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Abstract: The Pareto frontier of multi-objective problem solutions denotes the unique exact solution to a problem with 
two or more equivalent objectives. Even when the number of problem solutions is finite, determining the 
precise Pareto frontier is a difficult task. Different metaheuristics can therefore provide a user with a decent 
approximation of the Pareto frontier in a reasonable amount of time, whereas the exact computational time-
intensive approaches cannot. The acceptable computational time of metaheuristics counterbalances a 
solution's deviation from the Pareto frontier. This contribution describes one of a spectrum of metaheuristics 
implemented with the objective of locating non-dominated solutions to the public service system design 
problem involving two competing criteria. The metaheuristic minimizes the difference between the present 
set of non-dominated solutions and the Pareto front by applying the ant colony optimization principle. A series 
of numerical experiments with benchmarks for which the exact Pareto frontiers are known are used to evaluate 
the efficacy of the proposed metaheuristic. Even though the proposed method is applicable anywhere, the 
used dataset comes from an Emergency Medical Service system in Slovakia, which belongs to the generally 
known wide class of public service systems. 

1 INTRODUCTION 

One of those crucial application spheres where many 
advanced methodologies of operations research can 
frequently be met is the creation of various service 
systems. We are now able to address a wide range of 
challenging problems that were previously 
unsolvable due to huge advancements made in 
numerous technical disciplines, from hardware to 
cutting-edge software technology. One of such 
examples is the challenging problem of establishing a 
service system (Ahmadi-Javid et al, 2017, Avella, 
Sassano, Vasil'ev, 2007, Brotcorne, Laporte, Semet, 
2003, Current, Daskin and Schilling, 2002). Let us go 
more specific about service systems. 

Typically, a service system consists of a few 
components that have a structure, behavior (which 
may be characterized as a business process), and a 
purpose (people, facilities, tools, and/or software 
applications). The premise that a service system can 
be regarded as a work system that generates a certain 
type of specified services is an easier, but more 
constrained description (Doerner et al, 2005, 
Gendreau, Potvin, 2010, Gopal, 2013, Ingolfsson, 
Budge, Erkut, 2008, Jánošíková, 2007, Jánošíková, 
Žarnay, 2014).  

In general, service systems can be split into two 
sizable categories. Public service systems are based 
on distinct presumptions, whereas private service 
systems are typically developed to deliver the 
maximum profit to their managers, founders, 
shareholders, and operators regardless of the number 
of clients served or equal access to given service. 

Public service systems are designed to ensure that 
all locals will receive services, regardless of financial 
gain or loss. They are required by law to exist. These 
systems comprise many different things, such as state 
administration, emergency medical services (EMS), 
and many more (Ahmadi-Javid et al, 2017, Brotcorne, 
Laporte, Semet, 2003, Ingolfsson, Budge, Erkut, 
2008, Marianov, Serra, 2002). The public service 
system design problem is a member of the family of 
location problems, which have been researched and 
successfully resolved by numerous authors (Avella, 
Sassano, Vasil'ev, 2007, Kvet, 2018). 

Several factors must be taken into account while 
looking for a solving method for this class of huge 
location problems: The issues' combinatorial nature 
suggests that mathematical programming techniques, 
which have some specificities of their own, were used 
to solve them. The constraint of available resources is 
another significant factor. Additionally, the service 

200
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must be concentrated in a number of service locations 
rather than being offered everywhere. Naturally, the 
customers who are served can travel to these centers 
or a team can go from a service center to the 
emergency location. As a result, the challenge in 
designing a public service system typically lies in 
determining the best network topology for service 
centers to meet a particular criterion. Based on the 
preliminary analyses given, the weighted p-median 
problem formulation is one of the modeling 
approaches that is most frequently employed. 

The precise shape of the objective function and 
the modeling approach itself determine whether the 
problem can be solved. The so-called radial strategy 
can be used in place of the commonly used location-
allocation form to tackle substantially bigger issue 
instances (Avella, Sassano, Vasil'ev, 2007, Kvet, 
2018). The problem is significantly simpler to solve 
if the optimization criterion utilized has a min-sum 
form as opposed to one where the objective function 
has a min-max form with certain link-up constraints. 

The second drawback is brought on by the 
limitation that only one target can be optimized. 
Large public service systems, like an EMS, are 
known to be complex systems with a variety of 
conflicting demands made by various stakeholder 
groups (Arroyo et al, 2010, Grygar, Fabricius, 2019, 
Janáček, Fabricius, 2021). Consequently, the primary 
focus of this research study is on creating multi-
objective service systems. Only two opposing aims 
will be considered for the sake of simplicity. 

The primary scientific contribution of this study 
is to bring a new heuristic approach to address the 
issue of constructing two-objective service systems. 
A so-called Pareto frontier of service system designs 
must be built since a multi-criteria optimization 
presumes providing a condensed set of options from 
which the final system design is to be selected. It 
takes a lot of time to obtain the entire Pareto frontier 
(Arroyo et al, 2010, Grygar, Fabricius, 2019, Janáček, 
Fabricius, 2021). Therefore, from a practical 
standpoint, the creation of effective heuristics is 
required. The quality of the set of solutions that is 
produced is examined and empirically confirmed on 
a dataset from the actual world in this study. 

The structure of this article takes the following 
form. Section 2 is devoted to the mathematical 
formulation of the problem and the conflicting criteria 
explanation. The notion of a Pareto frontier is 
discussed together with the method for different 
Pareto sets comparison. Section 3 provides the 
readers with the principle of Pareto frontier 
approximation by gradual refinement. In the fourth 
section, we describe the ant colony optimization and 

all the ideas behind suggested solving algorithm. The 
fifth section contains the results of performed 
experiments with real-world data and finally, the last 
section is devoted to concluding remarks.  

2 NON-DOMINATED PUBLIC 
SERVICE SYSTEM DESIGNS 

It is vital to clarify the Pareto frontier and give the 
readers a mathematical description of the problem 
before going into detail about the incremental 
refinement strategy itself. Let us focus on the problem 
specification, now. 

Finding the stations from which ambulances are 
sent to demand sites is a difficulty in EMS design. For 
the mathematical formulation of the problem, 
suppose that a finite set I of candidates is given. The 
candidates are often selected from network 
components that meet specific criteria for EMS 
station location. The resulting selection of service 
center locations must include exactly p entries (p is an 
integer less than or equal to the cardinality of I) in 
order for the given aim to take on its best value due to 
several personal, technological, or other constraints. 
A zero-one variable, yi∈{0, 1}, which equals one if a 
center should be placed at i∈I and zero otherwise, will 
be used to simulate the choice of where to place a 
service center (EMS station). A vector y of location 
variables yi can therefore be used to define any 
solution to the corresponding p-location issue. The 
following expression (1) can describe the basic 
model. 
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If one wanted to make the EMS system design 
problem more general, there could be added at least 
one extra objective. Under the assumption that m 
denotes the cardinality of the set I and n denotes the 
cardinality of the set J, the former model (1) may be 
rewritten into the form of (2). 
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As mentioned in the paper's introduction, 
combining two criteria might provide a variety of 
difficulties for the decision-making process, 
especially when the aims are incompatible. We can 
only concentrate on two objective functions, f1(y) and 
f2(y), which will be referred to as so-called system and 
fair criteria, respectively. To formulate them in a 
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mathematical way, several notations are necessary to 
be introduced. 

Let J represent the set of locations of system users 
(service recipients). Analogically, let the symbol I 
stand for the set of candidates for facility locations. 
The sets I and J can be equivalent. The number of 
unique users located at j from J will be represented by 
the value of bj. The quantity of anticipated demands 
during a specific period is one possible interpretation 
of this nonnegative integer coefficient. It can be 
understood as the weight of location j, though. 
According to the possible center location i, the 
disutility for a patient located at j will be indicated as 
dij. Despite the benefits of integer values, the value of 
dij need not be an integer. It is important to remember 
that service requests come in at random; therefore, the 
most nearby station need not be used to cover the 
current demand that has emerged anywhere. From a 
mathematical standpoint, it is assumed that r nearest 
located centers participate in offering the service to 
users, and qk signifies the possibility that the k-th 
nearest center is the one that is closest and easily 
accessible at the time the demand occurs. To 
complete the formulations of the system and fair 
objective functions, let the function mink return the k-
th smallest element from the list in the function's 
parameter. The system criterion f1(y) optimizes the 
average distance between system users and the closest 
available center. It can be formulated by (3). 
Optimization of the average distance may be achieved 
by minimization of the sum of distances. 

( ) { }1
1 1

min : {1, ..., }, 1
n r

j k k ij i
j k

f b q d i m y
= =
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If we wanted to evaluate the average distance 
AvgDist, it could be done in the following way 
described by (4). 
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The number of users whose distance from the 
closest facility exceeds the radius D is expressed by 
the fair objective function value f2(y), which was 
developed in accordance with formula (5). To provide 
certain level of fairness (Bertsimas, Farias, Trichakis, 
2011, Buzna, Koháni, Janáček, 2013). 
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There is no doubt that the criteria (3) and (5) are 
in direct conflict. It suggests that improving one 

would inevitably make the other worse. The 
aforementioned goal conflict can be resolved by 
creating a full Pareto frontier of solutions, or at least, 
its approximation. In other words, rather than one 
final system design, a specific small subset of options 
are presented. Naturally, in order to select one of the 
available options and arrive at the resulting system 
design, politics, negotiation, and experts must be 
involved. Let us focus on Pareto frontier, now. 

A Pareto frontier is often made up of a few 
solutions that satisfy non-dominance for each pair of 
its members. No matter what form a feasible solution 
P takes, it may be evaluated using the two criteria 
f1(P) and f2(P) in the bi-criteria optimization. The 
non-dominance can be explained by the following: A 
solution P is referred to as a non-dominated solution 
if [f1(P), f2(P)] ≠ [f1(R), f2(R)] matches the inequality 
f1(P) < f1(R) or f2(P) < f2(R). Then, a straightforward 
explanation of the Pareto frontier is given in the 
following Figure. 1. 

  
Figure 1: Explanation of the Pareto frontier. 

The red solutions do not belong to the Pareto 
frontier because of being dominated by the green 
ones. Since there are no solutions dominating the 
green elements, both of them must be included into 
the Pareto frontier (Grygar, Fabricius, 2019, Janáček, 
Fabricius, 2021). 

Sometimes, symbols MLM and MRM are used to 
denote the most left and the most right members of 
the Pareto frontier. These bordering solutions can be 
computed easily making use of a simple mathematical 
model solvable usually in a short time. We will 
concentrate our efforts on creating a good 
approximation of the Pareto frontier because it is a 
challenge to obtain the entire Pareto set. The sequence 
of noNDSS (non-negative integer value) solutions y1, 
…, ynoNDSS ordered according to increasing values of 
f2 will be used to represent the approximate set of non-
dominated solutions (NDSS). The bordering solutions 
y1 and ynoNDSS must be found to be very close to the 
most left and the most right solutions of the Pareto 
frontier in terms of the values of f1(y) and f2(y), in 
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order to achieve a useful approximation. Under these 
presumptions, so-called area A(NDSS) computed in 
accordance with expression (6), can be used to assess 
the accuracy of the NDSS as the Pareto frontier 
approximation. The size of the grey polygon in Figure 
1 is represented by the A(NDSS) to make it easier to 
comprehend. 

( ) ( )
( ) ( )
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1 2
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1 1 1
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Whenever the Pareto frontier is needed to be 
approximated by a set NDSS, the quality of the 
approximation must be evaluated. For this purpose, 
so-called gap may be used. The gap can be defined as 
follows: Under the assumption that PF denotes the 
original complete Pareto frontier and NDSS denotes 
its approximation, the gap can be evaluated in 
percentage according to the expression (7). 

( ) ( )100*
( )

A NDSS A PFgap
A PF

−=  (7)

3 GRADUAL REFINEMENT 
SCHEME 

Many alternative methods, some of which may also 
be based on the decrementing neighbourhood search 
algorithm, can be used to generate a Pareto frontier or 
at least a good approximation of one. The schema of 
its gradual refining is one of the approaches that 
might be used in the development of the NDSS 
(Janáček, Kvet, 2022a, Janáček, Kvet, 2022b, 
Janáček, Kvet, 2022c, Kvet, Janáček, 2022). 

The two-element initial NDSS of the most left and 
the most right bordering solutions of the Pareto 
frontier serves as the basis for the process. These 
bordering solutions are simple to compute, and 
getting them usually doesn't take too much effort. The 
previously mentioned refining process is repeated. 
This indicates that the results of processing one round 
produce a set of NDSS data that may be utilized as an 
input set for the subsequent inspection procedure. The 
results of a process that is repeated more than once 
may have different outcomes since the inbuilt 
decrementing algorithm may employ random actions. 
As a result, the inner cycle is nested inside a time-
controlled cycle, which keeps repeating the inner 
cycle until the time limit is reached. In other words, 

NDSS refining continues until a time limit prevents 
algorithm performance. 

The gradual refinement approach processes the 
input NDSS solutions iteratively one by one. The 
elements of NDSS are expected to form a sequence y1, 
…, ynoNDSS. If any solution yk is processed, then a 
neighborhood search algorithm may be applied to 
find candidates for NDSS updating. As NDSS can 
change during one run of the algorithm, the solution 
corresponding with the k-th position may also change. 
If it happens, the algorithm is applied once again to 
this new solution yk, otherwise the following solution 
yk+1 is processed. If k = noNDSS-1, the refinement 
process terminates (Janáček, Kvet, 2022b, Kvet, 
Janáček, 2022).  

4 ANT COLONY OPTIMIZATION 

The ant colony optimization algorithms imitate in 
general cooperation of ant colony members in 
searching food which is distributed in nodes of a 
network of possible ants’ moves. In most of 
implementations, an ant is an agent, who searches for 
an improving solution in a finite set of problem 
solutions equipped with a topology given by system 
of neighbourhoods. The ant chooses its inspected way 
in the network which vertices are represented by 
individual solutions and which edges correspond to 
passible moves from one solution to a neighbouring 
one. As the set of feasible solution is too vast to be 
able to record real path in the associated network, 
only some attributes of the path inspection are taken 
into account. Performance of an ant starting at a given 
solution will be determined by the neighbourhood 
searching strategy and buy swap operations, which 
implement moves between the network vertices. The 
searching strategy is determined by a combination of 
two parameters thr and maxNos, where the first one 
gives minimal improvement to consider a move 
admissible and the second parameter gives the 
number of admissible moves, from which the best one 
is realized. The swap operation replaces one location 
of a current solution by a location which is not 
included in the solution. 

Instead of recording the inspected path in detail, 
we reduce the path description to the set of location 
which have been subsequently included into the 
starting solution. These recorded entries will be 
considered in the phase of laying pheromone. A 
detailed description of the ant’s search and 
pheromone laying follows. 

The ant starts with a given feasible solution y of 
the p locations saved in the list P of the locations 
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selected from the set I of all possible service center 
locations. 

Based on thickness of the pheromone layer, the 
ant randomly choices the strategy given by a pair of 
the parameters thr and maxNos. 

Following the chosen strategy, the ant searches 
the neighbourhood of the current solution while 
constantly updating the NDSS and evaluating each 
found admissible swap operation applied to the 
exchange of location i∈P for j∈I-P from the point of 
move to a new current solution. 

The admissible operation is characterized by a 
decrement Idec of the A(NDSS) caused by its 
performing. The inserted location j has its pheromone 
layer F(j) and the resulting fitness value is Dec*F(j). 
The ant’s decision on the best swap for the move to 
the new solution is performed according to the result 
of a sequence of comparisons. The recently appointed 
swap operation with fitness value MFit is compared 
to fitness CFit of a candidate and it is decided on 
update according to a random trial with probability 
CFit/(CFit +MFit) in favor of the candidate. The ant’s 
search finishes, when either whole neighbourhood is 
inspected or ImaxNos candidates are evaluated. 

The ant’s search terminates with failing of finding 
an admissible candidate for the move to a new current 
solution. The difference between the A(NDSS) before 
the ant’s search and A(NDSS) after the search denoted 
by Dec is used to update the pheromone layer F(s) of 
the chosen strategy s and all inserted locations j using 
the following formula (8). 

 ( ) ( ) DecF s F s
InitArea

= +  (8) 

The final pheromone adjustment is performed 
with a pheromone layer of each object according to 
the expression F(s) = (1 - ρ)*F(s), where ρ is an 
evaporating coefficient. 

5 NUMERICAL EXPERIMENTS 

Suggested ant colony optimization for Pareto fro 
frontier nt approximation was explained in previous 
sections of this contribution. To verify its efficiency 
and accuracy, several computational analyses needed 
to be performed. The content of this section is aimed 
at the results of performed numerical experiments. 
Let us concentrate on available software tools and 
technical parameters of used machine, first. 

All computational experiments reported in this 
study were performed making use of Java 
programming language within the NetBeans 
development kit. The algorithms were run on a 

common notebook equipped with the 11th Gen Intel® 
Core™ i7 1165G7 2.8 GHz CPU and 40 GB RAM.  

After having introduced necessary software and 
hardware tools for this computational study, let us 
describe solved problems and their most important 
characteristics. 

As far as the set of used problem instances is 
concerned, we took the benchmarks from our 
previous research (Grygar, Fabricius, 2019, Janáček, 
Fabricius, 2021, Janáček, Kvet, 2020 , Janáček, Kvet, 
2021, Janáček, Kvet, 2022a, Janáček, Kvet, 2022b, 
Janáček, Kvet, 2022c, Kvet, Janáček, 2022). 
Mentioned dataset represents the existing EMS 
system operated by private agencies - service 
providers in eight autonomous higher territorial units 
in Slovakia. The list of problem instances covers the 
regions of Bratislava (BA), Banská Bystrica (BB), 
Košice (KE), Nitra (NR), Prešov (PO), Trenčín (TN), 
Trnava (TT) and Žilina (ZA). It must be noted that all 
network nodes represent both the set of candidates for 
service center locating and the set of clients being 
provided with urgent healthcare service as well. But 
generally, the sets of candidate locations and system 
users’ locations may differ. The number of users bj 
located in each node j from J were taken from the 
official Slovak statistical analysis and the values were 
rounded up to hundreds.  

As the objective function f1(y) follows the concept 
of so-called generalized disutility (Grygar, Fabricius, 
2019, Janáček, Fabricius, 2021, Kvet, 2014), the 
parameter r was set to 3. The associated probability 
coefficients qk were set so that q1 = 77.063, q2 = 
16.476 and q3 = 100 - q1 - q2. These values correspond 
also to the data used in our previous research to make 
the results of different methods comparable. More 
details about the parameter settings suitable for the 
objective function (3) can be found in (Jankovič, 
2014).  

Parameter D used in the fair objective (5) was set 
to the value of 10. 

The following summary reported in Table 1 
brings the overview of used benchmarks. The 
structure of the table is designed so that each row 
corresponds to one solved problem. The first column 
of the table is used to identify the instance by the 
abbreviation of the region. The second column 
denoted by |I| reports the cardinality of the set I. In 
other words, there are reported the numbers of 
candidates for service center locating, from which 
exactly p elements are to be chosen. The values of p 
are reported in the third column of the table. The right 
part of Table 1 is used to summarize the most 
important characteristics of the complete Pareto 
fronierts. The column denoted by NoS gives the 
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number of solutions creating the entire Pareto set. In 
the column denoted by A(PF) we provide the readers 
with the size of the polygon defined by the Pareto 
frontier elements as suggested by the expression (6). 

Table 1: Benchmarks sizes and the exact Pareto frontiers 
characteristics. 

Region |I| p NoS A(PF)
BA 87 14 34 569039
BB 515 36 229 1002681
KE 460 32 262 1295594
NR 350 27 106 736846
PO 664 32 271 956103
TN 276 21 98 829155
TT 249 18 64 814351
ZA 315 29 97 407293

The achieved results are summarized in Table 2 
and Table 3 which take the same structure. Since 
many heuristic methods may perform a random trial 
or they need generating random numbers, we have 
performed ten runs of the algorithm for each 
benchmark, and we report the average values of all 
studied parameters. While Table 2 contains the results 
of experiments with the first four datasets, Table 3 
summarizes the second half of problem instances. 
Each column of the tables corresponds to one solved 
problem and each row is used to one studied 
characteristic.  

Table 2: Results of ant colony optimization– part 1. 

Region BA BB NR KE
CT [s] 300.0 320.0 315.5 302.4

noNDSS 33.0 206.6 250.6 102.1
Gap [%] 1.47 1.03 2.21 0.72

NoTR 1227.7 1.9 1.5 9.1
NoTOR 4205.1 8.9 10.8 52.2

Table 3: Results of ant colony optimization – part 2. 

Region PO TN TT ZA
CT [s] 357.6 301.3 300.5 303.0

noNDSS 263.5 94.4 62.2 92.4
Gap [%] 2.30 0.72 0.07 0.30

NoTR 1.8 32.0 56.0 15.8
NoTOR 5.0 110.3 220.5 64.5

It must be noted that the computational process 
was limited to five minutes of processing. Let the 
symbol CT [s] denote the average computational 
time. The second studied feature consists in the 
average number of found solutions, which 
approximate the original Pareto frontier. This result is 
denoted by noNDSS. Since we do not consider it 
useful to report the exact values of areas computed 
according to (6), we evaluate the quality of 

approximation by gap computed by (7). The column 
denoted by NoTR reports the number of time runs and 
NoTOR denotes the number of outer runs. 

6 CONCLUSIONS 

Bi-criteria optimization is crucial when the specifics 
of a problem do not permit the use of a simple model 
that minimizes only one objective function. A typical 
example is the design of emergency medical services. 
Operations researchers and other experts have 
concentrated their efforts on the development of 
heuristic methods that can approximate the optimal 
Pareto frontier in a much shorter amount of time, as 
the search for the optimal Pareto frontier has proven 
to be an arduous endeavor. We provided numerical 
experiment results for evaluating the quality of the 
proposed algorithms. Based on the reported results, it 
can be concluded that the proposed algorithm 
substantially extends the state-of-the-art tools for 
solving specific location problems involving the 
optimization of two contradictory objectives. 

Future research may concentrate on new 
advanced algorithms that generate a close 
approximation of the Pareto frontier or on modifying 
certain existing techniques to obtain more precise 
results. Application of self-learning methods to 
parameter adjustment represents a fruitful research 
direction. 
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