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Abstract: The security of Web Services for users and developers is essential; since WebAssembly is a new format that has
gained attention in this type of environment over the years, new measures for security are important. However,
intrusion detection solutions for WebAssembly applications are generally limited to static binary analysis. We
present a novel approach for dynamic WebAssembly intrusion detection, using data categorization and machine
learning. Our proposal analyses communication data extracted from the WebAssembly sandbox, with the goal
of better capturing the applications’ behavior. Our approach was validated using two strategies, online and
offline, to assess the effectiveness of categorical data for intrusion detection. The obtained results show that
both strategies are feasible for WebAssembly intrusion detection, with a high detection rate and low false
negative and false positive rates.

1 INTRODUCTION

WebAssembly, also known as Wasm, is a bytecode-
like format that aims to enable the portability of other
languages to the Web environment (Battagline, 2021).

It runs in an isolated environment provided by
a sandbox and is conceived to easily interact with
other languages, through a shared-memory interaction
model called exposed functions. WebAssembly helps
developers with the implementation of Web services,
providing a performance gain and code size reduction.
WasmEdge and Atmo are popular examples of Web
services applications developed using WebAssembly
(WasmEdge, 2023; Connor, 2023). WebAssembly had
a quick adoption and is supported by all the main-
stream Web browsers. Its current stable version is 1.0,
and it is being actively developed to add new features.

Wasm applications are executed inside a sandbox
environment that offers a layer of isolation between
the application and the underlying environment. How-
ever, security issues exist and can affect Web users
(Kim et al., 2022). Attackers are also exploring Wasm
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features to make cryptojacking and to obfuscate mali-
cious applications (Musch et al., 2019; Romano et al.,
2022).

Proposals for security improvement developed in
the latest years consider the classification of Wasm
binaries (Romano and Wang, 2020), hardening the
sandbox by the use of Trusted Execution Environ-
ments (TEEs) (Qiang et al., 2018; Ménétrey et al.,
2021), using fuzzing techniques to find flaws in soft-
ware implementation (Liang et al., 2018), and dynamic
analysis tools that extract information from binaries
to find vulnerabilities (Lehmann and Pradel, 2019;
Brito et al., 2022). However, to the best of our knowl-
edge, solutions that explore the interactions between
the application and the sandbox environment to detect
anomalous application behavior were not proposed
yet.

The use of data extracted from Inter-Process Com-
munication (IPC) for anomaly detection is not new
(Forrest et al., 1996; Castanhel et al., 2021; Lemos
et al., 2022). This approach allows to observe the
operations being executed by the application, captur-
ing interaction patterns that can be used by Machine
Learning (ML) models to identify malicious behavior.
Our proposal explores the interactions between the
WebAssembly application and its runtime for intrusion
detection.
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The approach proposed here consists in extracting
data from the interactions between a Wasm application
and its runtime and classifying such data using a cate-
gorical model. This pre-processed data is then used to
train ML models to capture the application behavior.
Finally, the trained models are used for intrusion detec-
tion. We explore two detection strategies (online and
offline) with different models of ML for the detection
of threats.

To the best of our knowledge, we present the first
proposal to use dynamic interaction data for intrusion
detection in the WebAssembly environment. Our main
contributions are:

• An intrusion detection solution for WebAssembly
based on interaction data;

• A comparison between online and offline ap-
proaches for the proposed intrusion detection;

• A generic categorical data model that explores in-
teraction data to detect anomalies; this model is
generic enough to be applied to other situations,
like OS system calls and Android binder calls; and

• An overview on the use of categorical data in se-
curity approaches that explore machine learning
solutions.

The remainder of this paper is structured as fol-
lows: Section 2 presents the background; Section 3
presents related works; Section 4 discusses the pro-
posal; Section 5 presents the evaluation; and Section 6
concludes the paper.

2 BACKGROUND

This Section presents a brief overview about the con-
cepts used in this work. It contextualizes the We-
bAssembly environment, the use of categorical data
approaches, and intrusion detection using Machine
Learning (ML).

2.1 WebAssembly

WebAssembly (also known as Wasm) is a bytecode
binary format as a target. It presents a performance
gain and reduced size in comparison with Web lan-
guages. Programs in WebAssembly can be written
using WebAssembly Text (WAT), a textual program-
ming format that is compiled into the bytecode. Be-
sides that, developers can use languages such as Rust,
C, and C++, which are not natively supported in the
Web environment, but can also be compiled into Wasm
binaries. This allows to easily port code developed in
such languages to the Web environment. Such features

open new opportunities and easiness for developers
(Hoffman, 2019).

The WebAssembly binary contains a module that
encapsulates metadata (like the the WebAssembly ver-
sion), functions, variables, information about exported
functions that can be reached by other applications,
or even imported resources (Battagline, 2021). A We-
bAssembly application executes inside a sandbox en-
vironment, with external resources being accessible
through an Application Programming Interface (API)
(Kim et al., 2022). This design choice allows applica-
tions to run on a wide range of platforms, reduces the
size of messages exchanged with the server to retrieve
content, and offers more security for the environment
when running unknown binaries (Battagline, 2021).

Figure 1 presents the WebAssembly environment,
with three of the most popular ways that WebAssem-
bly applications can be used as a service. The three
options presented from the left to the right are, (i) a
runtime inside a host (ii) a container environment, and
(iii) inside the Web browser. The application interacts
with the underlying environment through the use of
the WebAssembly System Interface (WASI) calls that
passes through the WASI API. The interface defines
rules and controls the interactions that are performed
between the application and the environment. This
layer allows the execution of native operations with-
out breaking the security levels already defined for
WebAssembly applications (Battagline, 2021).

Kernel Space

Hardware

User Space

WebAssembly

https://webassembly.org/

WASI libc

WASI API

GNU C Library (glibc)

1

2

Figure 1: WebAssembly architecture overview.

The interaction with the API is made through
WASI calls, which have behavior similar to system
calls, but in a more abstract layer, closer to the applica-
tion. They allow a WebAssembly application running
inside the sandbox to access resources provided by the
underlying environment. Currently, 45 distinct WASI
calls are supported (more calls will be added in future
versions) (BytecodeAlliance, 2021a).

Despite the similarity between WASI calls and sys-
tem calls, WASI calls are made specifically for the
WebAssembly environment, not having a 1:1 binding
to system calls. This allows to offer WASI calls more
abstract and better suited to build Web applications, in

ICISSP 2024 - 10th International Conference on Information Systems Security and Privacy

276



opposition to system calls, which should be closer to
kernel resources.

2.2 Categorical Data

Categorical data or categorical variables are defined
as a data type that can represent a known number of
variables by a limited number of categories (Powers
and Xie, 2008). Quantitative and qualitative variables
can usually be represented by categories (except con-
tinuous variables). The use of data categorization as a
measurement strategy is popular in the social sciences
field, representing data types such as age, gender, and
location.

Categorical representation in specific situations can
be a better fit to represent data that would be oversim-
plified by numerical representations. However, both
representations are not that different, the key differ-
ence is that the probability distribution of the first one
is associated with categories instead of numerical data
(CHARU, 2017).

The use of categorical data representation also lim-
its the strategies that can be applied for the data evalu-
ation. Statistical algorithms, linear models, proximity-
based algorithms, and density-based models are exam-
ples of techniques that should be adapted to correctly
work with categorical data (CHARU, 2017).

Categorical data analysis is a widely explored field.
(Bay and Pazzani, 1999) present a strategy for min-
ing categorical data, proposing a methodology for the
identification of contrasting groups. Also, (Das et al.,
2008) proposes a range of solutions focusing on pat-
tern detection; anomaly detection is covered by (Liao
and Vemuri, 2002; Taha and Hadi, 2019), and outlier
detection for categorical data by (Wu and Wang, 2011;
Li et al., 2018).

In our proposal, the use of categorical representa-
tions for the data allows us to (i) evaluated the use of
this data representation for intrusion detection solu-
tions, and (ii) have a better understanding of categori-
cal data representations for machine learning strategies.
Data categorization is important because it allows us-
ing a representation that can highlight new patterns for
the samples by the use of categories or groups.

2.3 Intrusion Detection Using Machine
Learning

Intrusion Detection System (IDS) is a mechanism that
aims to warn about activities that may put the system
security at risk (Axelsson, 2000). The mechanism can
monitor the network, hosts, and applications, looking
for signs of attacks or intrusions (Stallings et al., 2012).
When an evidence of an attack is observed, an alert

is issued for further analysis, and in some cases, the
system itself can respond and take countermeasures.

An IDS tries to distinguish different behaviors and
patterns to identify unwanted actions. Two strategies
are popularly used to identify threats (Lam, 2005):
Signature-based, which uses a database of known at-
tack samples to identify unwanted behavior; these
samples are signatures of threats or known attack be-
havior. On the other hand, an anomaly-based IDS
focuses on using statistical models to characterize the
normal/usual activity in the system/environment. Thus,
an anomaly portrays some activity that deviates from
the defined normal model (Debar et al., 1999; Yassin
et al., 2013).

Over the years, the adoption of Machine Learn-
ing (ML) solutions to improve security strategy in-
creased. Intrusion Detection Systems (IDSs) can be
improved by the use of models that allow an appli-
cation to learn the patterns of attacks by itself. ML
models are capable of creating a general representa-
tion of the environment, identifying key differences
between types of attacks, and, for some specific mod-
els, continuously learning during the time of evaluation
(Mishra et al., 2018; Ceschin et al., 2020).

3 RELATED WORK

There are some few research works targeting We-
bAssembly binary code analysis. Most of them focus
on feature extraction from the binary code to identify
vulnerabilities and other problems.

Wasabi is a framework for dynamic analysis of
WebAssembly binaries (Lehmann and Pradel, 2019).
It allows the analysis of instructions, call graphs, taint
and tracing. The information is collected during the
execution and is not limited to WebAssembly appli-
cations. An API allows new evaluation systems to be
implemented and enables the extraction of information
from the framework.

The paper (Romano and Wang, 2020) presents
WASim, a tool that performs the classification of We-
bAssembly binaries. A dataset for model training and
evaluation was built using binaries extracted from the
top 1 million sites in the Alexa ranking. Their predic-
tion strategy achieved an accuracy of 91.6%.

Wasmati is a tool for static analysis of WebAssem-
bly binaries (Brito et al., 2022), aiming at identifying
code vulnerabilities. Property graphs are generated
for each application based on 10 queries, and a set of
datasets was scanned, looking for vulnerabilities.

Another strategy for static analysis of WebAssem-
bly binaries is presented by (Stiévenart and De Roover,
2020). Flows of information are extracted for the bi-
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nary code, allowing the evaluation of function calls in
WebAssembly.

4 PROPOSAL

Our proposal consists of using data extracted from
WASI calls issued by the application during its ex-
ecution, to detect anomalies. The extracted data is
classified using a categorical data strategy and then
used to train a machine learning model for detecting
such threats.

Two strategies to evaluate the proposal were de-
fined. The first strategy consists of an offline evalua-
tion, that is aimed at the classification of WebAssembly
binaries. The second strategy is an online evaluation,
that aims to simulate a real case of intrusion detection,
where the application would be running. Both solu-
tions are aimed at identifying intrusion detection in
WebAssembly applications.

The categorization strategy we propose is pre-
sented in Section 4.1, the dataset built for the eval-
uation is described in Section 4.2, and the proposal
evaluation itself is presented in Section 5.

4.1 Data Categorization

Instead of directly using WASI calls as features for
the machine learning modes, our proposal is based
on the data categorization. A variety of approaches
can be applied to the data, as the categorization allows
to highlight new characteristics from the dataset. For
intrusion detection, the security risk associated to each
call can be highlighted through the use of categoriza-
tion.

Categorical data are variables that are measured
by categorizing a limited set of “values” (Powers and
Xie, 2008). This is a basic data type used for anal-
ysis (CHARU, 2017). Discrete, ordinal, or nominal
variables can be represented as categories. For se-
curity and machine learning, this concept is applied
with limitations. The application of data categorization
strategies requires understanding the data to group the
variables in such a way that key points are represented
in the categories and information on their respective
members is not lost (Markman and Ross, 2003).

The system calls taxonomy proposed by
(Bernaschi et al., 2002) is a pioneer work considering
system call grouping. Through a categorization
strategy they define two groups for the classification
of system calls. The first group aims to classify system
calls according to their functionality, and the second
group defines a threat level for each system call. The
threat levels are 1 (enable full system compromise), 2

(allow a denial-of-service attack against the system),
3 (enable subversion of the calling process), and 4
(harmless calls). This classification is hierarchical, as
it assumes that a system call classified at level i can
also perpetrate an attack at threat level j for i < j. The
first issue is treating threat levels as an hierarchy, with
threats at lower levels subsuming threats at higher
levels, which may not always be true. A counter
example would be the fork system call, which can
cause a denial-of-service (DoS) on the system (and is
thus classified at threat level 2) but cannot subvert a
process (threat level 3).

In our proposal, we aim to remove hierarchical
problems from the classification defined by (Bernaschi
et al., 2002) and propose a categorical definition that
is flexible for using with other data types. A range of
communication mechanisms are used in the Operating
System (OS), such as system calls (Galvin et al., 2003),
binder calls (Lemos et al., 2023), or IPC, and IDSs ana-
lyzing them can benefit from exploring categorization.

Each WASI call has specific information related
to its operation, functionality, and security. Each in-
teraction (or operation) that an application performs
with the system can be categorized. Also, each inter-
action also has a respective risk associated to it. Table
1 presents two possible categorizations based on the
operation that the application generates when interact-
ing with the system. Two categories are presented, a
level for the type of operation and a risk level for the
operations.

The five risk levels presented aim to group interac-
tions (that in our proposal are WASI calls) that alone
offer some kind of risk to the system if used by a mali-
cious application. When considering the defined risk
group (high or low), we tend to directly relate it to the
type of operation that the interaction performs in the
system. The first three risk levels (A, B, and C), in the
high risk group, are interactions that can be used by
an attacker. Such risk levels define different behavior
of operations that malicious applications have on the
environment.

We also propose a classification based on the func-
tions performed by each interaction with the runtime
(also WASI calls). Such classes are shown in Table 2.
This classification is an expansion of categorizations
already proposed, such as (Bernaschi et al., 2002) and
(Galvin et al., 2003). We added to it the device ma-
nipulation (10) and the removed/debug (9) interaction
groups, since several changes were observed in the
system APIs.

We assume that an application making calls clas-
sified in class A more frequently tends to offer more
risk than an application that only uses calls presented
in class D. This classification is not used alone in the
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Table 1: Operation Classification.

Risk Level Risk Group Type of operation

A
High

These calls alone offer system risk/control
B Calls that may offer some risk to the system
C Calls that are dangerous when much repeated
D Low Harmless calls
E Unused/deprecated calls

Table 2: Functionalities Classification.

Group Functionalities

1 File manipulation
2 Process control
3 Module management
4 Memory management
5 Time operation
6 Communication
7 System information
8 Reserved
9 Not implemented/removed/debug
10 Device manipulation

intrusion detection process, but together with the clas-
sification of functionalities. In this way, an application
that makes calls classified as A-2 (a process control
call that offers a high risk) offers more risk than if it
makes calls classified as C-5 (time-related calls that
offer some risk). This distinction contributes to the
training stage of the ML models, as it is possible to
emphasize calls that pose more risk.

Table 3 presents the proposed data categorization
for the WASI calls. WebAssembly is a format in active
development, thus we are using the calls supported
for version 1.0. In future versions (snapshots) new
calls will be introduced, but this proposal already has
the required categories for the correct classification of
such calls.

The advantages of the categorization proposed here
are (i) it is flexible enough to be applied to other data
types; (ii) it reduces the volume of data used for train-
ing and identification; (iii) it allows a better understand-
ing of the behaviors behind application interactions;
and (iv) it allows to relate different types of interac-
tions.

4.2 Data Approach

The dataset used for the training and testing of our
proposal was created by us from different data sources,
allowing us to build a dataset that represents a variety
of behavior found in the WebAssembly environment.
Overall, we have 18 types of attack samples present,
with a total of 377 samples to form the anomaly class,

and we have 263 samples for the normality class. The
data samples came from a range of data sources like
test suits, benchmarks, single WebAssembly modules,
and applications (Stiévenart, 2023; Denis, 2023; We-
bAssembly, 2023; Beyer, 2023).

Our goal is to have a varied set of samples that
represents the environment. The variety of the data
samples allows us to better assess how the data catego-
rization proposed is able to highlight the functionality
and operations behind each interaction of the applica-
tion with the underlying environment. The samples
are also helpful to demonstrate that the proposal cate-
gorization is generic and may be applied to other data
sources.

For the extraction of the WASI calls in each binary
sample, we used the Wasmtime runtime CLI (Byte-
codeAlliance, 2021b), which executes standalone. It
provides functionality to generate detailed traces of
the WebAssembly application being run, without in-
strumenting or modifying the application.

5 EVALUATION

To evaluate the proposal, we built the classification
strategy, collected data to conduct the experiments, and
train/test the machine learning models. This allows
us to evaluate the efficiency of our intrusion detection
solution, based on the categorization of calls from the
WebAssembly environment.

Two types of strategies are possible for intrusion
detection: an online evaluation is made in real-time
and uses the data generated during the runtime of an
application to identify threats. On the other hand, an
offline evaluation is not made in real-time and is quite
useful in a controlled environment, enabling the study
of the entire application and its interactions.

We defined two groups of tests with the goal of
evaluating both scenarios, in how effectively the use
of calls from the WebAssembly environment is for
intrusion detection solutions. The first scenario con-
siders an offline approach and uses all the interactions
from the environment. The second scenario used a
fixed size sliding window, defining a partial view of
the environment, and simulating an online approach
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Table 3: WASI Calls classification.

# # WASI Calls

A
1 path_link, path_rename, path_symlink, path_unlink_file, path_remove_directory ,

path_filestat_set_times, args_get, environ_get

B
1 fd_fdstat_set_flags, fd_tell, fd_seek, path_create_directory , fd_pread, fd_pwrite, sock_recv ,

fd_read, sock_send, fd_write, fd_filestat_get, path_create_directory
2 fd_advise, sched_yield

C
1 fd_renumber, fd_allocate, path_open, random_get
6 sock_recv , sock_send, proc_raise

D

1 fd_close, path_readlink, path_filestat_get, args_sizes_get, environ_sizes_get, fd_prestat_get
fd_prestat_dir_name fd_readdir

5 clock_res_get, clock_time_get
7 sock_shutdown

9 fd_filestat_set_times

10 fd_datasync, fd_sync, fd_fdstat_get

E -

for intrusion detection solutions.
In both scenarios, the interactions from the envi-

ronment were treated equally. Using the same clas-
sification process for the calls of the WebAssembly
environment. This way, we are able to evaluate the
effectiveness of the use of this type of interaction for
intrusion detection in WebAssembly and discuss how
this type of solution based on the use of categorical
data may be used in other solutions.

Overall, we selected six ML models for the experi-
ment, to study the impact of the proposal in different
model approaches. These models are from a range
of supervised learning algorithms, encompassing de-
cision trees classifier, ensemble methods, and neural
network models. The models were used with their
default parameters.

Section 5.1 presents the offline evaluation, dis-
cussing the detection of each model. Section 5.2
presents the online evaluation. Both strategies are
discussed in-depth, with details on how the machine
learning models behave. Section 5.3 presents a discus-
sion of how the use of calls (communication between
the application and the runtime) can be used for intru-
sion detection, and what we learnt from our evaluation
of such data.

5.1 Offline Evaluation

In the offline evaluation, all the information collected
during an application execution is used by the models
during the classification phase. Table 4 presents the
results obtained for each model. The dataset was split
in half for the training and test phases. The overall
result is promising for the strategy, with all models
achieving an f1score above 80%.

The precision shows the false positive impact in
the models. Although we obtained high precision val-

ues, our models are still impacted by a small fraction
of the samples being missclassified and generating
false positives. SGB is the exception in all metrics,
having a low performance overall. The recall doesn’t
depend on precision and is influenced by false nega-
tive samples, which do not impact our models. The
f1score is based on precision and recall. This metric
enables the description of the positive classes, describ-
ing the adequacy of the models to classify the normal
behavior and the detection of the intrusion classes. In
these three metrics, we are not considering the impact
of true negative samples.

The accuracy and balanced accuracy (BAC) met-
rics show a better understanding of the true positive
and true negative classifications. Despite not consider-
ing the false negative/positive classes, we notice that
our results are similar to the previous results found for
the f1score, showing that our models are being able to
classify correctly most of the samples. The similarity
between accuracy and BAC results also shows that the
dataset used for the training and test is balanced.

The lower the Brier score is, the most calibrated
the models are to make the classification. This evalu-
ation strategy enables the measurement between the
predicted probability of a sample and the achieved re-
sult. Only two models present a brier score higher than
2% and only one of such models present a poor overall
result.

The Stochastic Gradient Descent (SGD) is a linear
classifier, which in our case is being impacted by a
variety of samples found in the dataset. With a high
number of classes that come from a variety of samples,
the linear model is not being able to correctly distin-
guish between the two groups, representing a model
that is not adequate for intrusion detection with this
type of data.

The similarity between Decision Tree and Ad-
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Table 4: Performance of the models for the offline strategy.

Classifier Precision Recall F1Score Accuracy BAC Brier Score

XGBoost 98.36% 100% 99.18% 99.06% 98.91% 0.94%
Decision Tree 98.38% 100% 99.18% 99.06% 98.91% 0.94%

Nu-Support Vector 92.86% 100% 96.30% 95.61% 94.89% 4.39%
MLP 96.81% 100% 98.38% 98.12% 97.81% 1.88%

AdaBoost 98.38% 100% 99.18% 99.06% 98.91% 0.94%
SGD 73.09% 89.56% 80.49% 75.24% 72.88% 24.76%

aBoost results (over even XGBoost), is due to the prox-
imity of the strategies used in such models (Hastie
et al., 2009; Molnar, 2020). They are also popular for
intrusion detection and malware detection, enabling
users to study the decision made by the classifier.

Overall, our results are promising for the proposal
for intrusion detection. Most of the evaluated models
were able to classify correctly both classes, with few
samples being missclassified. The strategy for offline
detection is quite adequate using the classification and
calls between the WebAssembly application and its
runtime.

5.2 Real-Time Evaluation

For the online proposal, we have the objective in iden-
tify threats during execution time. A new model was
trained and tested. However, we simulated a limited
vision for the models using a fixed size sliding window,
using two strategies: non-overlapping sliding windows
(abc, def, ghi, ...) and overlapping sliding windows
(abc, bcd, cde, ...).

With a sliding window we can understand the im-
pact of our proposal in a real-time intrusion detection
strategy where only small portions of the execution
interactions are available, since the application is still
running. In comparison with the previous solution, the
same categorical classification is used, with the only
difference being the use of the sliding window.

The sliding window size was defined as three (3),
based on previous research using this value, the size
of the traced applications, and characteristics observed
from WebAssembly applications (Liu et al., 2018; Cas-
tanhel et al., 2020). WebAssembly applications are
limited to a module, a limited number of types ex-
ist in the format, and its design limits the number of
operations available. In consequence, the size of an
application is quite smaller than what would be found
in other languages, and it generates a smaller amount
of calls to the runtime. Such reasons led to choose a
small window size.

Table 5 presents the results of the online experi-
ments with a non-overlapping sliding window. Overall,
the restriction on the information amount provided to

the models impacts the detection efficacy. However,
the precision was reduced in four of the classifiers and
the recall reduced for all of them, directly affecting the
f1score. The f1score and accuracy for these models
indicates a reduction in the detection rate, leading to
an increase of false positives and false negatives. This
behavior was expected because we are trying to detect
threats with only partial information being provided to
the classifiers.

Two of our classifiers in Table 5 achieve a better
result for precision than the offline strategy, showing a
reduction in the number of false positives. However,
the same models have an increase in the number of
false negatives (as the recall shows a reduction in com-
parison with Table 4), and the accuracy describes an
impact in both classes (negative/positive detection rate
are lower than the previous solution).

With BAC and Brier score it is clear that the mod-
els were impacted and had an increase in the number
of missclassified samples. However, Table 5 shows
a small reduction in comparison with the offline ap-
proach; we consider such results acceptable. The clas-
sifiers are still able to detect threats despite missclassi-
fying some samples.

Considering an online (i.e. real-time) intrusion
detection, the f1score metric above 93% obtained in
four of the classifiers is considered an adequate result.
The low score obtained by the SGD classifier was
expected; as presented in Table 4, such linear model
seems not well-suited to this kind of data.

Table 6 presents the results for the overlapping
sliding window with overlap 1 (abc, cde, efg, ...). We
included these results as it is quite popular when using
sliding windows to consider overlapping to simulate
a real-world case and to increase the amount of data,
since more windows are created. We notice an increase
in the number of false positives, despite the reduction
in the number of false negatives. The models had an
inferior performance as demonstrated by the f1score
result. The similar values of accuracy and BAC be-
tween Tables 5 and 6 are not enough to suggest that
the use of overlapping is a good strategy when using
categorical data.

Giving a deeper look at the data, we can better
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Table 5: Performance of the models for the real-time strategy (non-overlapping).

Classifier Precision Recall F1Score Accuracy BAC Brier Score

XGBoost 94.69% 92.88% 93.78% 94.90% 94.60% 5.10%
Decision Tree 99.86% 92.88% 93.86% 94.97% 94.66% 5.03%

Nu-Support Vector 93.70% 92.88% 93.29% 94.46% 94.23% 5.54%
MLP 93.7% 92.88% 93.29% 94.46% 94.23% 5.54%

AdaBoost 88.20% 96.01% 91.94% 93.03% 93.46% 6.97%
SGD 32.81% 68.58% 44.38% 28.83% 34.66% 71.17%

Table 6: Performance of the models for the real-time strategy (overlapping).

Classifier Precision Recall F1Score Accuracy BAC Brier Score

XGBoost 82.44% 100% 90.37% 92.25% 93.91% 7.75
Decision Tree 82.44% 100% 90.37% 92.25% 93.91% 7.75

Nu-Support Vector 72.17% 100% 83.83% 85.96% 88.97% 14.04
MLP 81.47% 99.84% 89.73% 91.68% 93.43% 8.32

AdaBoost 82.54% 100% 90.44% 92.30% 93.95% 7.7
SGD 71.97% 99.84% 83.65% 85.80% 88.80% 14.2

understand why the overlapping approach is not ideal
for this type of data. Since our interactions that are
WASI calls are being categorized, when the overlap-
ping strategy is adopted we duplicated some of the
information. In this case, we are adding more cate-
gories to the window generated from the trace of the
application, because we have an overlap of one (that
adds a category in each window).

In all the categories, most groups present a similar
number of calls, except for three classes. Two of them
are from the high-risk level and present growth in the
number of calls for C1 (87.4%) and B1 (23.1%). Class
D5 also presented a growth of 37.2%. The increase in
the false positive rate of our models is directly asso-
ciated with the increase in the number of calls in the
categories with high risk. As we are categorizing the
information used, in the case of overlapping we are
also adding information to the dataset that is incorrect.
Since we are duplicating small portions of the data,
we are also adding information related to operations,
functionality, and security of the application that in
the reality do not exist. For example, with a growth
of 87.4%, we are also telling the models that the risk
is higher in comparison with the previous experiment
(Table 5), which is not exact, because the risk is the
same.

The impact in machine learning models also ex-
ists because of the categorization, we are specifying
distinct features that with an overlapping strategy are
misleading the models. For this reason, we cannot
recommend the use of categorization and overlapping
in the same data.

5.3 Use of Calls for Intrusion Detection

The use of communication data for intrusion detection
is not new (Forrest et al., 1996; Lemos et al., 2023).
However, an approach that considers this type of in-
teraction in the WebAssembly sandbox is a novelty.
Considering such data as categorical is also a new strat-
egy for intrusion detection in this context. Our results
highlight how the use of this type of strategy is able
to represent properly the characteristics found in the
applications on the dataset.

The categorization of variables enables the user to
highlight key factors in the data, that otherwise may
be difficult to identify by machine learning models. In
our case, we were able to highlight security charac-
teristics for the WASI calls, and through the grouping
of operations/functionality, we were able to introduce
new features that present more complete information
about the behavior of each application.

The data categorization also presented good results
for both online/offline solutions.

For the WebAssembly sandbox, the WASI calls
are representative and, with our experiments, we can
say that our proposal is a viable solution for intrusion
detection solutions for the Web. Considering that dif-
ferent sandbox solutions exist, this proposal can be
adapted to other environments. The categorical classi-
fication presented is flexible and easily applicable to
other types of communication as system calls and IPC
mechanisms.

We applied a range of machine learning classifiers
intending to evaluate the efficacy obtained by exclu-
sively using categorical data for intrusion detection.
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As previously discussed, the models do not appear to
be harmed by this design choice and we can go further
by saying that the use of categorical data to emphasize
specific features of the data helps the efficacy of the
models.

6 CONCLUSION

This paper presents an intrusion detection solution for
WebAssembly. We use data from the interactions be-
tween the WebAssembly application and the sandbox
runtime to identify malicious applications. Such inter-
actions (WASI calls) were categorized with the goal
of highlighting key features for the machine learning
classifiers.

We proposed a categorical classification to be used
for intrusion detection, to be applied on the WASI
calls data. The operations and functionalities were the
main aspects used for the classification. The result was
a generic model that is not limited to WebAssembly
applications, enabling the categorization of system
calls or IPC messages.

Our results show that for both online/offline solu-
tions, the use of WASI calls is adequate for intrusion
detection. Most of our models achieve a high detection
rate with low false negative and false positive values.
The models in both cases were able to learn from the
categorical features offered in the training phase. The
results showed adequacy in the use of data categoriza-
tion for intrusion detection, allowing the discussion of
the effectiveness of using categorical data for machine
learning classification strategies in intrusion detection.

For future work, we will improve the detection
strategy for WebAssembly in a more complex environ-
ment, not being limited to Web services. We will also
explore further the benefits of using data categorization
in machine learning models. We also aim to explore
different data types that can be used for intrusion de-
tection and may provide performance improvements
when using data categorization.
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