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Abstract: This paper introduces a new neurodynamic duplex approach to address distributionally robust joint chance-
constrained optimization problems. We assume that the constraints’ row vectors are independent, and their
probability distributions belong to a specific distributional uncertainty set that is not known beforehand. Within
our study, we examine two uncertainty sets for these unknown distributions. Our framework’s key feature is the
use of a neural network-based method to solve distributionally robust joint chance-constrained optimization
problems, achieving an almost sure convergence to the optimum without relying on standard state-of-the-art
solving methods. In the numerical section, we apply our proposed approach to solve a profit maximization
problem, demonstrating its performance and comparing it against existing state-of-the-art methods.

1 INTRODUCTION

Chance-constrained programming appears with the
increased need to include uncertainty in complex
decision-making models. It was introduced for the
first time by Charnes & Cooper (Charnes and Cooper,
1959). Since then, chance-constrained optimization
has been widely studied, and the range of applications
is very large. In this paper, we are interested in solv-
ing joint chance-constrained optimization problems.
We study the case where the distribution of the ran-
dom parameters is unknown, aka distributionally ro-
bust optimization. In fact, we may only know par-
tial information about the statistical properties of the
stochastic parameters.

El Ghaoui & Lebret (El Ghaoui and Lebret, 1997)
use second-order cone programming to solve least-
squares problems where the stochastic parameters are
not known but bounded. Bertsimas & Sim (Bert-
simas and Sim, 2004) introduce a less conservative
approach to solve linear optimization problems with
uncertain data. Bertsimas & Brown (Bertsimas and
Brown, 2009) propose a general scheme for design-
ing uncertainty sets for robust optimization. Wiese-
mann et al. (Wiesemann et al., 2014) propose stan-
dardized ambiguity sets for modeling and solving
distributionally robust optimization problems. Peng
et al. (Peng et al., 2021) study one density-based

uncertainty set and four two-moments based uncer-
tainty sets to solve games with distributionally ro-
bust joint chance constraints. Cheng et al. (Cheng
et al., 2014) solve a distributionally robust quadratic
knapsack problem. Dou & Anitescu (Dou and An-
itescu, 2019) propose a new ambiguity set tailored to
unimodal and seemingly symmetric distributions to
deal with distributionally robust chance constraints.
Li & Ke (Li and Ke, 2019) approximate a distribu-
tionally robust chance constraint by the worst-case
Conditional Value-at-Risk. Hanasusanto et al. (Hana-
susanto et al., 2016) approximate two-stage distribu-
tionally robust programs with binary recourse deci-
sions. Georghiou et al. (Georghiou et al., 2020) pro-
pose a primal-dual lifting scheme for the solution of
two-stage robust optimization problems.

Recent papers have considered the use of distribu-
tionally robust approaches in transportation network
optimization problems (Dai and Yang, 2020), multi-
stage distribution system planning (Zare et al., 2018),
portfolio optimization problems (Du et al., 2021),
planning and scheduling (Shang and You, 2018), risk
measures (Postek et al., 2016), multimodal demand
problems (Hanasusanto et al., 2014), appointment
scheduling (Zhang et al., 2017), vehicle routine prob-
lems (Ghosal and Wiesemann, 2020), risk minimiza-
tion (Faury et al., 2020) and energy and reserve dis-
patch (Ordoudis et al., 2021).
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The neurodynamic system approach represents a
significant methodology for addressing optimization
problems. By employing artificial recurrent neu-
ral networks, optimization problems can be trans-
formed into dynamic systems described by first-order
differential equations. These dynamic systems are
expected to converge to static states or equilibrium
points, which correspond to the solutions of the orig-
inal optimization problems, starting from given ini-
tial points. Moreover, neural networks designed for
optimization purposes can be readily implemented in
hardware using integrated circuits, allowing for easy
deployment. Neural networks offer two compelling
advantages when applied to optimization problems:
parallel information processing and hardware imple-
mentability. Neural networks possess inherent paral-
lel processing capabilities, enabling the simultaneous
evaluation of multiple inputs and the computation of
the corresponding outputs. This parallelism facilitates
efficient and concurrent information processing, lead-
ing to faster optimization performance compared to
sequential algorithms. Additionally, neural networks
can be implemented using specialized hardware, such
as integrated circuits or dedicated processing units.
This hardware implementation leverages the parallel
nature of neural networks, further enhancing compu-
tational speed and efficiency. By utilizing hardware
resources, neural networks can be deployed in real-
time applications or embedded systems, enabling ef-
ficient and rapid optimization across various domains.
Over the past few decades, recurrent neural networks
(RNNs) have received extensive attention for solving
optimization problems. A notable early breakthrough
in this field was achieved by Hopfield and Tank in
1985 (Hopfield and Tank, 1985), where they intro-
duced a linear programming neural network specif-
ically designed for online optimization applications.
Since then, numerous RNN architectures have been
proposed to address constrained optimization prob-
lems. Xia & Wang (Xia and Wang, 2004) present a
recurrent neural network for solving nonlinear con-
vex programming problems subject to nonlinear in-
equality constraints. Wang (Wang, 1994) proposes
a deterministic annealing neural network for convex
programming. Nazemi & Omedi (Nazemi and Omidi,
2013) presents a neural network model for solving the
shortest path problems. Tassouli & Lisser (Tassouli
and Lisser, 2023) propose a recurrent neural network
to solve geometric joint chance-constrained optimiza-
tion problems.

In this paper, we introduce a novel two-timescale
duplex neurodynamic approach for distributionally
robust joint chance-constrained optimization prob-
lems, which is formulated using a biconvex reformu-

lation. Unlike other existing methods that give lower
or upper bounds to this kind of problem, the proposed
approach employs two recurrent neural networks that
operate collaboratively at two different timescales and
converge almost surely to an optimal solution value
of the given distributionally robust optimization prob-
lem. The main contributions of our work are three-
fold.

(i) On the formulation side, we reformulate the dis-
tributionally robust initial problem as a nonlin-
ear biconvex problem for each uncertainty set.
Then, we propose a duplex of two recurrent neu-
ral networks to solve the resulting problems. To
the best of our knowledge, distributionally ro-
bust joint chance-constrained optimization prob-
lems have not been addressed using dynamical
neural networks.

(ii) On the theoretical side, we show that our neu-
rodynamic duplex converges almost surely to a
global optimum of the optimization problem.

(iii) On the numerical side, we show that our neu-
rodynamic duplex gives robust solutions to the
initial problem and outperforms the state-of-the-
art solving methods.

The rest of the paper is organized as follows. In Sec-
tion 2, we study two uncertainty sets to solve a dis-
tributionally robust chance-constrained optimization
problem and give the optimality conditions of the ob-
tained deterministic programs. We propose in Section
3 a duplex of two two-timescale neurodynamic sys-
tems that converges to a global optimal solution of the
initial problem. We study the convergence analysis in
Section 4. Section 5 introduces a profit maximization
problem to evaluate the proposed approach.

2 PROBLEM STATEMENT AND
OPTIMALITY CONDITIONS

In this paper, we are interested in the optimization
problem of the form.

min
x∈IRn

+

supF0∈D0
EF0

[
ζ̃0

T
x
]
, (1)

s.t inf
F ∈D

PF

(
ζ̃kx ≤ bk,k = 1, ...,K

)
≥ α. (2)

where ζ̃0 ∈ IRn is an uncertain parameter,
[ζ̃1, ζ̃2, ...ζ̃K ]

T is a K × n set of pairwise inde-
pendent random vectors in IRn and b ∈ IRK is a
deterministic vector. We consider the case where the
probability distribution F0 of ζ̃0 belongs to a certain
uncertainty set D0 and the probability distributions
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Fk of ζ̃k, k = 1, ...,K are not completely known and
belong to Dk. Thus, we take the worst-case where
constraints (2) are jointly satisfied for all possible
distributions in a given distributional uncertainty
set D with a given probability level α. Based on
the pairwise independence between the vectors
(ζ̃k)k∈{1,..,K}, we introduce nonnegative auxiliary
variables zk, k = 1, ...,K and rewrite constraint (2) as

inf
Fk∈Dk

PFk

(
ζ̃kx ≤ bk

)
≥ α

zk ,k = 1, ...,K (3)

K

∑
k=1

zk = 1, (4)

zk ≥ 0,k = 1, ...,K. (5)

In this section, we propose two uncertainty sets
to solve (1)-(2) using two moments-based uncertainty
sets to define Dk, k = 1, ...,K.

We first assume that we know the mean vector µk
and the covariance matrix Σk of ζ̃T

k . We define for
every k = 0,1, ...,K

D1
k (µk,Σk) =

{
Fk

∣∣∣∣ E[ζ̃T
k ] = µk

E[(ζ̃T
k −µk)(ζ̃

T
k −µk)

T ] = Σk

}
,

where Fk is a probability distribution of ζ̃T
k . In this

case, we have the following deterministic reformula-
tion for the distributionally robust joint chance con-
straint (2) in (Cheng et al., 2014).

µT
k x+

√
αzk

1−αzk
||Σ

1
2
k x|| ≤ bk,k = 1, ...,K (6)

K

∑
k=1

zk = 1, (7)

zk ≥ 0,k = 1, ..,K. (8)

We obtain the following deterministic equivalent
problem for (1)-(2).

min µT
0 x, (9)

s.t. µT
k x+

√
αzk

1−αzk
||Σ

1
2
k x|| ≤ bk,k = 1, ...,K(10)

K

∑
k=1

zk = 1,x ≥ 0, (11)

zk ≥ 0,k = 1, ..,K. (12)

Lemma 1. The function z 7→
√

αz

1−αz , with 0 < α < 1
is convex ∀z > 0.

Proof. Let z > 0 and 0 < α < 1, we have
√

αz

1−αz =

exp
{ 1

2 (zlog(α)− log(1−αz))
}

. We have z 7→ αz is
a convex function and the function z 7→ log(1 − z)
is non-increasing and concave, there follows that
z 7→ log(1 − αz) is concave. We have that z 7→

1
2 (zlog(α)− log(1−αz)) is convex as an addition of
two convex functions. Furthermore, z 7→ ez is a non-
increasing convex function. Then we conclude that
z 7→ exp

{ 1
2 (zlog(α)− log(1−αz))

}
is convex.

Corollary 2. Problem (9)-(12) is biconvex on (x,z)

Now we consider that the mean of ζ̃k lies
in an ellipsoid of size γk1 ≥ 0 with center µk

and that the covariance matrix of ζ̃k lies in a
positive semidefinite cone of center Σk. We
define for every k = 0,1, ...,K, D2

k (µk,Σk) ={
Fk

∣∣∣∣ (EFk [ζ̃
T
k ]−µk)

T Σ
−1
k (EFk [ζ̃

T
k ]−µk)≤ γk1

COVFk(ζ̃
T
k )⪯ γk2Σk

}
,

where γk2 ≥ 0 and COVFk is a covariance operator
under probability distribution Fk. The deterministic
reformulation for the distributionally robust joint
chance constraint (2) in this case is given in (Peng
et al., 2021) as follows.

µT
k x+(

√
αzk

1−αzk

√
γk2 +

√
γk1)||Σ

1
2
k x|| ≤ bk, (13)

k = 1, ...,K, (14)
K

∑
k=1

zk = 1, (15)

zk ≥ 0,k = 1, ..,K. (16)

We can formulate the objective function as (Liu et al.,
2022)

min
x∈IRn

+

µT
0 x+

√
γ01||Σ

1
2
0 x||. (17)

The constraints set (14) is biconvex and the objective
function (17) is convex.
To study the optimality conditions of the robust joint
chance-constrained problem. We give the equivalent
deterministic problem for each uncertainty set in a
general form as follows.

min f (x), (18)
s.t. gk(x,z)≤ 0,k = 1, ...,K, (19)

h(z)≤ 0, (20)
l(x)≤ 0, (21)

where,

f (x) =

{
µT

0 x, if Dk = D1
k

µT
0 x+

√
γ01||Σ

1
2
0 x||, if Dk = D2

k

h(z) =
( K

∑
k=1

zk − 1,1 −
K
∑

k=1
zk,−z1,−z2, ...,zK

)T ,

l(x) =−x and

gk(x,z)=


µT

k x+
√

α
zk

1−α
zk ||Σ

1
2
k x||−bk, if Dk = D1

k

µT
k x+(

√
α

zk
1−α

zk

√
γk2 +

√
γk1)||Σ

1
2
k x||−bk,

if Dk = D2
k
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Definition 1. Let U the feasible set of (18)-(21), we
define Ux = {z | gk(x,z)≤ 0,h(z)≤ 0,k = 1, ...,K}
and Uz = {x | gk(x,z)≤ 0, l(x)≤ 0,k = 1, ...,K}.
(x∗,z∗) is a partial optimum of (18)-(21) if
f (x∗)≤ f (x), ∀x ∈ Uz∗ .

Definition 2. Let U the feasible set of (18)-(21) and
(x∗,z∗) ∈ U. If there exists β(1), β(2), γ and λ such
that (x∗,z∗) verifies

∇x f (x)+β
(1)T

∇xg(x,z)+λ
T

∇xl(x) = 0, (22)

λ ≥ 0,λT l(x) = 0,β(1) ≥ 0,β(1)T
g(x,z) = 0, (23)

β
(2)T

∇zg(x,z)+ γ
T

∇zh(z) = 0, (24)

β
(2) ≥ 0,β(2)T

g(x,z) = 0,γ ≥ 0,γT h(z) = 0, (25)

where g(x,z) = (g1(x,z), ...,gK(x,z)) and (x)+ =
max(0,x). Then (x∗,z∗) is called a partial KKT point
of (18)-(21).

Theorem 3. The partial KKT system (22)-(25) is
equivalent to the following system

∇x f (x)+∇xg(x,z)T (β(1)+g(x,z))++∇xl(x)(λ+ l(x))+ = 0

∇zg(x,z)T (β(2)+g(x,z))++∇zh(z)T (γ+h(z))+ = 0

(β(1)+g(x,z))+−β(1) = 0

(β(2)+g(x,z))+−β(2) = 0 (26)

(λ+ l(x))+−λ = 0
(γ+h(z))+− γ = 0

Proof. By (β(1)+g(x,z))+ = β(1) and (λ+ l(x))+ =
λ, we have(

∇x f (x)+∇xg(x,z)T (β(1)+g(x,z))++

∇xl(x)(λ+ l(x))+ = 0
)

⇔(
∇x f (x)+β

(1)T
∇xg(x,z)+λ

T
∇xl(x) = 0

)
.

We obtain the equation (25) of the partial KKT sys-
tem.

Furthermore, observe that

• (β(1)+g(x,z))+−β(1) = 0 if and only if β(1) ≥ 0,
g(x,z)≤ 0 and β(1)T

g(x,z) = 0,
• (λ+ l(x))+−λ = 0 if and only if λ ≥ 0, l(x)≤ 0

and λT l(x) = 0,

which leads to the equation (23) of the partial KKT
system. We obtain the remaining equations following
the same lines. The converse part of the theorem is
straightforward.

Definition 3. Let (x∗,z∗) a feasible point of (18)-(21).
If x∗ ≥ 0, h(z∗) ≤ 0 and there exists (x̄, z̄) such that
g(x∗, z̄) ≤ 0 and g(x̄,z∗) ≤ 0, then (18)-(21) satisfies
partial Slater constraint qualification at (x∗,z∗).

The following theorem gives the optimality condi-
tions of problem (18)-(21).

Theorem 4. If partial Slater constraint qualification
hold for (18)-(21) at (x∗,z∗), then (x∗,z∗) is a partial
optimum of (18)-(21) if and only if (x∗,z∗) is a partial
KKT point of (18)-(21). Furthermore, if β(1) = β(2)

then (x∗,z∗) is a KKT point of (18)-(21).

Remark 5. The proof of Theorem 4 follows the lines
of Theorem 1 in (Shen et al., 2020).

3 A NEURODYNAMIC DUPLEX

Based on the system (26), we propose a duplex of two
two-time-scale recurrent neural network models for
solving (18)-(21). Every recurrent neural network of
the duplex is driven by the following ODE system.

κ1
dx
dt

=−(∇x f (x)+∇xg(x,z)T (β+g(x,z))+

+∇xl(x)(λ+ l(x))+), (27)

κ2
dz
dt

=−(∇zg(x,z)T (β+g(x,z))+

+∇zh(z)T (γ+h(z))+), (28)

κ2
dβ

dt
=−β+(β+g(x,z))+, (29)

κ2
dλ

dt
=−λ+(λ+ l(x))+. (30)

κ2
dγ

dt
=−γ+(γ+h(z))+. (31)

where (x,z,β,γ,λ) are now time-dependent variables
and κ1 and κ2 are two time scaling constants with
κ1 ̸= κ2. We consider a duplex of two two-time-scale
recurrent neural network (27)-(31) RNN1 and RNN2
for solving (18)-(21) one with κ1 > κ2 and the sec-
ond with κ1 < κ2 as shown in Figure 1. The zoom on
RNN1 shows the circuit implementation of a single
two-timescale recurrent neural network (27)-(31).

Theorem 6. (x∗,z∗,β∗,γ∗,λ∗) is an equilibrium point
of (27)-(31) if and only if (x∗,z∗) is a KKT point
of (18)-(21) and β∗,γ∗ and λ∗ are the associated La-
grange variables.

Proof. (x∗,z∗,β∗,γ∗,λ∗) is an equilibrium point of
(27)-(31) if and only if dx

dt = 0, dz
dt = 0, dβ

dt = 0, dλ

dt = 0
and dγ

dt = 0, we obtain system (26). By Theorems 3
and 4 the conclusion follows.
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Figure 1: A block diagram depicting a duplex neurodynamic system with a two-timescale configuration.

We describe the working process of the neurodynamic
duplex as follows:
First, the state variables of the neurodynamic models
are initialized. Then, each model undergoes a precise
local search based on its dynamics for the optimiza-
tion process. Once all neurodynamic models have
converged to their equilibria, the initial states of the
recurrent neural networks are optimized using the up-
dating rule of particle swarm optimization (PSO). We
denote yi =(yi1, ...,yin)

T the position of the ith particle
and vi = (vi1, ...,vin)

T its velocity. The inertia weight
w ∈ [0,1] determines the degree to which the parti-
cle’s previous velocity is retained. The best previous
position yielding the maximum fitness value for the ith

particle is denoted as ỹi = (ỹi1, ..., ỹin)
T , and the best

position yielding the maximum fitness value in the
swarm is represented by ŷ = (ŷ1, ..., ŷn)

T . The initial
state of each neurodynamic model is updated using
the PSO updating rule given by (Clerc and Kennedy,
2002), i.e,

vi( j+1) = wvi( j)+ c1r1(ỹi − yi( j))+ c2r2(ŷi − yi( j)),
(32)

yi( j+1) = yi( j)+ vi( j+1). (33)

where the iterative index is represented by j, while the
two weighting parameters are denoted as c1 and c2. r1
and r2 represent two random values drawn from the
interval [0,1].

The diversity of initial neuronal states plays a crit-
ical role in achieving global optimization. Introduc-
ing a mutation operator, which generates a random

yi( j+1), can enhance the diversity of initial neuronal
states. To quantify the diversity of these states, we use
the following function

d =
1
n

n

∑
i=1

∥yi( j+1)− ŷ( j)∥. (34)

We use wavelet mutation operator from (Ling et al.,
2008) and performing for the ith particle if d < ζ as
follows

yi( j+1) =

{
yi( j)+µ(hi − yi( j)) , ρ > 0
yi( j)+µ(yi( j)− li) , ρ < 0

(35)

where hi and li are the upper and the lower bound for
yi, respectively. ζ > 0 is a given threshold and ρ is
defined using a wavelet function

ρ =
1√
a

e−
φ

2a cos(5
φ

a
) (36)

As the value of ρ goes to 1, the mutated element
of the particle will move towards the maximum value
of yi( j + 1), whereas is close to -1, the mutated el-
ement goes towards the minimum value of xi( j+ 1).
The magnitude of |ρ| determines the size of the search
space for xi( j + 1), with larger values indicating a
wider search space. Conversely, smaller values of
|µ| lead to a smaller search space for fine-tuning. To
achieve fine-tuning, the value of the dilation param-
eter a is adjusted based on the current number of it-
erations j relative to the total number of iterations T .
Specifically, a is a function of j/T , we take a = e10 j

T .
We generate φ randomly from [−2.5a,2.5a].
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The algorithm details are given in Algorithm 1
where y = (x,z,β,γ).

Algorithm 1: The neurodynamic duplex.

- Let y1(0) and y2(0) be randomly generated in the
feasible region.
- Let ỹ(0) = ŷ(0) = y(0) the initial best previous
position and best position, respectively.
-Set the convergence error ε.
while ||y( j+1)− y( j)|| ≥ ε do

Compute the equilibrium points ȳ1( j) and ȳ2( j)
of RNN1 and RNN2 based on (27)-(31).
if f (x̄1( j))< f (x̃( j)) then

ỹ( j+1) = ȳ1( j)
else

ỹ( j+1) = ỹ( j)
end if
if f (x̄2( j))< f (x̃( j)) then

ỹ( j+1) = ȳ2( j)
else

ỹ( j+1) = ỹ( j)
end if
if f (x̃( j))< f (x̂( j)) then

ŷ( j+1) = ỹ( j+1)
else

ŷ( j+1) = ŷ( j)
end if
Compute the value of y( j + 1) following (32)-
(33).
if d < ζ then

Perform the wavelet mutation (35).
end if
j=j+1

end while

4 CONVERGENCE ANALYSIS

Lemma 7. (Uryasev and Pardalos, 2013) Suppose
that the objective function f is measurable, and the
feasible region U is a measurable subset, and for any
Borel subset B of U with positive Lebesgue measure

we have
∞

∏
k=1

(1−Pk(B)) = 0. Let {y(k)}∞

k=1 be a se-

quence generated by a stochastic optimization algo-
rithm. If { f (y(k))}∞

k=1 is a nonincreasing sequence,
then it converges in probability to the set of global
optimal solutions.

Theorem 8. If the state of the following neurody-
namic model with a single timescale

κ
dx
dt =−

(
∇x f (x)+∇xg(x,z)T (β+g(x,z))++∇xl(x)(λ+ l(x))+

)
,

κ
dz
dt =−

(
∇zg(x,z)T (β+g(x,z))++∇zh(z)T (γ+h(z))+

)
,

κ
dβ

dt =−β+(β+g(x,z))+,

κ
dλ

dt =−λ+(λ+ l(x))+. (37)

κ
dγ

dt =−γ+(γ+h(z))+.

converges to an equilibrium point, then the state of
a neurodynamic model with two timescales, as de-
scribed by equations (27)-(31), globally converges to
a partial optimum of problem (18)-(21).

Proof. The Lagrangian function of problem (18)-(21)
is given by

L(x,z,β,λ,γ) = f (x)+β
T g(x,z)+ γ

T l(x)+λ
T h(z).

As an equilibrium point of (37) corresponds to a KKT
point (x∗,z∗,β∗,λ∗,γ∗) of (18)-(21) (Xia and Wang,
2004) verifying

∇xL(x∗,z∗,β∗,λ∗,γ∗) = 0, (38)
∇zL(x∗,z∗,β∗,λ∗,γ∗) = 0, (39)
∇βL(x∗,z∗,β∗,λ∗,γ∗) = 0, (40)

∇γL(x∗,z∗,β∗,λ∗,γ∗) = 0, (41)
∇λL(x∗,z∗,β∗,λ∗,γ∗) = 0, (42)

β
∗T g(x∗,z∗) = 0,β∗ ≥ 0, (43)

γ
∗T l(x∗) = 0,γ∗ ≥ 0. (44)

λ
∗T h(z∗) = 0,λ∗ ≥ 0. (45)

We fix x∗ and take z∈U∗
x , problem (18)-(21) becomes

convex, we have

L(x∗,z∗,β∗,λ∗,γ∗)≤ L(x∗,z,β∗,λ∗,γ∗),

which leads to
f (x∗)+β∗T g(x∗,z∗)+λ∗T h(z∗)≤

f (x∗)+β∗T g(x∗,z)+λ∗T h(z).
As λ∗T l(x) ≤ λ∗T l(x∗) = 0, γ∗T h(z) ≤ γ∗T h(z∗) = 0
and β∗T g(x∗,z) ≤ β∗T g(x∗,z∗) = 0 from the KKT
conditions, then f (x∗) ≤ f (x) and this for every z ∈
U∗

x . By Definition 2, we have that x∗ is a partial opti-
mum of (18)-(21).

Theorem 9. If the state of the two-timescale neuro-
dynamic model (27)-(31) converges to a partial opti-
mum, the initial states and time constants of the two
neurodynamic models are different. Then, the duplex
of two two-timescale neural networks in Figure 1 sys-
tem is globally convergent to a global optimal solution
of problem (18)-(21).

Proof. By Theorem 4, the two-timescale neurody-
namic models RNN1 and RNN2 are proven to con-
verge to a partial optimum. From Algorithm 1, the
solution sequence is generated as follows
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{
ŷ( j+1) = ỹ( j+1) if f (x̃( j))< f (x̂( j)),
ŷ( j+1) = ŷ( j) else.

We observe that the generated solution sequence
{ f (ŷ( j))}∞

j=1 is monotonically increasing.
Let Mi, j be the supporting set of the initial state

of RNNi at iteration j. As indicated by equation (35),
the mutation operation ensures that the initial states
of the RNNs are forced to be in the feasible region U.
Hence, for every iteration index J ≥ 1, the supporting
sets fulfill the following condition

U ⊆ M =
J⋃

j=1

2⋃
i=1

Mi, j. (46)

We have v(U) = v(M )> 0. By Lemma 7, we have

lim
j−>∞

P(ŷ( j) ∈ Φ) = 1 (47)

where Φ is the set of the global optimal solutions of
(18)-(21). The conclusion follows.

5 NUMERICAL EXPERIMENTS

To evaluate the performance of our approach, we con-
sider a standard profit maximization problem. A man-
ufacturing firm produces n products with N different
machines. The times required to manufacture each
unit are random variables. The mean vector µ j and
the covariance matrix Σ j describing the uncertainty
sets of the time vector t j =

{
ti j
}

1≤i≤n, where ti j is
the time required to manufacture one unit of each of
product i using machine j and the daily capacity of
each machine j given by b j are given. The objective
of the study is to determine the daily number of units
to be manufactured for each product without exceed-
ing the available machining times. We write our ro-
bust joint chance-constrained maximization problem
as follows.

min
x≥0

supF0∈D0
−E[c̃T x], (48)

s.t. inf
F ∈D

P

(
n

∑
i=1

ti jxi ≤ b j, j = 1, ...,N

)
≥ p,(49)

where vector c̃ is a random variable and corresponds
to the profit per unit for each product, ti j is the time
required to manufacture one unit of product i using
machine j, b j is the time capacity of machine j, p is
a given probability level, D0 is an uncertainty set for
the distribution F0 of c̃ and D is an uncertainty set for
the distribution F of the random variables.

All the algorithms in this Section are imple-
mented in Python. We run our algorithms on In-
tel(R) Core(TM) i7-10610U CPU @ 1.80GHz. The

random instances are generated with numpy.random,
and we solve the ODE systems with solve ivp of
scipy.integrate. The deterministic equivalent pro-
grams are solved with the package gekko and the gra-
dients and partial derivatives are computed with au-
tograd.grad and autograd.jacobian. For the follow-
ing numerical experiments, the values of µ j and c̄ the
mean of c̃ are uniformly generated in [2.0,4.0], the
components of the matrix Σ j are uniformly drawn in
the interval [1.0,3.0] and we generate the values of b j
uniformly in [50.0,60.0], γk1 = 5 and γk2 = 5.

The resulting deterministic equivalent problems of
(48)-(49), where the uncertainty sets are D1 and D2

are given respectively by

min −c̄T x,

s.t. µT
j x+

√
pz j

1− pz j
||Σ

1
2
j x|| ≤ b j, j = 1, ...,N,

N

∑
j=1

z j = 1,

x ≥ 0,z j ≥ 0, j = 1, ...,N,

and

min −c̄T x,

s.t. µT
j x+

(√
pz j

1−pz j
√

γk2 +
√

γk1

)
||Σ

1
2
j x|| ≤ b j, j = 1, ...,N,

N

∑
j=1

z j = 1,

x ≥ 0,z j ≥ 0, j = 1, ...,N,

5.1 The Neurodynamic Duplex vs.
Convex Approximations

Cheng et al. (Cheng et al., 2014) propose two con-
vex approximations to solve problem (48)-(49). A
linear approximation that gives an upper bound to the
minimization problem and a tangent approximations
that leads to a lower bound. In this first subsection,
we compare the objective value obtained using the
neurodynamic duplex with those obtained using the
linear and the tangent approximations. We compute
the gap between the two bounds and the global opti-
mum given by the neurodynamic duplex by GAP =
Boundlower, upper−ND

Boundlower, upper
, where Boundlower is the value of

the lower bound, Boundupper is the value of the upper
bound, and ND is the value obtained using the neuro-
dynamic duplex. We recapitulate the obtained results
in Table 1. Column one gives the value of the confi-
dence parameter p. Column two gives the final value
of the neurodynamic duplex. Columns three and four
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Table 1: Results for different values of p for D1(µ,Σ).

p Neurodynamic duplex Tangent approximation Linear approximation
Obj value Obj value GAP Obj value GAP

0.95 -36.25 -36.41 0.43% -36.20 -0.13%
0.9 -40.48 -40.51 0.07% -40.46 -0.04%
0.8 -45.30 -45.41 0.24% -45.22 -0.17%
0.7 -47.31 -47.38 0.14% -47.28 -0.06%
0.6 -48.09 -48.13 0.08% -48.07 -0.06%

Table 2: Results for different values of n and N for D1(µ,Σ).

n N Neurodynamic duplex Tangent approximation Linear approximation
Obj value Obj value GAP Obj value GAP

7 4 -22.86 -22.97 0.47% -22.77 -0.39%
10 5 -22.51 -22.65 0.61% -22.44 -0.31%
15 10 -21.36 -21.61 1.15% -20.82 -2.59%
20 15 -21.28 -21.78 2.29% -20.93 -1.67%
25 20 -19.79 -20.78 4.67% -19.01 -4.10%

show the lower bound and its gap with the neurody-
namic duplex, respectively. Finally, columns five and
six present the upper bound and the gap with the neu-
rodynamic approach. We observe that the final value
obtained with the dynamical duplex remains between
the two bounds for the different values of p with
gaps less than 0.5%, demonstrating that the neuro-
dynamic approach effectively converges to the global
optimum. Moreover, we remark that as p increases,
the value of the objective function increases which is
coherent since lower values of p induce larger risk
area.

5.2 The Distributionally Robust
Optimization Approach vs.
Stochastic Optimization Approaches

To evaluate the robustness of the proposed duplex for
the two uncertainty sets D1 and D2, we addition-
ally solve problem (48)-(49) when the random vari-
ables follow uniform and normal distributions and
p = 0.95. We compare the solution of our proposed
distributionally robust approach with the solution of
the stochastic programming approach. We gener-
ate 100 instances for (ti j)1≤I≤n,1≤ j≤N using the mean
vectors and the covariance matrix when the true dis-
tribution of the stochastic variables is one of the five
following distributions: uniform distribution, normal
distribution, log-normal distribution, logistic distribu-
tion and Gamma distribution. We calculate the num-
ber of times when the constraints were violated over
the 100 generated scenarios for each stochastic and
robust solutions. Table 3 recapitulates the obtained
results, where column one gives the true distribution,
columns two, three, four and five give the number

of violated scenarios for the solution obtained using
the uniform approach, the normal approach, the first
robust approach and the second robust approach, re-
spectively. The relative expected profit is computed
relatively to the value achieved by the solution of the
stochastic program with uniform distribution.

We observe that the distributionally robust ap-
proaches are more conservative compared to the
stochastic approaches. We invest between 4.3% and
12.2% of the expected profit in order to ensure the
joint constraint. In fact, the average number of vio-
lated scenarios for the robust approaches are 0 while
the numbers of violated scenarios for the stochastic
solutions are significant, i.e., when Gamma is the true
distribution of the random variables, the average num-
ber of the violated scenarios are 24 and 9 for the uni-
form and the normal solutions, respectively.

6 CONCLUSION

This paper studies a distributionally robust joint-
constrained optimization problem for two different
moments-based uncertainty sets. We propose a two-
timescale neurodynamic duplex to solve the distribu-
tionally robust problems. We prove that the proposed
approach converges almost surely to a global opti-
mum. Finally, we use our method to solve a problem
of profit maximization. We evaluate the performances
of the neurodynamic duplex by comparing it to the
state-of-the-art solving methods.

A key advantage of this research is its capability
to solve distributionally robust joint-constrained pro-
grams without relying on convex or linear approxima-
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Table 3: Number of violated scenarios for the stochastic and the robust solutions.

Stochastic solutions Robust solutions
Uniform Normal D1(µ,Σ) D2(µ,Σ)

Relative expected profit -0% -0.5% -4.3% -12.2%
Number Uniform distribution 2 0 0 0
of Normal distribution 8 5 0 0
violated Log-normal distribution 15 6 0 0
scenarios Logistic distribution 23 5 0 0

Gamma distribution 24 9 0 0

tion techniques. The results reveal that our approach
outperforms some existing state-of-the-art methods.
Furthermore, our method effectively covers the risk
area by generating robust solutions, thus ensuring re-
liable outcomes in uncertain scenarios.

However, it is crucial to acknowledge that the
current iteration of the algorithm is time-consuming,
primarily due to the iterative solutions required by
the dynamical differential system that describes the
model. Nonetheless, there are opportunities to en-
hance both the efficiency and quality of the algorithm
through further research and development efforts.
One potential approach to improve the algorithm is
to implement artificial intelligence techniques, such
as neural networks or reinforcement learning, in the
Ordinary Differential Equation (ODE) solvers. By
incorporating these AI techniques, there is a possi-
bility to enhance the speed and accuracy of solving
the dynamical differential system. Furthermore, other
computational techniques, such as parallel comput-
ing, GPU acceleration, or distributed computing, can
be leveraged to further reduce the execution time of
the algorithm. These techniques can make use of ad-
vancements in hardware to process computations in
parallel, leading to significant time savings in solving
the system.
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