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Abstract: A resampling scheme provides a way to switch low-weight particles for sequential Monte Carlo with higher-
weight particles representing the objective distribution. The less the variance of the weight distribution is, the
more concentrated the effective particles are, and the quicker and more accurate it is to approximate the hidden
Markov model, especially for the nonlinear case. Normally the distribution of these particles is skewed, we
propose repetitive ergodicity in the deterministic domain with the median for resampling and have achieved the
lowest variances compared to the other resampling methods. As the size of the deterministic domain M≪ N
(the size of population), given a feasible size of particles under mild assumptions, our algorithm is faster than
the state of the art, which is verified by theoretical deduction and experiments of a hidden Markov model in
both the linear and non-linear cases.

1 INTRODUCTION

Sequential Monte Carlo (SMC) or Particle Fil-
ter (Gordon et al., 1993) is a set of Monte Carlo
methods for solving nonlinear state-space models
given noisy partial observations, which are widely
used in signal and image processing (Särkkä et al.,
2007), stock analysis (Casarin et al., 2006; Flury
and Shephard, 2011; Dai and Baumgartner, 2023a;
Dai and Baumgartner, 2023d), Bayesian inference
(Del Moral et al., 2006; Dai and Baumgartner, 2023b;
Dai and Baumgartner, 2023c) or robotics (Fox, 2001;
Montemerlo et al., 2002; Thrun, 2002). It updates
the predictions recursively by samples composed of
weighted particles to infer the posterior probability
density. While the particles will be impoverished as
the sample forwards recursively, it can be mitigated
by resampling where the negligible weight particles
will be replaced by other particles with higher weights
(Doucet et al., 2000; Del Moral et al., 2012; Doucet
et al., 2001).

In the literature, several resampling methods and
corresponding theoretical analysis (Künsch et al.,
2005; Chopin et al., 2004; Douc and Moulines, 2007;
Gilks and Berzuini, 2001) can be found. The fre-
quently used algorithms are residual resampling (Liu
and Chen, 1998), multinomial resampling (Gordon
et al., 1993), stratified resampling (Smith, 2013),
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and systematic resampling (Kitagawa, 1996; Arulam-
palam et al., 2002). A justified decision regarding
which resampling strategies to use might result in a
reduction of the overall computation effort and high
accuracy of the estimations of the objective. How-
ever, for resampling, most of these strategies traverse
repetitively from the original population, the negligi-
ble weight particles fail to be discarded completely,
although the diversity of the particle reserve, it causes
unnecessary computational load for a very heavily
skewed distribution of particles and affects the accu-
racy of estimations of the posterior distribution. From
the perspective of complexity and variance reduction
with promising estimation, we propose a repetitive
deterministic domain ergodicity strategy, where more
concentrated and effective particles are drawn to ap-
proximate the objective. Our proposal can be widely
used in large-sample approximations.

In this paper, we concentrate on the analysis of
the importance sample resamplings built-in SMC for
the hidden Markov model. In Section 2, we present a
brief introduction to SMC. Here, a brief introduction
to the hidden Markov model and the sequential im-
portance sampling method will be given. Our method
will be introduced in Section 3, where we introduce
the origin of our method, and how to implement each
step in detail, and then the theoretical asymptotic be-
havior of approximations using our method is pro-
vided. The practical experiments will be validated by
Section 4, where performance and complexity analy-
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sis are presented. The summary of our contributions
is outlined in Section 5.

2 RESAMPLING IN SMC FOR
HIDDEN MARKOV MODEL

Consider the state-space model, which is also known
as a hidden Markov model, described by

Xt | Xt−1 ∼ f (Xt | Xt−1), Yt | Xt ∼ g(yt | Xt). (1)

The initial state X0 ∼ µ(X0), Xt ,(t = 1,2, ...n) is
a latent variable to be observed, the measurements Yt
are assumed to be conditionally independent given Xt ,
the most objective is to estimate Xt .

The recursive Bayesian estimation can be used
and it is described as:
(a) Prediction:

π(Xt | y1:t−1) =
∫

f (Xt | Xt−1)π(Xt−1 | y1:t−1)dXt−1.

(2)
(b) Update:

π(Xt | y1:t) =
g(yt | Xt)π(Xt | y1:t−1)∫

g(yt | Xt)π(Xt | y1:t−1)dXt
. (3)

From (2) and (3) the integral part is unreachable,
especially, for high-dimensional factors involved, we
fail to get the close form of π(Xt | y1:t) (Särkkä, 2013;
Doucet and Johansen, 2009).

Sequential Monte Carlo is a recursive algorithm
where a cloud of particles are propagated to approx-
imate the posterior distribution π(X0:t | y1:t). Here,
we describe a general algorithm that generates at time

t, N particles
{

X (i)
0:t

}N

i=1
with the corresponding em-

pirical measure π̂(X0:t | y1:t) = ∑
N
i=1 wi

tδ
(i)
X0:t

(dX0:t), a
discrete weighted approximation of the true posterior
π(X0:t | y1:t), δ

(i)
X0:t

(dX0:t) denotes the delta-Dirac mass
located at Xt , dX0:t equals to X0:t −X i

0:t . The particles
are drawn recursively using the observation obtained

at time t and the set of particles
{

X (i)
0:t−1

}N

i=1
drawn

at time t−1, accordingly, where π̂(X0:t−1 | y1:t−1) ≈
π(X0:t−1 | y1:t−1). The weights are normalized us-
ing the principle of importance sampling such that
∑

N
i=1 wi

t = 1. If the samples X i
0:t are drawn from an

importance density q(X i
0:t | y1:t), we have

wi
t ∝

π(X i
0:t | y1:t)

q(X i
0:t | y1:t)

. (4)

Suppose at time step t− 1, we have existed sam-
ples to approximate the current posterior distribution

π(X0:t−1 | y1:t−1), if we get a new observation yt at
time t, a recursive approximation to π(X0:t | y1:t) with
a new set of samples can be obtained by importance
sampling, the corresponding factorization (Arulam-
palam et al., 2002) is described by

q(X0:t | y1:t) := q(Xt | X0:t−1,y1:t)q(X0:t−1 | y1:t−1).
(5)

Then, we can get the new samples X i
0:t ∼ q(X0:t |

y1:t) by propagating each of the existing samples
X i

0:t−1∼ q(X0:t−1 | yt−1) with the new state X i
t ∼ q(Xt |

X0:t−1,yt). To derive the weight update equation, we
follow the ergodic Markov chain properties of the
model, the full posterior distribution π(X0:t | y1:t) can
be written recursively in terms of π(X0:t−1 | y1:t−1),
g(yt | Xt) and f (Xt | Xt−1) (Arulampalam et al., 2002):

π(X0:t | y1:t) =
p(yt | X0:t ,Y1:t−1)p(X0:t | y1:t−1)

p(yt | y1:t−1)
,

π1:t ∝ g(yt | xt) f (xt | xt−1)π1:t−1,

(6)

where π1:t is short for π(X0:t | y1:t). By substituting
(5) and (6) into (4), we have

wi
t ∝

g(yt | X i
t ) f (X i

t | X i
t−1)p(X i

0:t−1 | y1:t−1)

q(X i
t | X i

0:t−1,Y1:t)q(X i
0:t−1 | Y1:t−1)

= wi
t−1

g(yt | X i
t ) f (X i

t | X i
t−1)

q(X i
t | X i

0:t−1,y1:t)
.

(7)

We assume the state Xt is ergodic Markovian, thus,
qt = q(X i

t | X i
0:t−1,y1:t) = q(X i

t | X i
t−1,yt), from this

point, we only need to store the X i
t , and obtain the

thinning recursively update weight formula (Gordon
et al., 2004):

wi
t ∝ wi

t−1
g(yt | xi

t) f (xi
t | xi

t−1)

q(xi
t | xi

t−1,yt)
. (8)

The corresponding empirical posterior filtered density
π(Xt | y1:t) can be approximated as

π̂(Xt | y1:t) =
N

∑
i=1

wi
tδ

(i)
Xt
(dXt). (9)

It can be shown that as N → ∞, π̂(Xt | y1:t) con-
verges to π(Xt | y1:t).

Ideally, the importance density function should
be the posterior distribution itself, π(X0:t | y1:t). The
variance of importance weights increases over time,
which will decrease the accuracy and lead to degener-
acy that some particles make up negligible normal-
ized weights. The brute force approach to reduc-
ing the effect of degeneracy is to increase N as large
as possible. However, as the size of the sample in-
creases, the computation of the recursive step will

Variance Reduction of Resampling for Sequential Monte Carlo

35



also be exponentially costly. Generally, we can try
two ways to improve: (I) suitable importance density
sampling; (II) resampling the weights. Here we fo-
cus on the latter. A suitable measure of the degener-
acy of an algorithm is the effective sample size Neff
introduced in (Arulampalam et al., 2002): Neff =

N
1+Var(w∗it )

, w∗it = π(X i
t |y1:t )

q(X i
t |X i

t−1,yt )
, while the close solu-

tion is unreachable, it could be approximated (Liu,
2008) by N̂eff =

1
∑

N
i=1(w

i
t )

2 . If the weights are uniform,

wi
t =

1
N for each particle i = 1,2, ...,N, Neff = N; If

there exists the unique particle, whose weight is 1, the
remaining are zero, Neff = 1. Hence, small Neff eas-
ily leads to a severe degeneracy (Gordon et al., 2004).
We use N̂eff as an indicator to measure the condition
of resampling for our experiments in section 4.

We will introduce our proposal based on the repet-
itive deterministic domain traverse in the next section.

3 REPETITIVE ERGODICITY IN
DETERMINISTIC DOMAIN
WITH MEDIAN FOR
RESAMPLING

3.1 Multinomial Sampling

A Multinomial distribution provides a flexible frame-
work with parameters pi, i = 1, ...,k and N, to mea-
sure the probability that each class i ∈ 1, ...,k has
been sampled Ni times over N categorical indepen-
dent tests. It can be used to resample the tag in our
proposal in two steps. Firstly, we obtain the samples
from a uniform generator ui ∼ U(0,1], i = 1, ...,N;
secondly, we evaluate the index j of samples with
the generalized inverse rule, if the cumulative sum of
samples ∑

j
i=1 wi larger or equal to ui, this index j will

be labeled, then the corresponding sample wi will be
resampled, this event can be mathematically termed
as g′(wi) = Iwi=w j .

3.2 Deterministic Domain Construction

The population of weights is divided into two parts.
The first part is the weights, larger than the average
1
N , they are considered as the candidate firstly to
be sampled, we keep ri =

⌊
Nŵi

t
⌋

replicates of ŵi
t

for each i, where ŵi
t is the renormalized unit. ri

will be filtered one by one from the population,
and the corresponding tag j will be saved into an
array. We find, this part also follows the multinomial

distribution W i ∼ Multinomial(M; ŵ1, ...ŵM), We
extract the samples from the population with the
rule of multinomial sampling shown in section 3.1.
This step is the first layer of the traverse from the
population, we achieve the ancestor subset. Since the
distribution of these particles is very heavily skewed,
we extract the median of these particles to add to the
set of descendant particles. Then, we renormalized
the weights in the subset, and traverse again to
differentiate the larger weights and other units, until
we get the feasible size of the set to be considered
as the potential deterministic domain. The particles
in this domain follow a very strict Markovian, the
evolution can be expressed as follows, where wtN

denotes the weight corresponding to the particle X̃ (N)
t

at t.

w11

w12

w1N

t = 1

w22

w21

w2N

t = 2 t = T

wT 2

wT 1

wT N

· · ·

...
...

...

We define the integer part event, g′(ŵi) = Iŵi=ŵ j ,
similarly for the following repetitive part, ḡ(w̄i) =
Iw̄i=w̄ j . We count the units involved in the occurrence
of the event g′(ŵi) and ḡ(w̄i), then extract these units
based on the tags j, which forms the final determinis-
tic domain.

3.3 Repetitive Ergodicity in
Deterministic Domain with Median
Schema

Our goal is to retract and retain units with large
weights, while the remaining ones with low weights
can be effectively replaced in the populations. We set
the desired number of resampled units as the size of
populations under the premise of ensuring unit diver-
sity as much as possible.

We normalized all the units to keep the same
scaled level for comparison, after that, the units with
higher weights above the average level will appear as
real integers (larger than zero) by Ns = floor(N.∗w),
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the remaining will be filtered to zero. This is the pre-
requisite for the deterministic domain construction. In
Ns subset, there exist multiple categorical units, that
follow the multinomial distribution. We sample these
termed large units with two loops, the outer loop is to
bypass the index of the unit zero, and the inner loop
is to traverse and sample the subset where different
large units distribute, there more large weights will
be sampled multiple times.

The last procedure is to repetitively traverse in
the deterministic domain with median, where each
unit will be renormalized and the corresponding cu-
mulative summation is used to find the index of the
unit with the rule of the inverse cumulative distribu-
tion function. Each desired unit will be drawn by the
multinomial sampler to rejuvenate the population re-
cursively. The complexity of our method is O(M). As
the size of the deterministic domain M≪ N (the size
of population), given a feasible size of particles, our
algorithm is faster than the state of the art. The total
implement schema is shown in Algorithm 1.

3.4 Theoretical Asymptotic Behavior of
Approximations

3.4.1 Central Limit Theorem

Suppose that for each t ∈ [1,T ], X̃ (1)
t , ..., X̃ (M)

t are in-
dependent, where X̃ (m′)

t ,m′ ∈ [1,M] denotes the me-
dian of the originator particles. For others X̃ (i)

t , i ̸= m′

belong to the deterministic domain; the probability
space of the sequence recursively changes with t for
sequential Monte Carlo, such a collection is called a
triangular array of particles. Let Sm := X̃ (1)

t + ...+

X̃ (M)
t . We expand the characteristic function of each

X̃ (i)
t to second-order terms and estimate the remainder

to establish the asymptotic normality of Sm. Suppose
that both the expectation and the variance exist and
are finite:

Eπt (X
(i)
t ) =

∫
Xt∈Ω

X (i)
t πt(dXt)q(Xt ,dXt+1)< ∞,

δ
2
t,i(X

(i)
t ) = E[(X (i)

t −E(X (i)
t ))2]< ∞.

(10)

Theorem 1 For each t the sequence X̃ (1)
t , ..., X̃ (M)

t

sampled from the originator particles X (1)
t , ...,X (N)

t ,
suppose that are independent, where X̃ (m′)

t ,m′ ∈ [1,M]
denotes the median of the originator particles. For the
rest X̃ (i)

t , i ̸= m′ belong to the deterministic domain;
let Ψ be a measurable function and assume that there

Input: The input weight sequence:w; the
desired number of resampled
particles: N

Output: The resampled tag of the weight
sequence tag

if nargin==1 then
N← length(w); // Desired size

end
M← length(w);
w← w/sum(w); // Normalization
tag← zeros(1,N);
Ns← floor(N.∗w); // Integer parts
R← sum(Ns);
i← 1; // Extract deterministic part
j← 0;
while j < M do

j← j+1;
count← 1;
while count <= Ns(j) do

tag(i)← j;
i← i+1;
count← count +1;

end
end
[W, I] = sort(w); // Median extraction
r = f loor((N +1)/2);
tag(i) = I(r);
i = i+1; // Deterministic domain
w← tag/sum(tag);
q← cumsum(w)
while i<=N do

sampl← rand;
j← 1;
while q(j)<sampl do

j← j+1; // Update the tag
end
tag(i)← tag( j);
i← i+1;

end
Algorithm 1: Repetitive Deterministic Domain with
Median Traversal Resampling.

exists X̃t ⊂ K satisfying∫
x∈K

π(dx)Ex

[
T

∑
t=1
|Ψ(Xt)|2+ε

]
< ∞ (11)

and

supx∈KEx

[
T

∑
t=1
|Ψ(Xt)|

]
< ∞,

Eπt [Ψ] :=
∫
K

π(dx)Ex

[
N

∑
i=1

Ψ(X(i))

]
< ∞.

(12)

If X̃t is aperiodic, irreducible, positive Harris recur-
rent with invariant distribution π and geometrically
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ergodic, and if, in addition,

δ
2
t,i(Ψ) :=

∫
π(dx)Ex

[(
Ψ(X̃ (i)

t )−Eπt [Ψ]
)2

]
< ∞,

s2
m := lim

M→∞

M

∑
i=1

δ
2
t,i(Ψ),

(13)

{Ψ(X̃ (i)
t } satisfies

lim
M→∞

M

∑
i=1

{
Ψ(X̃ (i)

t )−Eπt [Ψ]
}
∼ N(0,s2

m). (14)

Proof Let Yt,i = Ψ(X̃ (i)
t )− Eπt [Ψ], by (Billingsley,

1995),
∣∣∣eiy−∑

M
k=0

(iy)k

k!

∣∣∣ ≤ min{ (y)
M+1

(M+1)! ,
2(y)M

M! }, when
M = 2, we have∣∣∣∣eiy− (1+ iy− 1

2
y2)

∣∣∣∣≤ min{1
6
|y|3 , |y|2}. (15)

We first assume that Ψ(·) is bounded, from
the property of characteristic function, the left-hand

side can be written as
∣∣∣∣E[

e(iλYt,i)|K
]
− (1− λ2δ2

t,i(Ψ)

2 )

∣∣∣∣,
therefore, the corresponding character function
ϕt,i(λ) of Yt,i satisfies

∣∣∣∣ϕt,i(λ)− (1− λ2δ2
t,i(Ψ)

2 )

∣∣∣∣≤ E
[
min{|λYt,i|2 , 1

6 |λYt,i|3}
]
.

(16)
Note that the expected value exists and is finite, the
right-hand side term can be integrated by∫
|Yt,i|≥εδt,i

√
M
E
[

min{|λYt,i|2 ,
1
6
|λYt,i|3}

]
dx. (17)

As M → +∞,{Yt,i} → /0, then,

E
[
min{|λYt,i|2 , 1

6 |λYt,i|3}
]
→ 0, which satisfies

Lindeberg condition:

lim
M→∞

M

∑
i=1

1
s2

m

∫
|Yt,i|≥εδt,i

√
M

Y 2
t,idX = 0, (18)

for ε > 0,s2
m = ∑

M
i=1 δ2

t,i(Ψ).

lim
M→∞

∣∣∣∣∣ϕt,i(λ)− (1−
λ2δ2

t,i(Ψ)

2
)

∣∣∣∣∣= 0. (19)

By (26.11) in page 345 (Billingsley, 1995),

ϕt,i(λ) = 1+ iλE[X ]− 1
2

λ
2E[X2]+o(λ2),λ→ 0.

(20)

By Lemma 1 in page 358 (Billingsley, 1995),∣∣∣∣∣ M

∏
i=1

e−λ2δ2
t,i(Ψ)/2−

M

∏
i=1

(1− 1
2

λ
2
δ

2
t,i(Ψ))

∣∣∣∣∣
≤

M

∑
i=1

∣∣∣∣e−λ2δ2
t,i(Ψ)/2−1+

1
2

λ
2
δ

2
t,i(Ψ)

∣∣∣∣
≤

M

∑
i=1

[
1
4

λ
4
δ

4
t,i(Ψ)

∞

∑
j=2

1
2 j−2 λ2 j−4δ

2 j−4
t,i (Ψ)

j!

]

≤
M

∑
i=1

1
4

λ
4
δ

4
t,i(Ψ)e|

1
2 λ2δ2

t,i(Ψ)|.

(21)

Thus,
M

∏
i=1

e−λ2δ2
t,i(Ψ)/2 =

M

∏
i=1

(1− 1
2

λ
2
δ

2
t,i(Ψ))+o(λ2)

=
M

∏
i=1

e−λ2δ2
t,i(Ψ)/2 +o(λ2)

= e−
λ2s2

m
2 +o(λ2).

(22)

The characteristic function ∏
M
i=1 ϕt,i(λ) of

∑
M
i=1 Yt,i = ∑

M
i=1

{
Ψ(X(i)

t )−Eπt [Ψ]
}

is equal to

e−
λ2s2

m
2 , thus, (14) holds.

4 EXPERIMENTS

In this part, the results of the comparison of these re-
sampling methods are validated from the experiments
with the linear Gaussian state space model and non-
linear state space model, respectively. We ran the ex-
periments on an HP Z200 workstation with an Intel
Core i5 and an #82−18.04.1− Ubuntu SMP kernel.

4.1 Linear Gaussian State Space Model

This linear model is expressed by:

X0 ∼ µ(X0),

Xt | Xt−1 ∼ N(Xt ;φXt−1,δ
2
v),

Yt | Xt ∼ N(yt ;Xt ,δ
2
e),

(23)

we keep parameters the same as (Dahlin and
Schön, 2019) to compare with the different resam-
pling methods. Where θ = {φ,δv,δe},φ ∈ (−1,1) de-
scribes the persistence of the state, while δv,δe denote
the standard deviations of the state transition noise
and the observation noise, respectively. The Gaus-
sian density is denoted by N(x;µ,δ2) with mean µ and
standard deviation δ > 0. In Figure 1, we use 20 par-
ticles to track the probability distribution of the state,
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Figure 1: Repetitive deterministic traverse resampling for
linear Gaussian state space model.

Figure 2: Variance analysis for different resampling strate-
gies (note the different scales in the Variance axis).

composed of 100 different times, the ground truth is
from the Kalman filter (Welch et al., 1995), the er-
ror denotes the difference between the estimation by
SMC and the ground truth. Initially, the expectation
of weights for 20 particles is equal to 1

20 , which means
that these particles have equal functions to track the
state.

For the resampling procedure, we compare the
variance from different classical resampling methods,
shown in Figure 2. The variance from the determin-
istic traverse method is the smallest. Thus, the effec-
tive particles are more concentrated after resampling
based on our proposal.

The computational complexity is another factor
the resampling algorithms are compared on, Figure 3
shows the execution times for different particles dis-
tributed, generally, it depends on the machines and
random generator, during our simulations, the time
consumption is different under the same condition of
resampling method and number of particles. Further-

Figure 3: Time complexity analysis for different resampling
strategies.

Figure 4: (a) The daily log-returns. (b) The estimated log-
volatility with 95% confidence intervals of the NASDAQ
OMXS30 index for the period from January 2, 2015 to Jan-
uary 2, 2016. (c) The expectation of weights for particles
before resampling. (d)The variance of weights for particles
before resampling.

more, we find under the same resampling methods,
the time consumed for the small size of particles is
much more than that of the larger ones. The compu-
tational stability of particles with resampling methods
is very sensitive to the units from a specific popula-
tion. For safety, we conduct multiple experiments to
achieve the general complexity trend.

In Figure 3, all the experiments are conducted un-
der the same conditions, for large-size particles, the
stratified and systematic strategies are favorable. In
Table 1, we can find under small-size particles(less
than 150), our method performs best.
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Table 1: Time complexity analysis of different resampling strategies.

# of particles Multinomial resampling Residual resampling Systematic resampling Stratified resampling Our method

5 0.0026 0.0021 0.0019 0.0023 0.0016

15 0.0036 0.0025 0.0022 0.0033 0.0018

50 0.0057 0.0027 0.0024 0.0047 0.0022

80 0.0087 0.0032 0.0029 0.0051 0.0027

100 0.0127 0.0038 0.0034 0.0067 0.0030

150 0.0161 0.0043 0.0038 0.0088 0.0036

Figure 5: Variance analysis of different resampling strate-
gies for nonlinear state space model (note the different
scales in the Variance axis).

4.2 Nonlinear State Space Model

We continue with a real application of our proposal to
track the stochastic volatility, a nonlinear State Space
Model with Gaussian noise, where log volatility con-
sidered as the latent variable is an essential element
in the analysis of financial risk management. The
stochastic volatility is given by

X0 ∼ N(µ,
σ2

v

1−ρ2 ),

Xt | Xt−1 ∼ N(µ+ρ(Xt−1−µ),σ2
v),

Yt | Xt ∼ N(0,exp(Xt)τ),

(24)

where the parameters θ = {µ,ρ,σv,τ}, µ ∈ R,ρ ∈
[−1,1], σv and τ ∈ R+, denote the mean value, the
persistence in volatility, the standard deviation of the
state process and the instantaneous volatility, respec-
tively.

The observations yt = log(pt/pt−1), also called
log-returns, denote the logarithm of the daily differ-
ence in the exchange rate pt , here, {pt}T

t=1 is the
daily closing price of the NASDAQ OMXS30 index
(a weighted average of the 30 most traded stocks
at the Stockholm stock exchange). We extract the
data from Quandl for the period between January 2,
2015 and January 2, 2016. The resulting log-return

is shown in Figure 4. We use SMC to track the time-
series persistency volatility, large variations are fre-
quent, which is well-known as volatility clustering in
finance, from the equation (42), as |φ| is close to 1 and
the standard variance is small, the volatility clustering
effect easier occurs. We keep the same parameters
as (Dahlin and Schön, 2019), where µ ∼ N(0,1),φ ∼
T N[−1,1](0.95,0.052), δv ∼ Gamma(2,10), τ = 1.

We use 25 particles to track the persistency volatil-
ity, the expectation of weights of particles is 1

25 ,
shown in Figure 4, it is stable as the same with Fig-
ure 1, the variance is in 10−3 orders of magnitude un-
der random sampling mechanism.

In Figure 5, the variance from our proposal shows
the minimum value at different times, nearly all the
plots share the common multimodal feature at the
same time, it stems from the multinomial distribution
that both of them have when they resample a new unit.

5 CONCLUSIONS

Resampling strategies are effective in Sequential
Monte Carlo as the weighted particles tend to de-
generate. However, we find that the resampling also
leads to a loss of diversity among the particles. This
arises because in the resampling stage, the samples
are drawn from a discrete multinomial distribution,
not a continuous one. Therefore, the new samples
fail to be drawn as a type that has never occurred
but stems from the existing samples by the repetitive
schema. We have presented a repetitive determinis-
tic domain with median traversal for resampling and
have achieved the lowest variances compared to other
resampling methods. As the size of the deterministic
domain M≪N (the size of population), our algorithm
is faster than the state of the art, given a feasible size
of particles, which is verified by theoretical deduction
and experiments of the hidden Markov model in both
the linear and the non-linear case.

There is a special case in which the median of par-
ticles belong to a deterministic domain, the particles
with weight w̃i

t ≤ 1
N have been discarded, thus, the
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particle set after resampling is biased. Since the re-
sampling scheme is repeated in the scaling domain,
the skewed particles are discarded completely, al-
though the total variance obtained by our method is
minimized compared to other resampling methods.
Since these sample points are biased when used for
target tracking, it will affect the accuracy of the tar-
get to some extent. Alternatively, if we give a certain
permissible error threshold for target localization and
tracking, we can also try the feasibility of our method
in this threshold, because it will be solved in a shorter
time with the minimum total variance compared to
other methods.

The broader impact of this work is that it can
speed up existing sequential Monte Carlo applications
and allow more precise estimates of their objectives.
There are no negative societal impacts, other than
those arising from the sequential Monte Carlo appli-
cations themselves.
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