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Abstract: Tailings dam displacement prediction is one of the important elements of safety management in mining 

enterprises, and accurate prediction and timely maintenance measures are essential to prevent dam failure 

accidents. However, the existing prediction methods only consider the influence of single factor on tailings 

dam displacement, resulting in poor accuracy in predicting tailings dam displacements. Improving tailings 

dam displacement prediction accuracy, an intelligent prediction model based on CNN for tailings dam 

displacement prediction was established. The results show that the established CNN prediction model, MAE 

0.07113, MSE 0.00733, RMSE 0.08565; the prediction results have prediction accuracy and stronger 

robustness compared with RF, NB and Xgboost prediction models. The research results in this paper are 

important to support safety and stability of tailing dam operation. 

1 INTRODUCTION 

In the beneficiation process, the residue remaining 

after screening and extraction of useful minerals from 

the ore by physical and chemical action is called 

tailings. Typically, a tailings dam is a dam built to 

form a field reservoir for the storage of various ore 

tailings. Structural instability of tailings dams can 

cause dam failures, and the quality of their operation 

has a direct impact on the safety of life and property 

of mining companies as well as downstream people 

(He W, 2023). 

Machine learning algorithms are widely used in 

the field of tailings dams and slope deformation, and 

many mining companies are gradually establishing 

artificial intelligence tailings dam monitoring 

systems to dynamically monitor the operation of 

tailings dams (Liu JX, 2022). Machine learning 

algorithms are widely used in the field of tailings 

dams and slope deformation. Hua Guowei et al. (Hua 

GW, 2022) In order to accurately predict the 

deformation trend of tailings dam, a PCA-BBO-SVM 

tailings dam deformation prediction model was 

established, using Yangjiawan tailings dam data as 

training data, and demonstrated that the model has 

higher prediction accuracy and prediction ability for 

localized fluctuations than the BP model. Si-Cheng 

Yi et al.(Qin S, 2002) proposed an anomaly data 

diagnosis model based on multi-point correlation and 

improved isolated forest algorithm, which can 

effectively distinguish noise from real anomalous 

values in tailings dam displacement monitoring 

sequences and improve the accuracy of the 

monitoring system. However, the slope deformation 

is influenced by many factors and the mechanism of 

influence is complicated, because the statistical 

model is less flexible, it cannot deeply extract the 

internal characteristics of the data and achieve better 

prediction. 

Intelligent algorithms mainly refer to the use of a 

data-driven approach to establish suitable machine 

learning algorithms for prediction and monitoring of 

slope deformation. The commonly used intelligent 

prediction methods are nonlinear model, neural 

network (BP) (Du J, 2013), support vector regression 

(SVR) (Cao Y, 2016), Extreme Learning Machine 

(ELM) (Zhang Lyr, 2022) Numerous machine 

learning algorithms, such as the displacement and 

deep learning, have been introduced into the slope 

deformation prediction model with displacement as 

the core prediction variable (Kavzoglu T, 2019). 

Pham et al.(Pham V D, 2020) used the Moth Flame 

Optimizer (MFO) to optimally search the 

hyperparameters (values of filters) of the CNN and 

compared the model with traditional classification 

algorithms, such as random forest, random subspace, 

and CNN refined for adaptive slope descent, as well 

as the analysis demonstrated that the benchmark 

approach was exceeded in all comparative metrics 
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when the suggested algorithm is suitable to be a 

replacement for monitoring landslide deformation. 

Wu et al. (Wu L, 2022) used a time series approach to 

decompose cumulative landslide deformation into 

periodic and trend deformation, and cubic 

polynomials were used to predict the trend 

deformation. Considering the periodic variation of 

rainfall and reservoir level, the proposed model could 

better capture the characteristics of the provided data 

and improve prediction accuracy compared to GRU, 

and C-GRU attains a lower mean error in squares and 

represents an important increase in landslide accuracy 

in forecasting. 

In summary, domestic and international research 

trends show that slope deformation is more 

displacement-oriented, and slope displacement is 

influenced by both internal and environmental 

factors, and intelligent algorithms of machine 

learning and deep learning among intelligent 

algorithms are widely applied in the prediction of 

slope displacement and obtain good development 

results. However, many factors affect dam 

deformation, and dam deformation prediction needs 

to consider more comprehensive factors. Therefore, 

in this paper, CNN is combined and optimized, and 

traditional indicators such as infiltration line, 

reservoir level and other related factors are 

considered, and weather factors such as wind speed 

and temperature are incorporated. 

2 CNN MODEL CONSTRUCTION 

2.1 Tailings Dam Displacement 
Influencing Factors 

Tailings dam displacement is driven by its own 

geological structure, topography, external human 

activities, climate, runoff and other conditions, so that 

the originally stable slope can suddenly and strongly 

deform. The factors affecting tailings dam 

deformation can be divided into three categories: first, 

internal factors, including infiltration line, reservoir 

water level, dam settlement and other factors; second, 

environmental factors, including weathering, rainfall, 

temperature, etc.; third, human factors, including 

mining operations. 

2.2 CNN Model 

Fundamental structure of CNN consists of input layer, 

convolutional layer, pooling layer, fully connected 

layer and output layer. Generally, multiple 

convolutional layers and pooling layers are adopted, 

and the convolutional layers and pooling layers are 

set up alternately, which means that one 

convolutional layer attaches to one pooling layer, and 

the pooling layer attaches to another convolutional 

layer following the pooling layer. The output feature 

surface of the convolutional layer of each neuron is 

locally connected to its input, and the corresponding 

connection loadings are weighted and added to the 

local input plus bias to obtain the input value of the 

neuron. 

2.3 Convolutional Layers 

The convolutional layers of a CNN extract different 

features of the input through convolution operations. 

The first convolutional layer extracts low-level 

features for edges, lines, and corners, while the high-

level convolutional layer extracts the high-level 

features. Each convolutional layer in a CNN satisfies 

the following relationship with respect to the size of 

each output feature surface ( namely, the number of 

neurons): 

oM 1
iMapN CWindow

apN
CInterval

 
  
            

(1) 

where iMapN is dimension of each input feature 

surface; CWindow is dimension of the convolutional 

kernel; CInterval is the length of the sliding step of 

the convolutional kernel in the layer preceding it, and 

in general, there is a need to make sure that Equation 

(1) is integrable or the CNN network structure 

requires additional processing. Amount of trainable 

parameters within each convolutional layer CParams 

satisfy equation (2) 

( 1CParams iMap CWindow oMap   ）   (2) 
Where oMap is one of the number of output 

eigenfaces of each convolutional layer; ioMap is one 

of the number of input eigenfaces.1 denotes the 

deviation, which is shared among the same output 

eigenfaces. 

Among the CNN structures, more depth and more 

number of feature facets, the greater the feature space 

that the network can represent, the stronger the 

network learning ability, but at the same time, it will 

also make the network computation more complex as 

well as prone to overfitting. Thus, in practical 

applications, the depth of the network, the number of 

feature facets, the size of the convolution kernel and 

convolution's sliding step should be appropriately 

selected in order to obtain a good model while 

shortening the time of training. 
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2.4 Pooling Layer 

The pooling layer is immediately followed by the 

convolutional layer, which also consisting of multiple 

eigenfaces, each uniquely corresponding to one of the 

eigenfaces of its previous layer, without changing the 

number of eigenfaces. Let the output value of the lth 

neuron of the nth output eigenface in the pooling layer 

be
out

nlt  , then we have 

( 1)
( , )

out in in

subnl nq n q
ft t t 

      (3) 

where
in

nqt   denotes the output value of the qth 

neuron on the nth input eigenface of the pooling layer;

( )subf   can be the take maximum function, take 

mean function, etc. The size (number of neurons) of 

each output eigenface of each pooling layer in the 

CNN DoMapN  is 

( )
oMapN

DoMapN
DWindow

          (4) 

Where the pooling kernel is of size DWindow , 

the pooling layer decreases the computational effort 

in the network model by reducing the number of 

connections between convolutional layers, i.e., 

reducing the number of neurons through the pooling 

operation. 

2.5 Fully Connected Layer 

Within a CNN structure, multiple convolutional and 

pooling layers are followed by the connection of one 

or more fully connected layers. Similar to MLP, the 

neurons in a fully connected layer are fully connected 

to all neurons in the previous layers. While fully 

connected layers enable the integration of local 

information from convolutional or pooling layers 

with category distinctions. 

3 RESULTS 

In order to study the tailing dam displacement 

variation data as well as to better train the neural 

network, this paper adopts the monitoring data of a 

tailing pond as the test data for training the model. 

The input data include factors such as infiltration line, 

reservoir water level, dam settlement and rainfall. The 

sample size is 8261, of which the training set is 80% 

and the validation set is 20%. 

 

3.1 CNN Prediction Results 

The results of training and simulation of CNN 

convolutional neural network as shown in Fig. 1. The 

chart shows that CNN has a better prediction effect, 

and the predicted value is close to the real value. the 

RMSE of CNN is 0.08565, MAE is 0.07113, and 

MSE is 0.00733, which basically matches the real 

value in the first period of data, and some deviations 

appear in the middle of June, but the overall trend is 

consistent with the real value The overall trend is 

basically consistent with the true value. The reason 

for the deviation may be due to the existence of partial 

rainfall, the rainfall season should be in July-August, 

and less rainfall in January-May, resulting in a small 

change in the data of rainfall, and it is difficult for the 

model to learn the effect of rainfall on displacement, 

so it leads to a certain deviation in the middle of June. 
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Figure 1. CNN prediction diagram. 

3.2 Multi-Model Comparison Test 

In order to verify the prediction effect of the CNN 

model proposed in this paper compared with other 

models, the RF algorithm, Xgboost model and NB 

algorithm were used to compare with the CNN model, 

as shown in Fig. 2. The RMSE value of the Xgboost 

test set was 0.09322, the MAE value was 0.07836 and 

the MSE value was 0.00869. The RMSE value of RF 

test set is 0.09601, MAE value is 0.07532, and MSE 

value is 0.00921. The RMSE value of NB test set is 

0.09444, MAE value is The predicted results of the 

NB model did not effectively predict the trend of 

displacement changes, and the predicted results 

maintained fluctuations in fixed values, which had 

large deviations from the true values. 
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Figure 2. Multi-model prediction comparison diagram. 

The comparison graph of prediction errors of the 

four models is shown in Fig. 3, which indicates that 

the MAE, MSE and RMSE of the CNN model are 

smaller, indicating that its model prediction is better 

and more suitable for tailings dam deformation 

prediction. The model fully explores the relationship 

between the time series data of tailings dam 

deformation and the influencing factors, learns the 

long-term trend and law of tailings dam deformation 

over time in depth, and achieves a high level of 

prediction. 
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Figure 3. Multi-model error comparison diagram. 

4 CONCLUSION 

(1) The predicted values of the CNN-based tailings 

dam displacement prediction model are closer to the 

real values and have better prediction effects, with 

RMSE of 0.08565, MAE of 0.071138 and MSE of 

0.00733. 

(2) By comparing CNN prediction model with 

many other prediction models outperforms RF, NB 

and Xgboost prediction models, and the predicted 

values fit better with the true value curve. The model 

achieves excellent prediction performance by fully 

exploiting the relationship between time series data 

and avoiding problems such as gradient 

disappearance. After comparison experiments, it is 

found that this model has excellent prediction ability 

in the field of tailings dam deformation prediction and 

can be widely applied. 

(3) Although the constructed model has achieved 

good prediction results, research on the performance 

of the prediction model still needs to be strengthened. 

Subsequently, the characteristics of tailings dam 

deformation data will be explored, the spatial 

correlation of different monitoring data will be further 

considered fully, and the implied relationships of 

different factors affecting monitoring will be 

analyzed in depth. 
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