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Abstract: In the healthcare sector, specifically for elderly care, accurate and efficient fall detection is crucial. We present
an advanced fall detection methodology tailored for wearable systems. Our approach blends threshold-based
screening with machine learning models like Support Vector Machine, K-Nearest Neighbors, Decision Tree,
Random Forest, and XGBoost. Utilizing 65 features extracted from the gyroscope and accelerometer data from
Inertial Measurement Units, our method addresses the class imbalance often found between Activities of Daily
Living and actual fall events. Threshold-based pre-screening serves to mitigate the class imbalance of the fall
dataset, making the subsequent machine-learning classification more effective. Validation on two open-source
IMU datasets, Sisfall and FallAllD, achieving high accuracy rates of 99.55%, 99.68% (wrist), 99.76% (waist),
and 99.52% (neck), shows our model surpassing existing solutions in detection accuracy. Furthermore, our
strategic feature extraction not only enhances the model’s performance but also allows for a fourfold reduction
by using the 15 most important features in data transmission without sacrificing accuracy. These findings
underscore the efficiency and potential of our methodology, indicating that wearables can indeed be powerful
tools for high-precision fall detection with minimal data overhead.

1 INTRODUCTION

According to the World Health Organization, falls ac-
count for approximately 600,000 global deaths each
year, ranking second among unintentional injury-
related deaths (WHO, 2023). Alarmingly, 75% of
these fatalities occur in adults over the age of 65
(Vaishya and Vaish, 2020). With the global popula-
tion aging at an unprecedented rate (WHO, 2022), im-
mediate assistance following falls is vital to minimize
medical complications. In fact, prolonged periods of
immobility after a fall, often lasting over an hour, have
been shown to increase the risk of mortality and lead
to severe health issues such as dehydration and pneu-
monia (Fleming and Brayne, 2008).

Given these concerns, there’s been a surge in inter-
est in cost-effective Fall Detection Systems (FDSs).
Telecare and remote biosignal monitoring offer in-
novative pathways for these systems. Since 2010,
both research articles and patents in automatic FDSs
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have seen a significant uptick, underscoring the field’s
growing importance (Tanwar et al., 2022).

Fall detection systems (FDSs) primarily fall into
two categories: Context-Aware Systems (CAS) and
wearable FDSs. CAS systems utilize sensors like mi-
crophones, cameras, and radars placed in a prede-
fined area surrounding the individual. However, the
need for customization, high installation and mainte-
nance costs, and limited coverage areas restrict their
applicability outside controlled environments such as
nursing homes. Contrarily, wearable FDSs use in-
ertial measurement units (IMUs) directly attached to
the individual, allowing for location-independent fall
detection. These systems offer numerous advantages
including cost-efficiency, easier installation, privacy
preservation, and simpler design and configuration
(Hashim et al., 2020). This feature, combined with
the widespread use of smartwatches and sports bands,
enhances the feasibility and accessibility of wearable
FDSs, making them particularly suitable for urban ar-
eas with reliable mobile connectivity.”
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2 RELATED WORK

Algorithms of Wearable FDS can be broadly clas-
sified into three types: (i) threshold-based approach
(ii) machine learning-based approach and (iii) deep
learning-based approach. Table 1 summarizes rep-
resentative studies of the above three categories of
wearable sensor-based fall detection.

Threshold-Based Approach. Threshold-based
methods hinge on predefined threshold values to de-
tect falls by comparing specific sensor data—namely,
acceleration (Saadeh et al., 2019), angular velocity
(Bourke and Lyons, 2008), and body angle (Sorvala
et al., 2012). It operates on the premise that falls
exhibit distinct differences in body position and ve-
locity compared to activities of daily living (ADLs).
The system’s effectiveness largely depends on the
accuracy of these preset values. For example, de
Sousa et al. (de Sousa et al., 2021) introduced a low-
power wearable system for fall detection that utilized
a threshold-based approach and achieved a sensitivity
of 92.6% and specificity of 97.7%. Jung et al. (Jung
et al., 2020) employed thresholds based on the sum
vector magnitude of acceleration, the sum vector
magnitude of angular velocity, and the vertical angle.
They reported a sensitivity of 100% and specificity
of 97.54%. However, the approach has limitations
in terms of generalizing across different settings
and populations, causing decreased performance,
particularly in specificity, when tested on complex
datasets like SisFall (Wang et al., 2020)(Sucerquia
et al., 2017).

Machine Learning-Based Approach. Machine
learning techniques offer a flexible and adaptive
alternative to threshold-based fall detection methods,
often yielding improved performance in diverse
scenarios. For example, Giuffrida et al. used a
Support Vector Machine (SVM) model trained on a
curated set of features, which significantly optimized
the system’s parameters (Giuffrida et al., 2019). In
a similar vein, Yu et al. adopted a Hidden Markov
Model (HMM) for fall detection that circumvented
the need for manual feature selection altogether.
Their approach processed raw acceleration data and
achieved an impressive sensitivity of 99.2% and
specificity of 99.0% (Yu et al., 2017). To assess
the general efficacy of machine learning in this
domain, Martinez-Villaseor et al. compared four
key machine learning classifiers: Random Forest
(RF), SVM, Multilayer Perceptron (MLP), and
k-Nearest Neighbors (KNN). These algorithms were
evaluated for their ability to differentiate falls from

fall-like activities, adding a layer of complexity to the
detection problem (Martinez-Villaseñor and Ponce,
2020). Despite their promising results, machine
learning-based approaches do face a bottleneck in
feature selection. The process of identifying the most
relevant features for fall detection is non-trivial and
can affect the algorithm’s overall performance.

Deep Learning-Based Approach. The advent of
powerful computational hardware has propelled the
utilization of deep learning algorithms in fall detec-
tion (Yu et al., 2020). These algorithms automati-
cally identify important features from raw sensor data,
eliminating the need for manual feature engineering.
Remarkable performance metrics, such as a sensitiv-
ity of 99.3% and specificity of 91.86% using ResNet
architecture, have been reported (Zhang et al., 2021).
Moreover, the ConvLSTM model was shown to excel
in both sensitivity and specificity, achieving 99.32%
and 99.01% (Yu et al., 2022).

To address this challenge of fall detection and
enhance computational efficiency, we introduce a
two-tiered hybrid algorithm that integrates threshold-
based and machine-learning methods for wearable
Fall detection systems.

3 METHODOLOGY

Fall datasets often exhibit a class imbalance between
Activities of Daily Living (ADL) and genuine fall
events. This imbalance skews the performance of
models trained on such datasets, particularly affect-
ing their ability to accurately identify falls, which
are the minority class. To address this challenge and
to enhance computational efficiency, we introduce a
two-tiered hybrid algorithm that integrates threshold-
based and machine-learning methods. The flow chart
in Figure 1 illustrates the overall process of the fusion
approach.

3.1 Data Processing

3.1.1 Dataset

In this study, the open source datasets, SisFall and
FallAllD were utilized to validate the effectiveness of
three different fall detection approaches, after analyz-
ing the various fall detection datasets.

SisFall Dataset. SisFall (Sucerquia et al., 2017)
collected data from the IMU attached to the waist.
The IMU includes sensors such as accelerometers,
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Figure 1: Flow chart of the designed fall detection ap-
proach.

gyroscopes, and magnetometers. It consists of 19
ADLs and 15 fall types performed by 23 young adults,
15 ADL types performed by 14 healthy and indepen-
dent participants over 62 years old, and data from one
participant of 60 years old that performed all ADLs
and falls. The dataset includes motion data captured
by an inertial measurement unit (IMU) placed on the
waist at a sampling rate of 200Hz. The SisFall dataset
provides a substantial number of fall and ADL trials,
making it suitable for evaluating fall detection algo-
rithms.

FallAllD Dataset. The FallAllD dataset, proposed
by (Saleh et al., 2020), utilizes an IMU placed on the
neck, chest, and waist to measure movement during
experiments. The dataset was obtained from 15 sub-
jects (eight males and seven females), defined as con-
taining 35 falls and 44 ADL types. The waist and
neck acquired ADL and fall data for 14 and 12 sub-
jects, respectively, whereas the wrist sensor acquired
ADL and fall data for 13 and 9 subjects.

Figure 2 illustrates the coordinates of the ac-
celerometer and the angular velocity measurements in
our research.

Figure 2: Body accelerator and angular velocity measure-
ment system.

3.1.2 Low-Pass Filtering

The raw data collected from the Inertial Measurement
Unit (IMU) may contain electronic noise or other
types of artifacts that can affect the accuracy and reli-
ability of the measurements. To mitigate these distur-
bances, a filtering process is often applied to the data
(Yu et al., 2022)(Jung et al., 2020) (Shi et al., 2020).
In this research, we utilized a fourth-order low-pass
Butterworth filter with a 2-pass digital implementa-
tion to remove noise and artifacts from the accelera-
tor data and angular velocity data. The chosen cut-off
frequency for the filter was set at 10Hz. This value
was selected because the relevant frequency spectra
of human motion typically fall within the range of 0
to 10Hz (Winter, 2009).

3.1.3 Data Refinement and Segmentation

The six-axis inertial signals from the IMU sensor
were defined as Ax,Ay,Az,ωx,ωy and ωz. During a fall
event, as the body makes contact with the ground, it
typically causes sudden and pronounced peaks in ac-
celeration. Figure 3 illustrates a representative dia-
gram displaying the 3-axis acceleration and angular
velocity data of a forward fall event starting from the
initial state position. Such peaks, captured by the Sig-
nal Magnitude Vector (SMV), serve as the primary
indicators for fall events. Mathematically, for each
measurement during a particular fall instance, SMV
is defined as:

SMVi =
√

Ax
2
i +Ay

2
i +Az

2
i (1)

Segmentation Strategy Using Signal Magnitude
Vector (SMV):
1. Fall Events: Fall instances are pinpointed by

observing the 2-second window surrounding the
peak SMV values within the recorded data.
Ground truth information is used to validate and
label these samples as falls. The definition of the
time of peak SMV (t i

SMV max) for the i th fall event
is defined as:
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Figure 3: Fall accident from a static posture. (tW : length of
the time window for the fall segment).

t i
SMV max = argmax

t
{SMVi(t) : SMVi(t) ∈ ith fall }

(2)

2. ADL Events: To diversify the ADLs dataset, a
sliding window method is employed. This mecha-
nism uses a consistent window of 2 seconds, pro-
gressing at steps of 0.2 seconds across the data
timestamps. This method captures data fragments
and categorizes them as non-fall events, ensur-
ing a more encompassing representation of typical
movements.

However, there are instances where high-intensity ac-
tivities, such as rapid walking or jumping, can pro-
duce acceleration patterns similar to falls, posing
challenges in accurate detection. To address this co-
nundrum, gyroscope data is incorporated to assess
and determine the subject’s posture. For every data
point during the i-th fall event, the Signal Magni-
tude Vector of Angular Velocity (SMA) is leveraged
to measure alterations in angular velocity. This metric
is articulated as:

SMAi =
√

ωx
2
i +ωy

2
i +ωz

2
i (3)

3.1.4 Adaptive Time-Window Size

Fall detection algorithms commonly utilize temporal
windows to analyze inertial signals where a fall event
might occur. These windows typically span between
0.2 and 2 seconds. Optimal window durations for fall
and human activity detection have been subject to re-
search. Banos et al. recommended a 1-2 second win-
dow for general human activities, balancing recogni-
tion speed with accuracy (Banos et al., 2014). The
intrinsic dynamics of a fall, characterized by abrupt
and unexpected movements, usually occur within a
1-3 second timeframe (Yu, 2008). The most critical

phases of a fall, including the free-fall and impact pe-
riods, happen within an even narrower range of 0.5-
0.85 seconds (Huynh et al., 2013). Eduardo Casilari
et al. fine-tuned this by proposing a 2-second window,
centered around the peak of the fall signal, capturing
the most relevant features of a fall event (Casilari and
Silva, 2022). In our analysis, we adopt this 2-second
observation window for optimal fall detection.

3.1.5 Data Split

After the data processing, the whole data set is split
into the training dataset and test dataset with a ratio
of 75/25. The flow chart in Figure 4 illustrates the
training process and testing process.

`
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Figure 4: Flow chart of the train process and test process.

3.2 Threshold-Based Methods

The first tier acts as an initial filter using threshold-
based criteria to swiftly differentiate potential fall
events from routine activities. This approach allows
for rapid processing, screening out most ADL in-
stances and forwarding only suspected fall events to
the second tier for detailed analysis. Specifically,
the algorithm employs two thresholds calculated from
sensor measurements of the training data: Signal
Magnitude Vector (SMV) and Signal Magnitude Vec-
tor of Angular Velocity (SMA). These thresholds are
defined as follows:

CT 1 = min{SMVmax : SMVmax ∈ fall training data}
(4)

where SMVmax = max{SMV (t) : t ∈ tW}

CT 2 = min{SMAmax : SMAmax ∈ fall training data}
(5)

where SMAmax = max{SMA(t) : t ∈ tW}
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Within the predefined time window tW , if both
SMVmax and SMAmax exceed their respective thresh-
olds, the data is forwarded to the second tier; other-
wise, it is disregarded.

3.3 Machine Learning-Based Approach

The second tier capitalizes on machine learning algo-
rithms to meticulously classify the dataset that’s been
pre-screened by the initial tier. This dual-stage ap-
proach amplifies the algorithm’s precision in detect-
ing falls, while also boosting computational speed.

3.3.1 Feature Extraction

Before applying machine learning classifiers, we fo-
cus on feature extraction to accurately represent the
underlying data patterns. We compute a set of eight
statistical features that encapsulate information from
accelerometer and gyroscope readings. These fea-
tures include metrics such as angular velocity, Signal
Magnitude Vector (SMV), and Signal Magnitude Vec-
tor of Angular Velocity (SMA). For a detailed sum-
mary, refer to Table 1. These statistical features are
universally accepted in the domains of Human Ac-
tivity Recognition (HAR) and Fall Detection Systems
(FDS) (Sucerquia et al., 2017; Giuffrida et al., 2019;
Martinez-Villaseñor and Ponce, 2020; Casilari and
Silva, 2022).

We denote the human acclivity feature derived
from the raw data of the IMU sensor by S, which is
defined as

S = [Ax,Ay,Az,ωx,ωy,ωz,SMV,SMA,NAng], (6)

where Ax,Ay,Az represent the accelerometer read-
ings along the X, Y, and Z axes, respectively, and
ωx,ωy,ωz represent the angular velocity readings
along the X, Y, and Z axes, respectively, SMV and
SMA denote the Signal Magnitude Vector and Signal
Magnitude Vector of Angular Velocity, respectively,
NAng represent the attitude change during the fall.

The attitude angle change during the fall NAng is
defined as follows:

Pitch Angle. The pitch angle represents the forward
angle of the sensor during a fall.

Pitch = arccos
|Az|√

Az
2 +Ay

2
(7)

Roll Angle. The roll angle represents the sideward
angle of the sensor during a fall. By incorporat-
ing these pitch and roll angles, we can capture the

changes in the forward and sideward attitudes of in-
dividuals during a fall.

Roll = arccos
|Ax|√

Ax
2 +Ay

2
(8)

The attitude angle change during the fall is defined
as:

NAng = Pitch+Roll (9)
The selected statistic features are analytically de-

fined as follows:

Maximum (Peak) of Feature S. This feature rep-
resents the peak or maximum value of a specific
data feature (S) during the fall window. It serves as
a meaningful descriptor of the force of the impact
against the ground. Mathematically, it can be defined
as:

Smax = max{S(t) : t ∈ tW} (10)

Minimum of Feature S. This feature indicates the
minimum value achieved by the data feature (S) dur-
ing the fall window. It is a key element in describing
the fall.

Smin = min{S(t) : t ∈ tW} (11)

Mean of Feature S. The mean provides informa-
tion about the average body motion intensity during
the fall. It is computed as the average of the feature
values over the observation window (tW ) containing
NW feature samples.

µS =
1

NW
∑

t∈tW
S (12)

where NW is defined as:

Nw = 2[
T
2

fs]+1 (13)

Standard Deviation of Feature S. This feature de-
scribes the variability of the feature (S) during the ob-
servation window. It is calculated as the square root
of the average squared deviation from the mean.

σS =

√
1

NW
∑

t∈tW
(S−µS)2S (14)

Skewness of Feature S. Skewness characterizes the
symmetry of the distribution of feature values. It in-
dicates whether the distribution is skewed to the left
or right.

γS =
1

σS3NW
∑

t∈tW
(S−µS)

3 (15)
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Table 1: Descriptive statistics of 65 features.

Statistic Equation Acc Ang SMV SMA NAng

Maximum Smax = max{S(t) : t ∈ tW}
Axmax
Aymax
Azmax

ωxmax
ωymax
ωzmax

SMVmax SMAmax NAngmax

Minimum Smin = min{S(t) : t ∈ tW}
Axmin
Aymin
Azmin

ωxmin
ωymin
ωzmin

SMVmin SMAmin NAngmin

Mean µS =
1

NW
∑

t∈tW
S

µAx
µAy
µAz

µωx
µωy
µωz

µSMV µSMA µNAng

Standard
Deviation σS =

√
1

NW
∑

t∈tW
(S−µS)2S

σAx
σAy
σAz

σωx
σωy
σωz

σSMV σSMA σNAng

Skewness γS =
1

σS
3NW

∑
t∈tW

(S−µS)
3

γAx
γAy
γAz

γωx
γωy
γωz

γSMV γSMA γNAng

Kurtosis KurtS = E[( (S−µS)
σS

)4]
KurtAx
KurtAy
KurtAz

Kurtωx
Kurtωy
Kurtωz

KurtSMV KurtSMA KurtNAng

valley-to-peak
range RS = Smax −Smin

RAx
RAy
RAz

Rωx
Rωy
Rωz

RSMV RSMA NAN

valley-to-peak
time TS = tSmax − tSmin NAN NAN TSMV TSMA NAN

1 Ax,Ay,Az represent the accelerometer readings along the X, Y, and Z axes, respectively,
2 ωx,ωy,ωz represent the angular velocity readings along the X, Y, and Z axes,
3 SMV and SMA denote the Signal Magnitude Vector and Signal Magnitude Vector of Angular Velocity

Kurtosis of Feature S. Kurtosis measures the
tailedness (frequency of outliers) of the distribution
of feature values.

KurtS = E[(
(S−µS)

σS
)4] (16)

Valley-to-Peak Range (Rs). This feature represents
the value of the interval between the minimum (Smin)
and maximum (Smax) of the feature S. It is calculated
as:

RS = Smax −Smin (17)

Valley-to-Peak Time (Ts). This feature indicates
the duration of the interval between the minimum
(Smin) and maximum (Smax) of the feature S.

TS = tSmax − tSmin (18)

3.3.2 Model Implementation

With the features extracted, we proceed to apply
machine learning models for classification. In this
study, we explore multiple classifiers including Sup-
port Vector Machines (SVM), K-Nearest Neighbors
(KNN), Decision Trees, Random Forests, and XG-
Boost. These classifiers are trained and evaluated

based on their ability to accurately distinguish be-
tween fall and non-fall events.

Our dual-layer approach, incorporating these se-
lected features, is rigorously tested on the Sisfall and
FallAllD datasets. By applying the chosen statisti-
cal features to both categories, we aim to critically
assess and validate the performance of our machine
learning-based fall detection model.

4 RESULTS AND DISCUSSION

4.1 Performance Evaluation Metrics

Various methods have been developed to evaluate the
performance of different classifiers. These methods
rely on the outcomes obtained from the classifiers,
which are represented in the form of a confusion ma-
trix (Figure 10). The confusion matrix provides a vi-
sual representation of the classifier’s performance, in-
cluding true positives, true negatives, false positives,
and false negatives.

• True positive (TP): The ADL events have been
correctly classified.

• True negative (TN): The fall events have been cor-
rectly detected.
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• False positive (FP): Fall events that have not been
detected.

• False negative (FN): A false alarm situation oc-
curs.
One commonly used method to assess classifier

performance is accuracy, which calculates the pro-
portion of correctly classified samples overall. How-
ever, accuracy has certain limitations, such as being
susceptible to the influence of large abnormal data
and potentially misleading results in class-imbalanced
training data scenarios. To address these limitations,
alternative evaluation methods are selected to evalu-
ate class-imbalanced classifiers effectively. For fall
detection tasks with imbalanced classes, sensitivity,
specificity, F-score, and receiver operating character-
istic (ROC) are commonly utilized to assess the clas-
sifier’s ability to differentiate falls from a large num-
ber of activities of daily living (ADL) events.

Accurancy =
T P+T N

T P+T N +FP+FN
(19)

Sensitivity measures the proportion of correctly
identified positive samples. Specificity, on the other
hand, measures the proportion of correctly identified
negative samples.

Sensitivity =
T P

T P+FN
(20)

Speci f icity =
T N

T N +FP
(21)

The F1 is a robust evaluation metric that balances
sensitivity and specificity. In large-scale datasets, sen-
sitivity and specificity often have a trade-off relation-
ship, and the F-score provides a comprehensive mea-
sure of their discrimination. The parameter β in the
F-score equation allows adjusting the weight between
sensitivity and specificity. Setting β to 0.5 assigns a
higher weight to specificity, which is crucial in fall
detection as it reflects the detection of all fall signals
in the data.

F1 = (1+β
2)

Sensitivity×Speci f icity
β2 × (Sensitivity+Speci f icity)

(22)

In summary, sensitivity, specificity, and F-score
provide comprehensive measures for evaluating the
performance of fall detection classifiers, particu-
larly in scenarios with imbalanced class distributions.
These metrics address the limitations of accuracy and
offer a more nuanced assessment of the classifier’s
ability to distinguish falls from ADL events.

4.2 Results and Discussion

Our analyses underscored the varying importance of
features across the two datasets—Sisfall and Fal-
lAllD. Notably, features like TSMV , TSMA, and RSMV
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Figure 5: The Shap values of the top 15 features of the
dataset (a) FallAllD; (b) SisFall.

consistently ranked among the top ten most important
features when both datasets were integrated, empha-
sizing their critical role in accurately detecting falls
and Activities of Daily Living (ADLs). These find-
ings are corroborated by Table 2, which offers an
exhaustive evaluation of different machine learning
classifiers based on the feature sets. In which, fea-
ture (1) utilizes all 65 extracted features and features
(2) focuses on the 15 most important features as deter-
mined by feature integration. The model’s robustness
was evident from its high accuracy rates across vary-
ing types of falls and ADLs. The results show that
the model is robust to the input of different types of
falls/ADLs and achieved superior performance. The
FallAllD dataset is collated from 3 different locations
with limited data size, it has been shown that the po-
sition of the sensors also plays an important role in
the fall detection models. And we can also see that
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Table 2: Fall detection results for Sisfall and FallAllD: the
unit is %, feature (1) utilizes all 65 extracted features, and
feature (2) focuses on the 15 most important features.

Dataset Model Sensitivity Specificity Accuracy F1
SisFall1 SVM 99.47 99.35 99.45 98.22

KNN 98.06 98.91 98.96 94.27
DT 98.88 99.38 99.28 98.45
RF 99.44 98.75 99.54 99.03
XGB 99.62 98.81 99.55 99.14

SisFall2 SVM 98.67 99.03 98.62 96.43
KNN 97.61 98.63 98.05 86.44
DT 97.29 99.23 98.70 97.98
RF 99.01 97.87 99.26 98.88
XGB 98.79 98.33 99.16 98.92

FallAllD1 SVM 99.36 1 99.84 99.68
(wrist) KNN 98.71 99.58 99.37 98.71

DT 98.87 99.61 99.55 98.82
RF 98.89 99.88 98.95 99.24
XGB 99.62 99.47 99.68 99.47

FallAllD2 SVM 98.27 99.40 99.37 97.55
(Wrist) KNN 97.67 97.44 97.49 94.02

DT 98.88 99.38 99.18 98.9
RF 96.44 98.75 99.66 99.4
XGB 98.62 98.51 99.55 98.7

FallAllD1 SVM 99.77 99.03 99.34 99.27
(waist) KNN 98.06 98.91 98.96 98.69

DT 97.88 99.02 99.18 99.22
RF 99.34 98.75 99.76 99.07
XGB 99.32 98.31 99.35 99.23

FallAllD2 SVM 98.63 97.51 96.74 98.58
(waist) KNN 96.85 95.81 97.39 97.41

DT 96.86 99.84 97.68 97.88
RF 98.62 98.80 99.44 98.47
XGB 97.82 98.82 98.84 98.64

FallAllD1 SVM 96.53 98.94 99.15 91.25
(neck) KNN 89.06 98.91 95.96 87.10

DT 98.28 99.38 99.12 98.32
RF 98.24 99.47 99.52 99.40
XGB 98.88 99.46 99.47 99.51

FallAllD2 SVM 95.81 99.03 99.35 89.55
(neck) KNN 79.66 91.34 86.90 86.79

DT 97.48 99.38 98.18 97.44
RF 97.44 98.75 98.66 97.96
XGB 98.42 98.51 98.55 98.73

the tree-based models show superior and robust per-
formance in different datasets.

In Table 3, we present a comparative analysis
of fall detection capabilities between our proposed
model and existing models, all evaluated using the
same dataset. Our model’s robustness and enhanced
performance are evident; it consistently identifies a
range of falls and Activities of Daily Living (ADLs)
with remarkable accuracy.

5 CONCLUSIONS

In this study, we proposed a wearable fall detec-
tion model that combines the threshold and ma-

Table 3: Comparison of results between the proposed and
previous research models, the unit is %.

Algorithem Sensitivity Specificity Accuracy
Yu et al.
(2020)
Sisfall

ResNet10
SMOTE

CDL-Fall

97.91
99.17
99.33

72.89
89.98
91.86

96.22
97.54
97.52

Santoyo et al.
(2022)

FallAllD waist
CNN 85.97 96.79 NAN

Jeong et al.
(2023)

FallAllD wrist
LightGBM 91.04 96.38 94.86

Proposed
Sisfall

Fusion
method

99.62 98.81 99.55

Proposed
FallAllD wrist

Fusion
method

99.62 99.47 99.68

Proposed
FallAllD waist

Fusion
method

99.34 98.75 99.76

Proposed
FallAllD neck

Fusion
method

98.24 99.47 99.52

Note: In this comparison, while the same open-source datasets are
used, the training and testing datasets for the fall detection model
differ due to variations in data processing methods, like filter fre-
quency and sample window size. Hence, the results should be
viewed as indicative rather than conclusive.

chine learning approach benchmarked against Sis-
fall and FallAllD datasets. Employing a suite of
65 rigorously selected statistical features (as shown
in table1) extracted from inertial sensors, the study
leveraged tree-based ensemble models to achieve un-
precedented accuracy rates: 99.55%, 99.68% (wrist),
99.76% (waist), and 99.52% (neck) across the exam-
ined datasets. This level of performance substantially
outperforms existing benchmarks documented in the
scholarly literature.

SHAP value analysis was instrumental in distill-
ing the feature set down to the top 15 most influen-
tial features. Comparative analysis indicated that the
reduced feature set incurred a statistically insignifi-
cant diminution in performance metrics—less than a
1% deviation relative to the exhaustive feature set.
The hybrid model architecture, ingeniously combin-
ing threshold-based and machine learning algorithms,
facilitates minimal data transference from the wear-
able device to the computational node while sustain-
ing high fidelity in fall detection outcomes.

While the current study’s accomplishments are
manifold, it is imperative to acknowledge its limita-
tions. The absence of real fall data in the utilized
datasets denotes an opportunity for future work to fur-
ther validate the model’s performance under invalid
conditions. In light of the latter, future research en-
deavors will be directed toward the integration of this
validated model architecture into wearable technol-
ogy platforms, emphasizing the necessity of feature
selection optimization for real-time fall detection.
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APPENDIX
ADLs FALLs𝑺𝑴𝑽𝒎𝒂𝒙 of SisFall dataset

𝐶𝑇1:min{𝑆𝑀V𝑚𝑎𝑥: 𝑆𝑀𝑉𝑚𝑎𝑥𝜖𝐹𝑎𝑙𝑙𝑠}

(a) Boxplot of SMVmax for SisFall dataset

𝐶𝑇2:min{𝑆𝑀𝐴𝑚𝑎𝑥: 𝑆𝑀𝐴𝑚𝑎𝑥𝜖𝐹𝑎𝑙𝑙𝑠}

ADLs FALLs𝑺𝑴𝑨𝒎𝒂𝒙 of SisFall dataset

(b) Boxplot of SMAmax for SisFall dataset

ADLs FALLs𝑺𝑴𝑽𝒎𝒂𝒙 of FallAllD Waist dataset

𝐶𝑇1:min{𝑆𝑀V𝑚𝑎𝑥: 𝑆𝑀𝑉𝑚𝑎𝑥𝜖𝐹𝑎𝑙𝑙𝑠}

(c) Boxplot of SMVmax for FallAllD Waist dataset (d) Boxplot of SMAmax for FallAllD Waist dataset

ADLs FALLs𝑺𝑴𝑽𝒎𝒂𝒙 of FallAllD Neck dataset

𝐶𝑇1:min{𝑆𝑀V𝑚𝑎𝑥: 𝑆𝑀𝑉𝑚𝑎𝑥𝜖𝐹𝑎𝑙𝑙𝑠}

(e) Boxplot of SMVmax for FallAllD Neck dataset (f) Boxplot of SMAmax for FallAllD Neck dataset

ADLs FALLs𝑺𝑴𝑽𝒎𝒂𝒙 of FallAllD Wrist dataset

𝐶𝑇1:min{𝑆𝑀V𝑚𝑎𝑥: 𝑆𝑀𝑉𝑚𝑎𝑥𝜖𝐹𝑎𝑙𝑙𝑠}

(g) Boxplot of SMVmax for FallAllD Wrist dataset

𝐶𝑇2:min{𝑆𝑀𝐴𝑚𝑎𝑥: 𝑆𝑀𝐴𝑚𝑎𝑥𝜖𝐹𝑎𝑙𝑙𝑠}

ADLs FALLs𝑺𝑴𝑨𝒎𝒂𝒙 of FallAllD Wrist dataset

(h) Boxplot of SMAmax for FallAllD Wrist dataset

Figure 6: The boxplots of statistical features of the dataset provide a visual representation of their distribution and the thresh-
olds.
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