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Abstract: Designing a good public service system that provides a geographical region with service through a specified 
number of service centers is a very difficult task, particularly when multiple quality evaluation criteria are 
applied. A Pareto front of public service system designs is a very useful instrument for any designer who must 
consider multiple requests from public representatives. Due to the computational difficulty of determining the 
Pareto front, a number of heuristic approaches have been developed. One of these techniques, gradual 
refinement, proved to be quite effective, but its performance could be enhanced by eliminating the repetition 
of some rudimentary swap routines. This contribution focuses on the application of tabu search features to 
enhance and increase the efficacy of the gradual refinement process by suspending the routines' few useful 
applications. The resulting metaheuristic is validated through numerical experimentation using benchmarks, 
and the approximations of the Pareto front are compared to the exact Pareto fronts. 

1 INTRODUCTION 

Establishing a new service system, improving an 
existing one, or solving other similar issue involving a 
public service system involves figuring out the best 
locations for service centers, stations, or facilities that 
are stocked with the tools, personnel, or other 
resources required to meet customers’ demands. It 
goes without saying that the combinatorial nature of 
the aforementioned challenges necessitates the use of 
various mathematical modeling techniques, software 
development expertise, or other advanced abilities. As 
a result, while making strategic decisions, 
professionals in operations research cannot be 
disregarded. Because of enormous and quick 
advancements being made in practically all relevant 
domains, we are able to quickly and effectively 
produce good results for significant problem instances 
(Ahmadi-Javid et al, 2017, Current, Daskin and 
Schilling, 2002, Ingolfsson, Budge, Erkut, 2008). 

Speaking of the designing of service systems, it 
must be recognized that we do not study private 
service systems in this study because they are 
primarily focused on maximizing profit regardless of 
the number of users covered by the system or the 
degree of equity in service accessibility. As a result, 
we exclusively focus on public service systems, the 
existence of which is typically guaranteed by 
legislation. Public service systems are designed to 

ensure that all local citizens will receive services, 
regardless of financial gain or loss (Jánošíková, 2007, 
Jánošíková, Žarnay, 2014). According to science, the 
discrete network location problem family includes the 
public service system design problem, which has been 
researched and successfully resolved by numerous 
authors (Brotcorne, Laporte, Semet, 2003, Doerner et 
al, 2005, Marianov, Serra, 2002). The weighted p-
median problem is the most concrete form of the 
problem, and one of the most popular modeling 
notions is what comes next. 

Common mathematical models may have a 
number of serious drawbacks, one of which is the 
limitation that only one objective function can be 
maximized/minimized. Large service systems are 
complicated systems with a variety of competing 
demands made by various stakeholder groups 
involved in the decision-making process, and not all 
of them lend themselves to abstraction. Therefore, 
multi-objective service system optimization is the 
focus of attention. Only two opposing aims will be 
taken into account for the sake of simplicity in this 
paper. Another obstacle connected with large 
mathematical models consists in the complexity of 
most exact methods, which usually disables their 
application for practice. On the other hand, experts 
have found a solution also for such a situation. 

As well as existing conventional exact methods 
based usually on the branch and bounds principle, 
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newer heuristic algorithms, metaheuristics, and more 
advanced evolutionary approaches to the optimization 
issues have been created. Verifying that the best 
answer identified is the optimal solution is a particular 
weakness of practically all exact approaches. Some 
modeling strategies, such as the radial approach 
(Avella, Sassano, Vasil'ev, 2007, Kvet, 2014, Kvet, 
2018), can greatly speed up the associated solving 
process. Nonetheless, the time it takes to verify these 
accurate methods is sometimes prohibitive. However, 
heuristic approaches allow us to get a decent answer 
in much less time. Furthermore, public service system 
design can address bi-criteria location challenges, 
which present a similar challenge with the same 
precise techniques of slow performance. The Pareto 
front is a unique collection of solutions that must be 
looked for when there are two or more objectives to be 
optimized. Since completing the complete 
inextensible Pareto front requires a lot of effort 
(Grygar, Fabricius, 2019, Janáček, Fabricius, 2021), 
academics have focused on developing approximate 
methods and efficient heuristics (Arroyo et al, 2010, 
Gendreau, Potvin, 2010, Gopal, 2013). 

This contribution is focused on application of tabu 
search features to enhance the gradual refinement 
process developed especially to approximate the 
original Pareto front. The main goal is to increase its 
efficiency by suspending the little useful applications 
of associated routines. Obviously, suggested 
algorithm has been experimentally verified and the 
obtained results are reported here. 

The structure of this paper is organized according 
to the following scheme: The main goal of the first 
section was to introduce the problem and to place it 
into a wider scientific context. The second section 
discusses the Pareto front of bi-criteria location 
problem solutions. In section 3, we introduce the 
neighborhood search with tabu moves. The fourth 
section summarizes the numerical experiments. Here, 
we provide the readers with several comments on the 
computational study. The last section is dedicated to 
the conclusions and future research directions.  

2 PARETO FRONT OF  
BI-CRITERIA LOCATION 
PROBLEM SOLUTIONS 

A discrete location problem can be concisely 
described as the task to select p locations from the set 
of m candidate locations so that a given criterion 
value is minimal. Thus the set of all feasible problem 

solutions Y can be defined as Y={y: y⊂{1, …, m}, 
y=p}. 

As concerns quantified criteria of the individual 
elements of Y, they depend on the sort of the real 
problem formulated as the location problem. In the 
case of private service system design, the objective is 
often minimal total cost of service distribution from 
service centers to the customers. The total cost is 
usually proportional to the sum of weighted distances 
from customers to the closest service center. 
Considering a public service system design, the 
situation is more complex due to more points of view 
at the system utility. In principle, the applied criteria 
can be divided into two classes called system criteria 
and fairness criteria. The system criterion minimizes 
disutility perceived by an average system user and the 
fairness criterion minimizes disutility perceived by 
the worst situated minority of the system users. The 
system criterion can be represented by an average 
response time of the system subject to the assumption 
that a user’s demand is satisfied from the nearest 
available service center. The fairness criterion can be 
represented by the number of users’ demands, which 
are situated outside a radius R from the nearest 
located service center. 

Taking into account random occurrence of the 
users’ demands and limited capacity of the service 
centers, the nearest available center need not mean the 
nearest center due to possible occupancy of the 
nearest center. This situation can be modelled by 
series q1, q2, …, qr of probability values, where qk 
expresses the probability that the k-th nearest service 
center is the nearest available one. If tij denotes time 
necessary for transport of service from a possible 
service center location i to a user located at location 
j∈{1, …, n} and if bj denotes frequency of the 
demand occurrence at a user’s location j, then the 
system objective function f1(y) can be defined by (1). 

( ) { }1
1 1

min :
n r

k j k ij
j k

f q b t i
= =

= ∈y y  (1)

In formula (1), the mink operation performed on a 
set of values returns the k-minimum value from the 
set. 

The fairness criterion can be expressed by (2), see 
(Bertsimas, Farias, Trichakis, 2011, Buzna, Koháni, 
Janáček, 2013). 
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1
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n
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j
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The criteria f1 and f2 are in conflict, which means 
that a decrease in one of them is paid for by an 
increase in the other. It follows that there is no 
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optimal solution, but a usable result of the two-
criterion problem can be seen in determining such a 
set PF of solutions that satisfy clauses (3) and (4). 

( ) ( ) ( ) ( )1 1 2 2

For each ,  there exists :
 and 

PF
f f f f≤ ≤

∈ ∈x Y y
y x y x  (3)
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Such a set PF is called a Pareto front. If two 
solutions x and y satisfy (3), it is said that solution y 
dominates solution x. 

As determination of exact Pareto front demands 
extremely big portion of computational time, our 
attention is focused on approximation of the Pareto 
front by a set of noNDSS non-dominated solutions, 
which will be denoted by symbol NDSS. The used 
implementation of NDSS will be kept in the form of 
ordered sequence of feasible solutions y1, …, ynoNDSS, 
for which the following inequalities hold  f2(y1) < 
f2(y2) < ... < f2(ynoNDSS) and f1(y1) > f1(y2) > … > 
f1(ynoNDSS). Furthermore, the first and last members of 
NDSS must correspond to the first and last bordering 
members of the Pareto front, i.e. the solutions which 
have the minimal and maximal value of f2 
respectively. These properties of NDSS enable fast 
decision on arbitrary element y of Y concerning its 
suitability for improving the current approximation. 
That can be used for construction of procedure 
Update(NDSS, y), which returns the value of “true” if 
y improves the current NDSS and it returns the value 
of “false” otherwise. At the same time, the procedure 
updates NDSS inserting the admissible y. 

The procedure starts with determination of such 
k∈{1, …, noNDSS-1} that f2(yk) ≤ f2(y) and f2(y) < 
f2(yk+1). If such k does not exist, y is dominated by 
ynoNDSS and the result of the procedure is “false”. If k 
is found, then either f1(y) ≥ f1(yk) or f1(y) < f1(yk). In 
the former case, y is dominated by yk and the 
procedure returns “false”. In the latter case, y is 
included into NDSS, which can be accompanied by 
exclusion of some original members, when f1(y) < 
f1(yk+1) holds. In this case, the procedure returns the 
value of “true” and updated NDSS. 

Proximity of NDSS to PF can be measured by so-
called NDSS-Area, which is computed according to 
(5). The complementary constants f1difk and f2difk can 
be computed by (6) and (7) respectively. 

 ( )( )
1

1 2
1

-
noNDSS

k k
k

NDSS Area f dif f dif
−

=

=   (5) 
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2 2 2( ) - ( )k k

kf dif f f+= y y  (7) 

Each update of the NDSS by a new solution y is 
followed by a reduction of the NDSS-Area and the 
associated value is bounded from below the PF-Area.  

3 NEIGHBORHOOD SEARCH 
WITH TABU MOVES 

The neighbourhood search algorithm has proved to be 
a massive source of feasible solutions, which 
represent candidates for NDSS improving. In general, 
the neighbourhood of a given current solution is 
defined by a set of permitted operations, which can be 
used to modify the current solution keeping feasibility 
of the operation result. Each feasible result of a 
permitted operation is considered to be an element of 
the neighbourhood.  

The neighbourhood search algorithm comes from 
an initial solution declared as the starting current 
solution and searches element-by-element through 
the neighbourhood of the current solution. If the used 
searching strategy yields n admissible solution, then 
this solution is declared to be the new current solution 
and the neighbourhood search is continued with the 
new neighbourhood. If the opposite case occurs, the 
simple neighbourhood search algorithm terminates 
and returns the last current solution as the result. 

Various strategies can be applied to the 
neighbourhood search. The two most known ones are 
the first or best admissible strategies. The first 
admissible strategy provides the first solution found 
that is better than the current one and the best 
admissible strategy provides the best admissible 
solution of the current neighbourhood. These 
strategies can be generalized using parameters called 
MaxNos and Threshold. The parameter Threshold 
gives minimal difference between objective function 
values of the inspected and current solutions for the 
inspected solution to be considered admissible. The 
parameter MaxNos gives the number of admissible 
solutions, which must be met during the 
neighbourhood inspection to be allowed to stop the 
inspection prematurely. The best of the found 
admissible solutions is used as the new current 
solution. If the parameter Threshold equals to zero 
and the parameter MaxNos takes the value of one, 
then the associated strategy reduces to the first 
admissible strategy. If the parameter MaxNos is set to 
a bigger value than the number of the neighbourhood 
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elements, then the strategy behaves as the best 
admissible strategy. 

In this paper, we focus on the neighbourhood 
search algorithm with the generalized strategy and 
with the only one permitted operation represented by 
so called swap operation. The swap operation 
replaces one service center location i of the current 
solution ycurr by a possible service center location j, 
which is not included in the current solution. The 
resulting solution is denoted as swap(ycurr, i, j). The 
inspected solution admissibility is evaluated by the 
NDSS-Area decrease caused by insertion of the 
solution into NDSS. 

The neighbourhood search algorithm was 
embedded into the process of NDSS improvement in 
the following way. 

The process starts with NDSS consisting of 
exactly two solutions representing the border 
solutions of the exact Pareto front, i.e. the solutions 
with the minimal and maximal values of the function 
f2. Then, the process continues with selecting an 
element of the current NDSS in some order and 
applying the neighbourhood search algorithm to the 
selected solution. During the run of the algorithm, the 
NDSS is updated whenever such solution is inspected, 
which is not dominated by any solution of the current 
NDSS. This process continues until the given 
computational time limit is exceeded.  

The process in the above described form cannot 
avoid repeating the neighbourhood search algorithm 
with the same starting solution. Repeating the 
algorithm reduces the efficiency of the process 
because it only produces candidates that have already 
been inspected once. This drawback evoked an idea 
of prevent the algorithm from inspecting the series of 
current solutions, which was already inspected.  For 
the purpose, tabu approach taken from the tabu search 
approach was implemented here. Time limited 
prohibition (tabu) is imposed on both locations of the 
performed swap operation so that each possible center 
location i is connected with two time instants In(i) and 
Out(i) initialized by the value of –Exp, where Exp is 
the time of prohibition expiration. 

When swap operation i for j should be performed 
at current time t, then the clauses t – Out(i) ≥ Exp and 
t – In(j) ≥ Exp are verified. If the clauses are satisfied, 
the swap operation is performed and the attributes 
Out(i) and In(j) are updated by t. The whole process 
of NDSS improvement can be described by following 
sequence of steps. 

0. Initialize NDSS, set up the parameters 
MaxNos, Threshold, Exp and time limit T. Set 
In(i) and Out(i) at the value if –Exp for all 
possible locations and set t=0. 

1. If CPU < T then continue with the step 2, 
otherwise terminate and return the current 
NDSS. 

2. Set k=1 and continue with the step 3. 
3. If k < noNDSS, then select yk from the current 

NDSS and go to the step 4, otherwise go to 
the step 1. 

4. {Application of the neighborhood search 
algorithm to yk} Substitute yk for the current 
solution ycurr and continue with the step 5. 

5. Define set C of location not contained in ycurr 
by C = {1, …, m} – ycurr, Area0 = 
NDSS_Area, Nos = 0, BestDecrement = 0 and 
continue with the step 6. 

6. While Nos < MaxNos choose step-by-step a 
pair (i, j), where i∈ycurr and j ∈ C and  
define y = swap(ycurr, i, j). 
If Updated(NDSS, y), then compute Area1 = 
NDSS_Area, Decrement = Area0 – Area1. 
If Decrement > Threshold then perform Nos 
= Nos+1, Area0 = Area1  and if Decrement > 
BestDecrement, then set  BestDecrement = 
Decrement, ibest = i and jbest = j. 
After processing of the step 6 has finished, 
continue with the step 7. 

7. If BestDecrement > 0, then redefine ycurr = 
swap(ycurr, ibest, jbest), In(jbest) = t, Out(ibest) = t 
, t =t+1 and continue with step 5. 
Otherwise, check whether the solution at the 
k-th position of the current NDSS has 
changed. If it stays the same, set k=k+1. 
Continue with the step 3. 

4 NUMERICAL EXPERIMENTS 

This section is used to report the performed numerical 
experiments aimed at verifying the efficiency of 
suggested approach. 

4.1 Benchmarks and Solving Tools 

As far as the technical support like hardware and 
software tools is concerned, we used the 
programming language Java within the NetBeans 
IDE 8.2 environment. The experiments were run on a 
common PC equipped with the 11th Gen Intel® 
Core™ i7 1165G7 2.8 GHz CPU and 40 GB RAM. 

As the input dataset for the reported 
computational study, we made use of commonly used 
benchmarks described in (Grygar, Fabricius, 2019), 
Janáček, Fabricius, 2021, Janáček, Kvet, 2020, 
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Janáček, Kvet, 2021, Janáček, Kvet, 2022a, Janáček, 
Kvet, 2022a, Janáček, Kvet, 2022b, Janáček, Kvet, 
2022c, Kvet, Janáček, 2022), the origin of which 
comes from the road network of Slovakia, through 
which the urgent medical care is provided by the 
emergency agencies. The list of higher territorial 
units, frequently referred to as self-governing regions, 
contains Bratislava (BA), Banská Bystrica (BB), 
Košice (KE), Nitra (NR), Prešov (PO), Trenčín (TN), 
Trnava (TT) and Žilina (ZA). It must be noted that all 
network nodes represent both the set of candidates for 
service center locating and the set of inhabitants being 
provided with service. 

As the objective function f1 expressed by (1) 
follows from the concept of so-called generalized 
disutility, the parameter r was set to 3. The 
coefficients qk were set so that q1 = 77.063, q2 = 
16.476 and q3 = 100 - q1 - q2. These values were 
obtained from a simulation model the details of which 
are discussed in (Jankovič, 2016). Parameter R in the 
fair objective function described by the formula (2) 
was set to the value of 10 in accordance with previous 
experiments. 

The basic characteristics of benchmarks are 
summarized in Table 1. The column denoted by m 
reports the cardinality of the set of candidates I, from 
which exactly p center locations are to be chosen. The 
complete exact inextensible Pareto front is reported 
by two values. While the number of its elements is 
referred to by NoS, the last column of the table 
denoted by PF-Area contains the area of the complete 
Pareto front PF computed according to (5). 

Table 1: Benchmarks sizes and the exact Pareto fronts 
characteristics. 

Region m p NoS PF-Area
BA 87 14 34 569039
BB 515 36 229 1002681
KE 460 32 262 1295594
NR 350 27 106 736846
PO 664 32 271 956103
TN 276 21 98 829155
TT 249 18 64 814351
Za 315 29 97 407293

4.2 Results of Experiments 

This subsection is devoted to the results of numerical 
experiments. The experiments should reveal a 
dependence of proximity of NDSS and PF on 
expiration “time” Exp. If the value of Exp = 0, no tabu 
is imposed on the swap operations. If Exp reaches the 
value of p almost each exchange operation is 
prohibited. Therefore, we have performed the 

experiments in such a way that the parameter Exp was 
set according to the expression Exp = coeff*p. The 
coeff could vary from 0 (no tabu) to 0.8. 

Each run of the algorithm was restricted to five 
minutes of computation. This time threshold of five 
minutes was chosen on purpose to keep the 
comparability of the newly obtained results with the 
results of previously developed heuristic approaches. 
This is also the reason, why the required computation 
time is not reported in the following table. 

As far as the quality of the Pareto front 
approximation is concerned, it was necessary to find 
a suitable metric to compare two sets possibly with 
different cardinality. As mentioned in previous 
sections, a good metric is the area formed by the 
members of PF and NDSS respectively. The area can 
be computed easily by the expression (5). To avoid 
reporting and comparing high values of areas, a 
simpler coefficient called gap can be used. Generally, 
gap can be understood as a relative difference 
between two values. In our case, it can be expressed 
by (8). 

 
- -100*

-
NDSS Area PF Areagap

PF Area
−=  (8) 

The following Table 2 and Table 3 summarize the 
obtained results. Both tables keep the same structure. 
Each row corresponds to one setting of coeff, which 
is used to determine the value of Exp. Each table 
contains the results of experiments performed for half 
of benchmarks. In the tables, the values of gap are 
reported. 

Table 2: Results of numerical experiments – part 1. 

coeff Higher territorial unit 
BA BB KE NR 

0 2.075 1.373 3.031 7.485
0.1 2.005 0.535 3.490 7.483
0.2 2.203 2.483 4.622 6.249
0.3 2.257 3.168 4.607 7.543
0.4 1.485 1.794 5.481 6.218
0.5 1.468 2.906 3.535 0.649
0.6 0.334 4.535 4.004 0.749
0.7 1.699 5.807 2.972 0.764
0.8 0.416 11.449 8.090 2.695

Based on the reported results we can see that the 
suggested heuristic approach is sensitive to the 
parameters settings like many other approximate 
approaches (Janáček, Kvet, 2021, Janáček, Kvet, 
2022a, Janáček, Kvet, 2022b). On the other hand, the 
achieved values of gaps are very promising and they 
show, that the tabu search-based method is able to 
produce such a Pareto front approximation that shows 
a satisfactory level of accuracy. 
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Table 3: Results of numerical experiments – part 2. 

coeff Higher territorial unit 
PO TN TT ZA

0 3.203 4.376 0.652 2.068
0.1 3.205 4.376 0.652 2.068
0.2 3.232 4.996 0.652 0.573
0.3 3.373 3.294 0.704 1.488
0.4 3.610 4.795 0.859 0.361
0.5 0.745 3.851 1.158 0.033
0.6 4.793 5.552 0.091 0.045
0.7 14.459 0.724 0.091 0.116
0.8 19.177 1.115 0.091 0.302

5 CONCLUSIONS 

This research paper was intended to develop such 
heuristic approach to Pareto front approximation that 
incorporates the basics of tabu search principle. 
Methods for approximating the Pareto front are 
required whenever there are multiple contradictory 
objectives to be optimized simultaneously. In this 
manner, we have attempted to extend the state-of-the-
art approaches for solving bi-criteria location 
problems. 

The achieved results show that the suggested tabu 
search can produce a very precise approximation of 
the original Pareto front of service system designs in 
acceptably short computational time. Such a great 
accuracy makes it suitable for practical applications. 
Obviously, we cannot omit the sensitivity of the 
method to the parameter value. Therefore, future 
research could be aimed at finding possible ways of 
finding proper value, for which the best possible 
results could be achieved. 
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