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Abstract: The paper discusses the integration of in-vehicle information systems and their impact on driver performance, 
considering the demands of various types such as visual, auditory, manual, and cognitive. It notes that while 
there's a lot of research on optimizing visual and manual systems, less attention has been paid to systems that 
use both visual and auditory cues or a combination of different types. The study has found that simple tasks 
cause the least cognitive strain when drivers use touchscreens, while complex tasks are easier to manage 
cognitively when voice commands are used alone or with visual aids. These results are important for designing 
car interfaces that effectively manage the driver's cognitive load. 

1 INTRODUCTION 

The latest World Health Organization (WHO) report 
underscores the grave toll of road traffic injuries, 
indicating that in 2013 alone, 1.25 million lives were 
lost globally, positioning such injuries as a primary 
global cause of mortality (WHO, 2016). Currently 
ranking as the ninth major cause of death across age 
groups worldwide, road traffic injuries are projected 
to ascend to the seventh rank by 2030. Focusing on 
driver distraction, numerous research endeavors have 
highlighted its significance, attributing between 25% 
and 75% of all accidents to distraction and inattention 
(Dingus et al., 2006; Ranney et al., 2000; Klauer et 
al., 2005; Klauer et al., 2006a; Talbot and Fagerlind, 
2006). The escalating adoption of in-vehicle 
information systems is of paramount importance due 
to their potential to elicit visual, auditory, manual, and 
cognitive demands, potentially impacting driving 
performance in diverse ways. A critical knowledge 
gap pertains to the intricate interplay between various 
distraction types and interaction methods during 
driving. This pivotal context underscores the 
necessity of a comprehensive understanding to 
inform safer and more effective driving 
environments. 
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Advancements in technology are expanding the 
capabilities of infotainment systems introduced into 
vehicles. Communication (e.g., Messaging) and other 
important user journeys that have traditionally not 
been available to the driver can now be embedded 
within in-vehicle information systems (IVIS). Many 
of these systems have the potential to increase safety, 
advancements and open possibilities in the car that 
haven’t been available in the past (Klauer et al., 
2006b). However, this must be done carefully 
especially since many new interaction methods (e.g., 
Voice) do not have a long history of safety evaluation. 

All non-driving interactions in a car involve 
distraction (Victor, 2010). So, the goal of an 
infotainment system should be supporting basic tasks 
and short interactions. Complicated tasks should be 
performed when the car is stopped. Multimodal 
interaction has the potential to provide flexibility to 
the user preferred and user safe modality. Google 
automotive teams use industry standards and internal 
research to determine how to create products most 
safely and effectively to be used while driving. There 
is substantial safety data indicating how to build 
visual/ manual-based products, but there is not 
enough data indicating how we should build 
multimodal visual/voice/ manual systems. We hope 
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these findings contribute to building voice based IVIS 
systems. 

 
Figure 1: In-built screen car infotainment system. 

This study aims to comprehensively analyse and 
assess user workload and preferences within the 
context of multimodal interaction involving a 
prototype infotainment system. The overarching 
objective is to optimize interaction modalities for 
diverse tasks such as navigation, messaging, and 
their sequential execution. By investigating the 
desirability and safety of multimodal interactions 
for drivers, the study seeks to identify optimal 
modal pairings for fundamental navigation tasks. 
Furthermore, the research will delve into the 
advantages and disadvantages associated with fully 
voice-based interactions and hands-free approaches in 
automotive settings. Another critical aspect is the 
examination of mental workload and distraction 
patterns during secondary interactions. Through 
these inquiries, the study contributes to enhancing the 
design of infotainment systems, fostering safer and 
more efficient driver experiences. 

2 METHOD 

We collected driving data along with brain signal data 
using Electroencephalography (EEG) sensors from 
15 participants, (5 females and 10 males). All the 
participants were between the age of 25 years to 54 
years. The experiment was conducted in June 2021 in 
the Google Mountain View campus following all 
required human subject protocols. As shown in 
Figure 2, we used a driver simulator to collect the 
driving data. An Open BCI EEG headset was used to 
collect the brain signals from the drivers 
(participants). We used an Android Auto tablet in the 
simulator with internally designed prototypes to test 
the driver - infotainment system interaction. These 15 
subjects interacted with the Android Auto assistant 
while driving on a simulated freeway with moderate 
traffic across four modalities (only voice without any 
info on the screen, Voice with information on the 

screen, only touch/tap, Voice along with touch for 
two types of tasks). The modalities were repeated for 
two types of tasks: a “single shot” in which they are 
required to complete one simple task with one 
interaction; and a “multi shot”, which involved more 
than six interactions in which the driver had to 
complete three major tasks back-to-back. Two 
sessions of data from each participant were collected, 
which means they had to do a total of 16 tasks. We 
also conducted a survey asking questions after every 
task, which were designed based on NASA TLX 
workload assessment.  

 
Figure 2: Experimental scenario from Mountain View UX 
Research Laboratory, Google. 

A detailed description of each stage of the above- 
mentioned methods is stated below. 

2.1 Participant Selection 

Data was collected from 15 non-Googler participants 
between June 19th to June 30th, 2021, in a simulated 
research laboratory environment. The participants 
were recruited through Answer Lab/UXI. Several 
criteria were considered for recruiting the 
participants: i) Participants must have a valid U.S 
driver’s license ii) Participants should drive at least 
3+days a week iii) Should have experience with 
Android Auto iv) Should have experience using 
Google map and assistant. v) Participants should be 
local to the Mountain View/ San Francisco area. 
There were no specific requirements for gender, age 
group, or ethnicity. 
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Figure 3: Open BCI 8 channel EEG Headset. 

2.2 EEG Setup 

EEG recordings tend to utilize between 32-64 
electrodes placed according to the IEEE 10-20 
positioning. However, setting up the electrodes on the 
scalp is time consuming and can result in unreliable 
data. Optimizing the number of electrodes pertaining 
to the user’s brain activity could potentially reduce 
the number of electrodes and improve the overall 
classification accuracy. This would reduce both the 
computation and acquisition times. Furthermore, 
using too many electrodes sometimes deteriorates the 
quality of EEG signals as it picks up many unwanted 
signals from the user’s scalp. 

Therefore, we have used an EEG headset from 
OpenBCI with 8 channels/ electrodes for our 
experiment. The electrodes are distributed to cover 
the whole scalp (frontal, occipital, temporal and 
parietal lobes) as shown in Figure 3. The headset is 
supported by OPENBCI software that helps read the 
brain signals directly from a computer and export the 
raw signals for further signal processing. Figure 4 
shows the real time raw brain signals-alpha (8 -12 Hz), 
beta (12-30 Hz), gamma (above 30Hz), theta(4-8Hz) 
and delta (0.4-4Hz). The activity of the brain signals 
change based on the neural activity of the participant. 

 
Figure 4: Real time OPENBCI raw FFT plot. 

For example, when a human subject is resting with 
eyes closed, brain signals between 8-12 Hz i.e alpha 
waves are found to be dominant in the frontal areas of 
the brain. When the subject performs a lot of mental 
computation, the beta wave starts dominating all 
other signals. This is how the brain signals continuous 
changes during neural processes in a human brain. We 
will be looking at beta and gamma waves as a method 
to quantify whether the driver is distracted. 

2.3 NASA TLX 

NASA Task Load Index (NASA TLX) is widely used 
in UX research as a subjective multidimensional tool 
for assessing mental workload related to a task. As 
specified earlier in this paper, a user survey was also 
conducted after every driving task to understand the 
participant state and preference. The questions were 
designed based on NASA TLX scoring style. After 
every task, we asked the question how mentally 
demanding the task was and to rate it out of five 
where ‘1’ is ‘not very demanding’ and ‘5’ is ‘very 
demanding’. At the end of every session, they were 
asked which modality felt the easiest for them overall 
as shown in Figure 5. 

 
Figure 5: Final Survey Question. 

2.4 Prototypes 

Two main types of prototypes were created in this 
experiment. The first one was a single interaction/ 
single shot task prototype, and the second was a 
multiple interaction/ multi-shot task prototype. Single 
interactions are those tasks in which the participant 
must interact only once with the assistant to complete 
the task, and they are usually simple and quick. But 
multi-interaction tasks are those in which the driver 
must interact multiple times (6+) back-to-back to 
complete one task. 

Again, for each of these interactions, four 
modalities were designed as follows: 
i) Voice-only single/multi shot tasks (task to be 
completed by voice-audio interaction only; no visual 
information related to the conversation provided on 
the screen) 
ii) Voice + screen single/multi shot tasks (task to be 
completed by voice interaction only but visual 
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information about the interaction is available on the 
assistant screen) 
iii)  
iv) Voice + ap single/multi shot tasks (task to be 
completed using both voice and tapping options on 
the screen) 
v) Only tap single/multi shot tasks (task to be 
completed using only tapping the option on the 
screen). 

Figure 6 shows a screenshot of the prototype for 
single shot voice+ screen modality task. 

 
Figure 6: Single Interaction Voice + Screen Modality 
Prototype. 

This is a single shot/ single interaction task with voice 
and visual/information on the screen. During the 
experiment, the Assistant asks the driver to choose 
one of the nearest gas stations as the fuel is low. 
Assistant makes the interaction by voice and the 
information about the gas stations are provided on the 
screen for the driver to see the options. The driver was 
required to make the choice using voice interaction 
only. Whereas Figure 7 shows another single 
interaction task where the driver/ participant must 
make a choice by tapping on the screen. 

 
Figure 7: Single Interaction Tap Modality Prototype.  

Here the user needs to make a choice by either tapping 
the option ‘switch’ or ‘cancel’ on the screen. 
Similarly, the same modalities were used for multi- 
interaction tasks, but the driver had to complete one 

task. Figure 8 shows the chain of multi-interaction 
during the driving experiment.  

 
Figure 8: Multi Interaction Voice Modality Prototype.  

As you can see in the interactions above, the Assistant 
starts the conversation asking some questions about 
favourite cuisine and then providing choices of those 
cuisines around and then making a call for 
reservation. The Assistant then asks if the driver 
would like to listen to some music and provides some 
choices of music. 

Next, the Assistant asks if the driver wants to send 
a text message and works with the user to send the text. 
So, here, the user completes three major tasks 
(calling, tuning music in the car, and sending text 
messages) with almost nine interactions back-to- 
back. 

3 DATA ANALYSIS 

The mental workload from the EEG signal was 
calculated using a few steps as follows: 

3.1 Signal Processing 

The band power of the EEG signal was computed 
from the raw data using Python scripting. The Gamma 
and Beta band power for each participant was 
specifically extracted for further analysis. 

3.2 Quantitative Analysis 

Brain signals are divided into five main types based 
on their frequency ranges (Alpha, Beta, Gamma, 
Delta, and Theta). Each of these brain signals are 
usually dominant during specific tasks. Beta and 
Gamma are the signals that are used for mental 
workload estimation. 

The cognitive load index (CLI)/ mental workload 
is calculated using the ratio of mean gamma and beta 
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band power from frontal and parietal electrodes 
respectively. The mathematical formula is shown 
below in Figure 9: 

 
Figure 9: Cognitive Load Index. 

3.3 Task Based Analysis 

The average CLI is calculated for each task and 
modality (e.g., single shot only voice task) and it is 
compared with a baseline value computed based 
on resting EEG of each participant. A baseline value 
from resting EEG of every participant during the 
experiment was also collected. The CLI value was 
compared against the baseline value. Similarly, the 
mental workload from NASA TLX two sessions, both 
EEG and survey data was averaged over the sessions. 
The mental workload from EEG and NASA TLX was 
also compared to validate the results. The above 
calculations were made for every subject 
individually. Results in the section below shows the 
aggregate result of all the 15 participants in this study. 

4 RESULTS 

Figure 10 and Figure 11 shows the result on mental 
workload from one shot/ single interaction tasks. 

 
Figure 10: Mental workload with EEG over different 
modalities for one-shot tasks. 

 
Figure 11: Mental workload with NASA TLX over different 
modalities for one-shot tasks. 

The above graph shows that Only Touch modality 
involved the least CLI/ mental workload during one- 
shot tasks. The EEG result also overlaps with NASA 
TLX observation. According to EEG data, touch 
modality has the least cognitive load which means it's 
least challenging for drivers to handle conversation 
with touch while driving. So, overall, touch modality 
seems to be the common best modality from both the 
techniques for one shot interactions. 

For multi-shot interactions, again NASA TLX and 
EEG data indicate that touch is the modality with the 
highest cognitive load and voice with or without 
screen are the best and preferred modalities with least 
cognitive load among all the four modalities, as 
shown in Figure 12 and 13 below. 

 
Figure 12: Mental workload with EEG over different 
modalities for multi-shot tasks. 
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Figure 13: Mental workload with NASA TLX over different 
modalities for multi-shot tasks. 

The participants were also asked a final question at 
the end to choose the most preferred modality 
according to their experience with the drive. And the 
answer chosen by most of the participants is ‘voice 
with information on the screen’ across all types of 
tasks (both single shot and multi shot interactions). 
Also, in NASA TLX final survey participants rated 
‘touch’ as an easy modality for one shot tasks during 
the survey, they specified that overall touch is most 
disliked as it causes distraction for them to take eyes 
off the road to make the choices on the screen. 

We also compared the NASA TLX choices 
between two sessions, and we noticed that for both 
single shot and multi shot, the participants rated most 
of the modalities easier in the second session which 
they rated harder in the first one. The modalities 
which were rated as easy in the first session were rated 
easy in the second session as well. Figure 14 and 
Figure 15 shows the compared NASA TLX responses 
of the participants between the first and second 
session for both one shot and multi-shot tasks. 

 
Figure 14: NASA TLX ratings over two sessions (one shot). 

 
Figure 15: NASA TLX ratings over two sessions (multi-
shot). 

In Figure 13, participants rated all modalities as 
‘1’(easy) in the first session except Voice+ Touch 
modality. In the second session, they rated all 
modalities as easy again and the Voice+ Touch 
modality as easy as well. In Figure 14, for multi-shot 
tasks, participants rated all modalities as harder in the 
first session except ‘only voice’ modality but in the 
second session they rated all these modalities as 
easier than what they rated in the first session. This 
observation brings up an important research question, 
“How much experience will drive perceived 
workload down across time?” which will be explored 
in our future research. 

If we look at the EEG signals of the participants 
over two sessions for one shot and multi shot tasks, we 
get a similar story. Figure 15 and 17 shows the mental 
workload observed with EEG signals over two 
sessions. This also shows that the workload tends to 
be lower in the second session. 

 
Figure 16: Mental workload with EEG over two sessions 
(one shot). 
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Figure 17: Mental workload with EEG over two sessions 
(multi-shot). 

Although we cannot conclude from this data, we can 
see the possibility of reduced workload over time, if 
the participants have multiple experiences with the 
tasks. 

5 CONCLUSIONS 

In conclusion, our investigation into the realm of 
multimodal voice interactions within automotive 
settings has unearthed intriguing patterns. For swift 
and succinct single shot interactions, voice-based 
commands emerge as an optimal choice, yielding 
comparable cognitive load to touch interactions. 
Conversely, for intricate multi-turn or extended 
engagements, voice interactions take precedence, 
especially when accompanied by relevant visual cues, 
facilitating a seamless conversational experience. The 
dynamic interplay between experience and subjective 
or EEG-based workload assessments remains an 
enigma, warranting further exploration. Similarly, the 
precise scenarios in which visual information 
enhances various types of voice interactions warrant 
deeper scrutiny. As we navigate towards a future of 
enhanced in-vehicle interfaces, it becomes evident 
that additional empirical endeavours are 
indispensable. By embarking on forthcoming 
experiments, we can illuminate the intricacies 
surrounding these facets, fostering a more refined and 
holistic understanding of effective multimodal voice 
interaction design. 
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