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Abstract: The need to protect sensitive business and personal information while adhering to data protection regulations,
along with the exponential growth of digital data, presents a significant challenge. Data sovereignty addresses
this challenge by focusing on safeguarding data across different domains, such as business and healthcare.
This objective is accomplished through the specification of Usage Control policies, implementation of data
anonymization techniques, and enhancement of policy enforcement in distributed systems. In this work we
present a data sovereignty solution that enhances the capabilities of the XACML framework within a data
sharing ecosystem. When this solution is realized, the data providers can benefit from dynamic enforcement
of Multiparty Computation (MPC) by specifying MPC-enabling policies. Following this approach, the data
providers who seek to collaboratively compute a function over their inputs while keeping those inputs private
can enforce MPC by specifying a corresponding policy at runtime. Resulting in heightened security and
privacy preservation, our solution motivates data providers to engage in data sharing.

1 INTRODUCTION

As companies develop innovative business strategies
for data monetization, it becomes crucial for them to
not only safeguard their confidential business infor-
mation but also address privacy concerns when deal-
ing with personal data (Parvinen, 2020). Further,
there is a growing trend in leveraging AI to study ag-
gregated health data, leading to advancements in pa-
tient treatment and care.

While this practice of data sharing has become
an integral aspect of business and research endeav-
ors, public opinion tends to be sympathetic toward
data sharing as long as privacy protection measures
are in place (Kalkman et al., 2022). This presents
a unique challenge of balancing data-driven insights
against privacy preservation.

According to GDPR, data is of personal nature
if it contains information that can directly or indi-
rectly identify a data subject (European Parliament
and Council of European Union, 2016). Privacy En-
hancing Technologies (PETs) have been developed
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to help individual users control the amount of per-
sonal information they disclose in an online transac-
tion (Seničar et al., 2003) and therefore, they are suit-
able tools to enforce GDPR requirements. Notably, it
is because these technologies have undergone signifi-
cant improvements in recent years.

In this context, PETs denote a set of technical so-
lutions that assure the privacy of the individuals as
well as supporting companies in complying to the
data protection regulations. By the nature of PETs,
data may, for example, be encrypted and anonymized
and thus no longer falls under the GDPR (Veeningen
et al., 2018; Thapa and Camtepe, 2021). There are
still requirements to be met in order to fully comply
with GDPR. These encompass pseudonymizing data,
minimizing data collection, and providing data trans-
fer in a secure and compliance-friendly way (Thapa
and Camtepe, 2021). Multiparty Computation offers
a means of achieving these goals. It guarantees pri-
vacy by distributing computation among parties and
employing cryptographic protocols to ensure both the
accuracy and confidentiality of the computation.

Yet, data providers shall be empowered to adjust
the conditions under which their data is used. A
comprehensive design for a data provision platform
should offer the means to define and ascertain these
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conditions. For instance, data providers might ex-
press the need to deny access to their data at any given
moment, or to only allow data usage within Europe
and only for an specific time interval. Moreover, data
providers shall be able to demand for a set of obliga-
tions. They may require their data to be anonymized
before sharing and be deleted after utilization.

In this work, we present an extended Usage Con-
trol architecture that can evaluate such policies that
explicitly demand to enforce Multiparty Computation
(MPC) as a prominent example of PET (Garrido et al.,
2022). The data providers who are willing to con-
tribute their data to computations while preserving
their privacy can effortlessly specify MPC-enabling
policies. Our proposed architecture ensures the effec-
tive enforcement of these policies, thereby addressing
their demands.

2 BACKGROUND

2.1 Data Sovereignty

Data Sovereignty is generally defined as “a natural
person’s or corporate entity’s capability of being en-
tirely self-determined with regard to its data” (Otto
et al., 2017; Zrenner et al., 2019). That is, both
individuals with privacy concerns and business data
providers that want to keep control of their valuable
data benefit from a realization of Data Sovereignty.

In order to implement Data Sovereignty, a Us-
age Control architecture is necessary. According to
Pretschner et al. a Usage Control architecture can ei-
ther entirely inhibit the utilization of the data or ap-
ply modifications, and execute the required actions
(Pretschner et al., 2008). Building upon this founda-
tion, Jung et al. describe a Usage Control architecture
based on the XACML model (Jung et al., 2022; OA-
SIS Standard, 2013). This architecture, as illustrated
in Figure 1, includes several components that work
together to enforce Usage Control policies and is the
basis of our work.

A Policy Enforcement Point (PEP) monitors and
intercepts data flows and asks a Policy Decision Point
(PDP) how to handle the data. Are there any policies
restricting the use of the data, subject to specific con-
ditions being met? Are there any policies demanding
further modifications (e.g., filtering) of the data?

A PDP evaluates the policies that are stored in a
repository (known as Policy Retrieval Point (PRP))
based on the information taken from Policy Informa-
tion Points (PIPs). Consequently, the PDP provides
the PEP with the data treatment decision; in addi-
tion, it may invoke Policy Execution Points (PXPs)

Figure 1: Usage Control Communication Flow.

for executing further obligations (e.g., sending a no-
tification to the data provider when the data usage is
allowed). Obligations refer to the extra value that Us-
age Control adds to the Access Control. After all, a
Policy Management Point (PMP) manages these com-
ponents. Lauf et al. implement this architecture and
offer a solution in a scenario that involves medical
data (Lauf et al., 2022). They provide patients with
three different levels of agreement (i.e., broad con-
sent, vicarious contract, and constrain provision for
a project). By reconfiguring their individual policies,
patients can control their personal medical data.

Ultimately, Usage Control policies play a pivotal
role in the realization of Data Sovereignty. Policies
are often represented in the form of event-condition-
action rules, in which a specific event, in a particu-
lar situation, triggers a specific action. According to
Singh et al., actions tend toward three categories: re-
configuration, message production, and policy man-
agement. Therefore, state changes can alter the set of
active policies (Singh et al., 2014). For instance, one
can define a context-aware policy as follows: ”During
a medical emergency situation, the sensitive health
data shall be provided without restrictions, but once
the emergency situation is over, the data can only be
used for research purposes.”

Depending on the scenarios and the preferences of
data providers, policies may become more complex.
These policies may not only permit or deny data usage
in different situations, but they may also require data
filtering and anonymization.

2.2 Multiparty Computation

Secure Multiparty Computation (MPC) is a crypto-
graphic protocol that enables m parties, each party
owning a secret xi, to compute a function f (x1, ...,xm)
collaboratively while preserving the privacy of their
individual inputs. This has been initially introduced
by Yao and has been extended by Goldreich et al.,
who proposed the multiparty component (Yao, 1982;
Goldreich et al., 1987).
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Figure 2: Extended XACML-based architecture to enforce MPC policy.

It utilizes advanced cryptographic techniques to
ensure that no party gains knowledge about the pri-
vate inputs of others. By distributing the computation
across multiple parties, MPC allows for joint analy-
sis of sensitive data without compromising privacy.
Thus, it comes as no surprise that Deng et al. promote
MPC as a countermeasure against linkability and los-
ing confidentiality (Deng et al., 2011).

Today, a multitude of MPC implementations are
available, including the EMP-toolkit (Wang et al.,
2016) and MP-SPDZ (Keller, 2020) which are pub-
licly available.

MPC has gained significant attention in the field of
privacy-preserving computation and secure data anal-
ysis. It has applications in various domains, including
financial transactions, healthcare data analysis, col-
laborative machine learning, and more.

For example, Kumar et al. introduce a solution
in which the patients’ data can be shared with hospi-
tals in encrypted format, so that a proper diagnosis is
found (Kumar et al., 2020). The goal is to preserve
privacy of the patients while providing them the best
possible treatments.

Agahari et al. present an application of MPC in
business-to-business data sharing (e.g., in the auto-
motive sector) (Agahari et al., 2022). They imple-
ment MPC as part of a data marketplace and show
that using MPC can provide better control over data,
lower the need for trust in other actors involved, and
reduce competitiveness risks. They emphasize how
MPC affects the companies’ decision to share or not
sharing data. However, in their work, the specification

of MPC enforcement is static.
Similarly, Koch et al. propose a privacy-

preserving data marketplace (Koch et al., 2022a).
There, MPC is leveraged to enable data consumers
evaluate expressive functions on a set of data. In ad-
dition, data providers can selectively authorize spe-
cific computations by setting corresponding policies.
Analogous to the aforementioned solution, the poli-
cies shall be pre-defined and linked to the data upon
its registration with the broker.

3 POLICY-DRIVEN
ARCHITECTURE FOR
ENFORCING MPC

In this section, we present an architecture that allows
reconfiguration of policies at runtime in order to en-
force MPC in a digital ecosystem. Koch et al. define
a digital ecosystem as a socio-technical system con-
necting multiple, typically independent providers and
consumers of assets for their mutual benefit (Koch
et al., 2022b).

In an ecosystem, digital platforms provide digi-
tal services. An example of a digital ecosystem ser-
vice is the provision of statistical data. This service
involves collecting data from various providers, per-
forming functions such as summation or averaging,
and delivering the results to data consumers. In this
work, we enhance the architecture of a platform that
provides such a service to allow the data providers
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to keep control over their data. They can store their
data and the corresponding policies on their own sites
while utilizing MPC for securely performing the re-
quested calculation.

In this work, we present two possibilities to en-
force MPC:

• Finite delay and Modification. A PIP wraps the
MPC Service and performs the MPC computation
synchronously. The PDP waits until the computa-
tion is over. The Modification mechanism is used
to replace the original confidential value with the
PIP result.

• Execution of Action. A PXP wraps the MPC Ser-
vice and performs the MPC computation asyn-
chronously. The result will be provided to the
platform as soon as it is ready.

Figure 2 shows an overview of our proposed
XACML-based architecture, to enforce MPC. In the
scenario shown, we have a user who has the role of a
data consumer in a digital ecosystem. Moreover, we
have N data providers , each of whom can provide a
specific piece of information. When a request is made
by the user, the platform knows which providers to
contact. These providers, however, do not know each
other. Their MPC services will only obtain the infor-
mation about the other involved parties of the plat-
form if they configure a policy to allow data sharing
under the condition of performing MPC.

Every data provider who wants to enforce Usage
Control policies must have a policy repository and
also requires a PDP component for the policy eval-
uation. In addition, each data provider must imple-
ment at least one PEP that can intercept the data flow
and enforce the Usage Control decisions. After these
components are implemented, a data provider can re-
configure corresponding policies to either allow or in-
hibit the provision of the data.

In order to enforce MPC-enabling policies, data
providers must wrap their MPC services by either a
PIP or a PXP. The computation of MPC is indepen-
dent of which component triggers the MPC service.

Figure 3: BPMN Diagram - Submit a Query.

To better clarify the process, we explain the step-
wise communication process between a user, the
backend implementation of a platform, and the Usage
Control components of data providers. As illustrated
in Figure 3, a user of a digital platform must first
submit a query on the platform. For example, there
can be a request for “total number of Methicillin-
resistant Staphylococcus aureus (MRSA) cases dur-
ing last year” on a digital ecosystem that connects
health care organizations and researchers to exchange
health data. Most MRSA infections occur in people
who have been in hospitals, doctor’s offices, dialysis
centers, etc. Hospitals and other data providers may
decide to provide this information only via MPC to
avoid exposing themselves as origins of MRSA in-
fections.

When a query is submitted, the platform validates
it and requests to obtain data from the known data
providers. On data provider side, the service layer
reads the raw data from their repository and triggers
the enforcement point. The PEP then intercepts the
data flow and calls the PDP to determine whether the
use of the raw data is permitted, prohibited, or subject
to further modifications.

The PDP receives the request from the PEP and
evaluates the existing policies. More information
about the policy specification will be provided in the
next section. At this point, the policies are already
configured and stored by the data providers. As il-
lustrated in Figure 4, four different decisions can be
made depending on the last deployed policies:

1. Permit. The dynamic reconfigurable implemen-
tation of Usage Control gives us the ability to re-
voke a policy and simply permit the use of the data
without further restrictions. However, we can ex-
plicitly allow the provision of original data. So,
the PEP provides the raw data without any modi-
fication.

2. Inhibit. When the policy inhibits the use of the
data, the PDP instructs the PEP to block the data
flow. Accordingly, the PEP prepares a message to
inform the platform.

3. Enforce MPC using a PIP. The PDP triggers
a corresponding PIP that performs MPC syn-
chronously. The PDP provides the raw data which
is needed for the computation to the PIP and waits
until the computation is completed.

4. Enforce MPC using a PXP. The PDP triggers a
corresponding PXP to perform the MPC and pro-
vides the raw data to it for the computation. Fur-
thermore, the PDP requests the PEP to inhibit the
provision of raw data, and informs the PEP with a
message that PXP will perform the MPC compu-
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Figure 4: BPMN Diagram - Policy Evaluation.

Figure 5: BPMN Diagram - MPC Calculation.

tation asynchronously. According to this decision,
the PEP further informs the platform that MPC
data will be provided later or can be retrieved from
a defined endpoint. Which option is chosen is, of
course, an implementation decision.

The platform knows the total number of data
providers that are requested to provide their data.
Therefore, the platform waits to receive responses
from each of them. Some may provide their raw
data to the platform and some may inhibit the use
of their data. The remaining ones, who decide to
perform MPC, must register themselves to the plat-
form. According to the number of registered parties,

the platform dynamically initiates the MPC environ-
ment. This step is important because only the plat-
form knows which other parties are participating in
the MPC and therefore, can provide all of them with
the information about other participants.

Now, an MPC communication can start. The MPC
services of the involved parties jointly compute the
requested function over their inputs, regardless of
whether an MPC service is encapsulated by a PIP or
a PXP.

As shown in Figure 5, the MPC service sends the
calculated MPC data back to the component that initi-
ated the calculation. In case of a PIP, since it is a syn-
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<p o l i c y i d = ’ urn : p o l i c y : p l a t f o r m : p o l i c y 1 ’ d e s c r i p t i o n = ’ r e t r i c t t h e d a t a usage t o
t i me and l o c a t i o n ’>

<mechanism e v e n t = ’ urn : a c t i o n : p l a t f o r m : p r o v i d e −MRSA− c a s e s − f o r −summation ’>
<i f >

<and>
<d a t e i s = ’ b e f o r e ’ v a l u e = ’01 .04 .2024 ’ / >
<p i p : b o o l e a n method = ’ urn : i n f o : p l a t f o r m : s p a t i a l ’ d e f a u l t = ’ f a l s e ’>

<p a r a m e t e r : s t r i n g name= ’ s p a t i a l ’ v a l u e = ’ Germany ’/>
</ p i p : boo lean>

</and>
<then>

<a l l o w />
</ then>

</ i f >
<e l s e>

< i n h i b i t />
</ e l s e>

</mechanism>
</ p o l i c y>

Listing 1: MYDATA Policy.

chronous call and the PDP is waiting, the result will
be forwarded to the PDP and the PEP, respectively.
The PEP applies the modification by substituting the
raw data with MPC data and subsequently delivers the
MPC data to the platform. In case of a PXP, data will
be provided to the platform, as promised.

Depending on the scenario, one can choose to im-
plement the MPC using a PIP or a PXP, since each
option has its own advantages and disadvantages.
The synchronous implementation may lead to time-
out. However, the asynchronous implementation re-
quires more complex message processing on the part
of the MPC initiator.

4 IMPLEMENTATION

MYDATA Control Technologies is a technical im-
plementation of data sovereignty (Fraunhofer IESE,
2018). It is based on IND2UCE framework (Jung
et al., 2014) and when realized, it lets users enforce
their Usage Control policies while they can reconfig-
ure their intended operations at runtime. In this work,
we integrated MYDATA Control Technologies to en-
force MPC policies and the additional MPC service is
implemented using Cicada 0.8.1 (Berry et al., 2021).

There are two considerations regarding the perfor-
mance of our solution. Firstly, the dynamic charac-
teristic of this solution imposes a waiting period be-
fore an MPC communication begins. It is because the
MPC participants are not known in advance and the
platform must wait until all providers evaluate their
policies and signal their intent to contribute in the
MPC computation. Secondly, data providers rely on
network communication to engage in MPC. Conse-

quently, the performance is directly influenced by the
efficiency of this network communication.

5 POLICY SPECIFICATION

A Policy Administration Point (PAP) is responsi-
ble for policy specification. The PAP of MYDATA
Control Technologies offers a user-friendly editor for
specifying policies in MYDATA language, which is
XML-based and follows the event-condition-action
schema. Listing 1 shows an example policy specified
in MYDATA language. This policy restricts the time
and the location of data usage to before 01.04.2024
and Germany, respectively. As mentioned before,
a comprehensive Usage Control policy not only ex-
presses the conditions of data provision, but also de-
fines the required obligations and modifications.

For instance, a data provider can specify a policy
that not only checks the time and location restrictions,
but also enforces MPC. The policy shown in Listing 2
declares a variable called MpcPipValue that stores the
returned value from a PIP. The PIP is identified with
summationPip. It provides data from an MPC service
and receives three parameters. These parameters that
are listed below, are mandatory for performing MPC
(e.g., performing a summation function over inputs
about MRSA cases).

• Id. This parameter refers to the unique identifier
of the request. In case of several requests, a fault-
less parallel computation is only possible when
the id is given.

• Requester. This parameter refers to the platform
where the request originated. The MPC service
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<p o l i c y i d = ’ urn : p o l i c y : p l a t f o r m : p o l i c y 2 ’ d e s c r i p t i o n = ’ Use PIP t o e n f o r c e mpc f o r
d a t a s h a r i n g . ’>

<v a r i a b l e D e c l a r a t i o n : number name= ’ MpcPipValue ’>
<p i p : number method = ’ urn : i n f o : p l a t f o r m : summationPip ’ d e f a u l t = ’NULL’>

<p a r a m e t e r : s t r i n g name= ’ id ’>
<e v e n t : s t r i n g e v e n t P a r a m e t e r = ’ r e q u e s t I d ’/>

</ p a r a m e t e r : s t r i n g >
<p a r a m e t e r : o b j e c t name= ’ r e q u e s t e r ’>

<e v e n t : o b j e c t e v e n t P a r a m e t e r = ’ d a t a R e q u e s t e r ’/>
</ p a r a m e t e r : o b j e c t >
<p a r a m e t e r : number name= ’ r e a l V a l u e ’>

<e v e n t : number e v e n t P a r a m e t e r = ’numberOfMRSACases ’/>
</ p a r a m e t e r : number>

</ p i p : number>
</ v a r i a b l e D e c l a r a t i o n : number>
<mechanism e v e n t = ’ urn : a c t i o n : p l a t f o r m : p r o v i d e −MRSA− c a s e s − f o r −summation ’>

<i f >
<and>

<not>
<e q u a l s>

<v a r i a b l e : number r e f e r e n c e = ’ MpcPipValue ’/>
<c o n s t a n t : number v a l u e = ’NULL’/>

</ e q u a l s>
</ not>
<!−− o t h e r c o n d i t i o n s −−>

</and>
<then>

<modify e v e n t P a r a m e t e r = ’numberOfMRSACases ’ method = ’ r e p l a c e ’>
<p a r a m e t e r : number name= ’ r e p l a c e W i t h ’ >

<v a r i a b l e : number r e f e r e n c e = ’ MpcPipValue ’/>
</ p a r a m e t e r : number>

</modify>
</ then>

</ i f >
<e l s e>

< i n h i b i t />
</ e l s e>

</mechanism>
</ p o l i c y>

Listing 2: MPC Policy via Policy Information Point.

must register there to obtain information about the
other participants and to start the MPC computa-
tion.

• RealValue. This parameter refers to the raw data
(e.g., the number of MRSA patients occurred in a
data provider’s work place).
Moreover, the policy shown in Listing 2 specifies

that once the MPC is computed successfully and the
PIP returns a valid number, then the modification shall
apply. As shown in the then-block of the policy, a
modification method replaces the raw data with the
MPC data, in transit.

Similarly, we can define a MYDATA policy that
demands to enforce MPC using a PXP. As shown in
Listing 3, the policy declares a variable called MpcPx-
pValue. This variable refers to a PXP that is identified
with summationPxp and wraps the MPC service. The
PXP receives the same parameters (id, requester and

realValue). This is due to the fact that the MPC ser-
vice that performs in the background is agnostic to the
chosen form of synchronous or asynchronous com-
munication. As mentioned before, the only difference
is that the PDP does not wait for the result of the MPC
calculation.

The PXP returns true when it is successfully trig-
gered. If the conditions specified in the if-block are
fulfilled, the PDP provides the PEP with an inhibit
decision with a message attached to it; ”PXP will
provide MPC data later!”. This decision and the at-
tached message indicate that the provision of the raw
data is prohibited, though PXP has received the order
and MPC will be performed asynchronously. If the
specified conditions are not fulfilled (e.g., if the PXP
throws an error), the decision is simply to inhibit the
data provision.

Depending on the implementation, the message
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<p o l i c y i d = ’ urn : p o l i c y : p l a t f o r m : p o l i c y 3 ’ d e s c r i p t i o n = ’ Use PXP t o e n f o r c e mpc f o r
d a t a s h a r i n g . ’>

<v a r i a b l e D e c l a r a t i o n : b o o l e a n name= ’ MpcPxpValue ’>
<e x e c u t e a c t i o n = ’ urn : a c t i o n : p l a t f o r m : summationPxp ’>

<p a r a m e t e r : s t r i n g name= ’ id ’>
<e v e n t : s t r i n g e v e n t P a r a m e t e r = ’ r e q u e s t I d ’/>

</ p a r a m e t e r : s t r i n g >
<p a r a m e t e r : o b j e c t name= ’ r e q u e s t e r ’>

<e v e n t : o b j e c t e v e n t P a r a m e t e r = ’ d a t a R e q u e s t e r ’/>
</ p a r a m e t e r : o b j e c t >
<p a r a m e t e r : number name= ’ r e a l V a l u e ’>

<e v e n t : number e v e n t P a r a m e t e r = ’numberOfMRSACases ’/>
</ p a r a m e t e r : number>

</ e x e c u t e>
</ v a r i a b l e D e c l a r a t i o n : boo lean>
<mechanism e v e n t = ’ urn : a c t i o n : p l a t f o r m : p r o v i d e −MRSA− c a s e s − f o r −summation ’>

<i f >
<and>

<v a r i a b l e : b o o l e a n r e f e r e n c e = ’ MpcPxpValue ’/>
<!−− o t h e r c o n d i t i o n s −−>

</and>
<then>

< i n h i b i t r e a s o n = ’PXP w i l l p r o v i d e MPC d a t a l a t e r ! ’ / >
</ then>

</ i f >
<e l s e>

< i n h i b i t />
</ e l s e>

</mechanism>
</ p o l i c y>

Listing 3: MPC Policy via Policy Execution Point.

includes information about how MPC data will be de-
livered; whether the data will be pushed to the plat-
form, or whether the platform can pull it from a de-
fined endpoint.

6 CONCLUSION AND FUTURE
WORK

In summary, we introduced an extended XACML-
based architecture that serves both data providers
and data consumers that are involved in a data shar-
ing ecosystem. The raw data remains on the data
provider’s side and will not be disclosed, even to the
platform, without data provider’s permission. In case
of performing MPC, only the MPC values will be dis-
closed to the platform.

The Usage Control policies are specified and
stored on the data provider’s side, as well. Data
providers can enforce their restrictions and obliga-
tions by reconfiguring their policies at runtime and
without the necessity of changing the implementation
of their Usage Control components (i.e., PEP, PIP and
PXP). Considering the ability to enforce MPC and
also to inhibit the provision of data at any time, data

providers are encouraged to provide their data, which
benefits data consumers as well.

Yet, in this work, we focused on implementing
MPC. To expand it, future work can focus on en-
forcing other PETs such as Differential Privacy or
Federated Learning while benefiting from dynamic
reconfiguration of Usage Control policies by data
providers.
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