rows “feasible solutions” and “no solutions found”. How-
ever, apart from the small number of aborted problems with
reached time-limit, feasible solutions are optimal and “no
solution found” means that the associated problem really
has no solution.

min. min. min.
dist. length edges

feasible solutions 18,331 14,978 15,218
no solution found 10,591 13,665 14,180
time-limit reached 328 295 256

One reason for the significant number of problem
instances without feasible solutions is that the con-
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tours do not sufficiently match with the prescribed
directions defined by the roof plane gradients and
their intersections. This can be an effect of the re-
gion growing method applied previously. Especially,
it occurs when small roof facets are not detected
by RANSAC, so that corresponding regions must be
filled with adjacent facets. The maximum tolerance ε
was chosen to be small enough to avoid inconsisten-
cies, but the behavior does not change if the tolerance
is moderately increased from three to six pixels with-
out increasing the number of vertices M.

5 CONCLUSIONS

We have introduced MIPs that modify polylines un-
der directional constraints. The applicability of the
programs has been demonstrated in the context of 3D
modeling of building roofs. In this scenario, we had to
deal with a large number of contours. Therefore, short
running times of the individual MIPs were important.
Each contour was already simplified so that it could
be described with a few sampled polyline vertices. In
most cases, the MIPs did not reduce the number of
vertices. The maximum reduction was 21 vertices.
This resulted in MIP running times of a few millisec-
onds. When applying the MIPs to polylines with more
vertices, longer running times can be expected.

Polyline simplification based on normals is not
limited to 3D building reconstruction. An everyday
example is public transport maps that show general-
ized paths instead of exact ones.

ACKNOWLEDGEMENTS

The authors are grateful to Dagmar Schumacher for
proof-reading and to Udo Hannok and Philipp Blu-
menkamp from the Krefeld land registry office for
providing us with oblique aerial images.

REFERENCES
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