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Abstract: Cache side-channel attacks are a persisting threat to modern computers for their ability to steal secret 
information in memory and hard-to-detect characteristics. While researchers have studied these attacks for a 
long time, there has been relatively little focus on attacks against media software. One reason is the inherent 
noisiness of cache side-channels, making it challenging to extract meaningful information from it. However, 
recent advancements in machine learning have changed the landscape, making side-channel analysis more 
accessible. In this paper, we proposed a new side-channel analysis framework that is capable of extracting 
high-level information from complex applications. With this framework, we attacked image processing 
programs, reconstructed images that the victim opened with cache side-channel attacks, and achieved 
significantly improved results compared to the previous work. 

1 INTRODUCTION 

Side-channel attacks involve leveraging additional 
information about a computer to infiltrate its internal 
states. This supplementary data encompasses factors 
such as electromagnetic emissions, power usage 
patterns, and execution timing. Subsequently, this 
information can be meticulously analyzed to extract 
sensitive data, such as cryptographic keys. With the 
surge in the popularity of public cloud services, the 
threat posed by side-channel attacks has intensified. 
Numerous studies (Irazoqui et al., 2014; Moghimi, 
2023) have demonstrated the practical feasibility of 
cross-VM side-channel attacks, heightening concerns. 

While side-channel attacks have been under 
scrutiny for an extended period, the practice of 
conducting side-channel analysis (SCA) on complex 
software has traditionally been regarded as a 
formidable endeavor, if not outright impossible. 
Nonetheless, the substantial advancements in 
machine learning and deep neural networks in recent 
years have paved the way for the extraction of high-
level information from collected traces. This 
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development has amplified the potency of side-
channel attacks, rendering them more formidable than 
ever before. 

In this context, a pivotal question arises: With the 
aid of advanced machine learning techniques, what is 
the upper limit of information attainable through side-
channel analysis? We think that investigating this 
question at the present juncture is important, given the 
aforementioned reasons. 

In this paper, our primary focus is on investigating 
cache side-channel attacks targeting black-box image 
processing applications. Specifically, these 
applications including a JPEG decoding program and 
a WebP decoding program, both of which are 
designed to convert JPEG or WebP images into 
bitmap files. Concurrently, an attacker initiates a 
cache side-channel attack on these programs and 
captures memory access traces. The objective is to 
gauge the attacker's ability to effectively reconstruct 
the original input images from these traces using 
neural networks. Our contributions can be 
summarized as follows: 
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• Proposed a new side-channel analysis 
framework that supports both Prime+Probe and 
write-back channel attacks against image 
processing software. 

• With the proposed framework, we use it to 
attack libjpeg and libwebp programs and 
reconstruct images successfully. Compared to 
the previous work (Yuan et al., 2022), the 
reconstructed images have much higher fidelity 
even under stricter conditions. 

• To our knowledge, this work is the first one that 
attacks libwebp with side-channel analysis, 
and also the first one doing side-channel 
analysis with a write-back channel attack. 

In the rest of this paper, we will first survey 
related works about cache side-channel attacks, side-
channel analysis with machine learning, and side-
channel attacks against media programs in Section 2. 
Section 3 presents the dataset, the attack setup, and 
the neural network model design. The reconstruction 
result is presented and discussed in Section 4. Finally, 
the conclusion and future work are provided in 
Section 5. 

Our code is available in our GitHub repository 
(WEBIST-2023-Cache_Side_Channel, 2023). 

2 BACKGROUND AND RELATED 
WORKS 

2.1 Cache Side-Channel Attacks 

The cache is a hardware set between main memory and 
CPUs to accelerate the memory access speed. Due to 
its shared characteristic, the execution of one process 
will influence the state of the cache, thus, influencing 
the memory access time of other processes. In other 
words, an attacker process can infer other processes' 
internal states by observing whether each memory 
access is cache hit or cache miss. 

There are many variations of cache side-channel 
attack techniques, that differ in the threat model and 
amount of information the attacker can get. Here, we 
introduce two of them that are related to this work, the 
Prime+Probe attack and the write-back channel attack. 

2.1.1 Prime+Probe Attack 

The Prime+Probe attack (Tromer et al., 2010) exploit 
that modern caches mostly apply set-associative 
design, that the data is stored in which cache line is 
decided by certain bits in the middle of the memory 
address, called index bits. 

The attack can be separated into two steps. In the 
prime stage, the attacker fills the cache with his data 
by accessing memory addresses mapping to all cache 
lines, creating the eviction set. Then the attacker waits 
for a while for the victim to execute. During the 
victim’s execution, he will replace some data in the 
cache with his data. The attacker enters the probe 
stage the next time the attacker process is scheduled 
to execute. This time, he accesses the whole eviction 
set again and measures the time it takes to retrieve the 
data. If it takes longer to access a memory address, 
this infers the victim accessed this cache line before 
so that the attacker’s data is evicted from the cache. 

Overall, as long as a program has access to a 
cycle-level high-precision clock, and can create an 
eviction set, it can launch a Prime+Probe attack and 
infer which cache lines or memory addresses are 
accessed by the victim. Previous works have shown 
that Prime+Probe attack can be used to exploit 
encryption keys (Tromer et al., 2010; Liu et al., 2015) 
and perform website fingerprinting (Oren et al., 2015). 

2.1.2 Write-Back Channel Attack (WB 
Attack) 

Besides knowing cache hit or miss, memory 
accessing time can also be exploited to infer whether 
the cache line is dirty or not (Cui et al., 2022). If the 
cache write policy is write-back, when a process 
updates a value in memory, the update will only be 
done in the cache under the hood. In this scenario, the 
dirty bit of that cache line will be set, so that the 
hardware knows to write the data back to the main 
memory when eviction happens. 

The write-back channel attack (WB attack) 
exploits the fact that when the dirty bit is set for a 
cache line, it takes a longer time to write the data back, 
thus gaining further information about whether the 
victim process writes data to the cache line. The WB 
attack is an upgraded version of the Prime+Probe 
attack. Under the same condition, the WB attack can 
infer which cache lines are read or written by the 
victim. The previous work has described the 
possibility of creating side-channel attacks with the 
write-back channel. 

2.2 Side-Channel Analysis with 
Machine Learning 

Though side-channel attacks are easy to launch, the 
collected data need to be analyzed to get sensitive 
data. The whole process is usually called side-channel 
analysis. The analyzing task is usually far from easy 
for two reasons. First, the collected data is noisy and 
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huge in size. Second, the relationship between the 
secret to extract and collected data remains unclear. 
These two reasons make side-channel analysis a very 
difficult and labor-intensive task. However, with the 
progression in machine learning techniques, this task 
has become feasible in practice. 

First, researchers have shown that neural 
networks can be used to denoise traces (Wu and Picek, 
2020; Kwon et al., 2021) collected with side-channel 
attacks. After that, more studies have proved that 
deep neural networks can even be exploited to 
perform end-to-end side-channel analysis attacks, 
including website fingerprinting with cache side-
channel (Cook et al., 2022) and keystroke logging 
with electromagnetic side-channel (Zhan et al., 2022). 

2.3 Side-Channel Analysis of Media 
Program 

Side-channel analysis of media software hasn’t been 
studied a lot relatively. Compared to breaking 
encryption implementations, the data to steal in media 
software is larger in size, and the diversity in software 
implementations is greater. On the other hand, 
website fingerprinting and keystroke logging with 
side-channel analysis with side-channel analysis can 
be degraded to classification problems, while attacks 
on media software can’t. 

As started by Xu, Cui, and Peinado (2015), they 
successfully extracted the outlines of JPEG images 
through side-channel analysis. Followed by Balmau, 
et al. (2017), they reconstructed JPEG images with 
colors. However, these two works launched attacks in 
different scenarios. They assumed the OS was 
compromised and treated the victim program as a 
white-box, which are both strong assumptions. 

Image reconstruction with non-privileged, black-
box side-channel analysis (Yuan, Wang et al., 2021; 
Yuan, Pang et al., 2022) then succeeded. Yuan et al. 
simplified the process of reconstructing images from 
memory address traces to a regression problem. They 
represented images with latent vectors that contained 
high-level information, extracting latent vectors from 
traces, and then reconstructed images from them. This 
made side-channel analysis of media software 
possible. 

3 METHOLOGY 

3.1 Threat Model 

The threat model includes assumptions listed as 
follows: 

• The attacker can execute native code on the 
victim’s machine. 

• The attack doesn’t need any knowledge of the 
victim program, only treat it as a black box. 

• The attacker has the same machine and victim 
program, or he can input any data into the victim 
program and observe the trace to produce 
training data. 

• The cache being attacked uses the least recently 
used (LRU) for the cache replacement policy 
and write back for the cache writing policy. 

For evaluation, we assume the target cache to be 
the L1 data cache, but the attack framework doesn’t 
limit to any level of cache. 

The framework is evaluated on two image 
processing programs, which are a JPEG decoding 
program and a WebP decoding program. The JPEG 
decoding program we used is the example JPEG 
decoding program tjexample.c in the popular 
libjpeg-turbo library (ver. 2.1.92) (libjpeg-
turbo, 2010). This program takes a JPEG image as the 
input, decodes it, and outputs the bitmap file. As for 
the WebP decoding program, the example program 
dwebp.c in the libwebp library (ver. 1.3.1) 
(libwebp, 2011) is used. 

The complete attack consists of two phases. In the 
training phase, the attacker produces traces 
corresponding to the reference images and trains the 
neural network. Then in the second phase, the 
attacker can reconstruct unknown images from traces 
collected from the victim. 

3.2 Dataset 

Experiments are conducted with two image datasets, 
which are JPEG and WebP datasets. The images 
come from Large-scale CelebFaces Attributes 
(CelebA) Dataset (Liu et al., 2015), Align & Cropped 
version, and are then resized to 128x128 pixels. The 
images are in JPEG format originally, so for the 
WebP dataset, manual transformation is required. 
Ordered by image ID, the first 80,000 images are used 
for training, and the last 19,921 images are used for 
testing. Every image in the dataset belongs to one of 
10177 identities. This identity is used to optimize the 
training of the neural network. 

3.3 Attack Setup 

In this study, Intel Pin (Luk et al., 2005) is used to 
collect memory access traces. The reason for 
choosing Intel Pin is that it is a dynamic 
instrumentation tool, in other words, there is no need  
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Figure 1: Model Overview. 

to recompile the victim program, which corresponds 
to the black-box assumption about the victim program. 

After traces are collected, post-processing is 
performed. The first step is to extract index bits 
according to the cache configuration. In our case, the 
attack target is the L1 data cache with 64 sets, and 64 
bytes per cache line, thus, 7-th to 12-th bits of 
memory addresses are extracted. Next, pad traces to 
the maximum length of all traces. Finally, encode the 
cache line index with the binary encoding method. In 
other words, for each memory access, a vector with 
64 elements is created. For the Prime+Probe attack, 
only the element corresponding to the accessed cache 
line index is 1, otherwise 0. As for the WB attack, -1 
is used to represent a write, and 1 for a read. 

3.4 Model Design 

The overview of the neural network is shown in 
Figure 1. The primary reconstruction job is done by a 
reconstructor network, which is essentially a 
variational autoencoder (VAE). It is composed of a 
trace encoder and an image decoder. The idea is that 
the trace encoder is expected to extract high-level 
information (skin color, face direction, …) about the 
image, and the image decoder can create the image 
according to it. As the previously proposed 
framework (Yuan et al., 2022) has done, a neural 
network is chained after. It is used to answer if an 
image is real or not and classify its identity, called a 
classifier. Though this part is not mandatory, they can 
provide extra information about how the 
reconstruction images look and propagate loss back 
to train the reconstructor better.  

The training process of the whole neural network 
is analogous to a generative adversarial network 
(GAN) (Goodfellow et al., 2014). First, fix the 
reconstructor, and train the classifier with real and 
fake images reconstructed by the reconstructor. Then, 
fix the classifier and train the reconstructor with the 
assistance of the classifier afterward. Hopefully, the 
two neural networks will grow together and provide a 
better reconstruction and classification result. 

For the detail of models inside each part, the trace 
encoder is a 1-dimensional convolutional neural 
network (1D CNN), and the image decoder is a 2-
dimensional convolutional neural network (2D CNN). 

When training the classifier, the loss function is 
defined as follows: ࣦ ൌ ,ሺ݅௫ܧܥ ଓ௫̂ሻ ൅ ,fakeݎሺܧܥܤ ௫ොሻݎ̂ ൅ ,realݎሺܧܥܤ ௫ሻݎ̂ ݔ(1)  is defined as the original image, and ݔො  is the 
reconstructed image. The first term is the cross-
entropy loss between the real identity of the image ݅௫ 
and the predicted identity ଓ̂௫  based on the original 
image ݔ . The second and the third terms are the 
binary cross entropy. It calculates the distance 
between the trueness of a fake image ݎfake  and the 
prediction of trueness ̂ݎ௫ො based on the reconstructed 
image, and the trueness of a real image ݎreal	and the 
prediction ̂ݎ௫ based on the reference image. 

When training the reconstructor, the loss function 
is defined as follows: ࣦሺݔ, ොሻݔ ൌ ߣ ൈ ࣦ୰ୣୡሺݔ, ොሻݔ ൅ ࣦpreሺݔ, ොሻ (2)ݔ
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Figure 2: Qualitative Reconstruction Result. 

Table 1: Quantitative Results of Experiments. 

 (Yuan et al., 2022) Ours 

Attack Target libjpeg libwebp 

Max Trace Length 290745 897567 

Attack Prime+Probe Prime+Probe WB Prime+Probe 

Avg. SSIM score 0.09337 0.23059 0.32506 0.20095 

 

ࣦrec  and ࣦpre  are reconstruction loss and 
prediction loss, while ߣ is a parameter used to balance 
these two terms. ࣦrec is defined as follows: ࣦrec ൌ α ൈ ,ݔሺܯܫܵܵ ොሻݔ ൅ ሺ1 െ αሻ ൈ ,ݔሺܧܵܯ ොሻݔ (3)

The first part is the structural similarity loss 
(SSIM) (Wang et al., 2004). The SSIM score is a 
common method to quantify the perceptional 
similarity between two images by splitting the images 
into blocks and comparing the luminance, contrast, 
and structure of each block. It is a value between -1 
and 1, and a higher score means a higher similarity. 
The SSIM loss is defined as the opposite of the SSIM 
score, which means a higher score infers a lower 
similarity. Since the SSIM loss doesn’t consider the 
difference of color, a mean square error (MSE) term 
is added, and parameter α is the weight between these 
two terms. The definition of ࣦpre is as follows: ࣦpre ൌ ,ሺ݅௫ܧܥ ଓ̂ሻ ൅ ,fakeݎሺܧܥܤ ሻ (4)ݎ̂

4 EVALUATIONS 

The qualitative reconstruction results are shown in 
Figure 2. For more reconstructed images, please refer 
to the Appendix. For the quantitative results, the 
average SSIM score (Wang et al., 2004) is used to 
quantify the reconstruction result. The score is 
calculated by averaging the SSIM scores between the 
reference images in the testing split and reconstructed 
images. The settings of different experiments and the 
average SSIM scores are presented in Table 1. 

For the rest of this section, we will discuss the 
results in more detail and compare them between 
experiments.  

4.1 Comparison with the Previous 
Work 

We compare our experiment results with the result 
reconstructed with the framework proposed in the 
previous work (Yuan et al., 2022). For the previous 
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work, they used the 7-th to 32-th bits in the memory 
address in the traces when the side-channel is set to 
cache line index, which contains more information 
than a cache side-channel attacker can learn 
theoretically. Our framework only uses the 7-th to 12-
th bits as the input, which corresponds to the number 
of cache sets. Despite the reduced information in the 
traces, a superior reconstruction result is achieved. 
We will describe the reconstruction result of the 
previous work as that there is some correspondence 
between reference images and reconstructed images, 
however, they are not visually similar. Images 
reconstructed with our framework are much similar to 
original images, in aspects of skin colors, hairstyles, 
facial expression, and so on. 

The reason that our framework performs better 
can be explained in two aspects. First, in the previous 
work (Yuan et al., 2022), their model interprets the 
accessed memory addresses or cache line indexes as 
a value. However, the values only represent a location 
in the memory of the cache, not a magnitude of 
something. We encoded the value using the binary 
encoding method, which is believed to be the correct 
way to interpret those values. Second, they use 2D 
CNN for the model of the trace encoder. This forces 
the model to consider elements scattered in traces 
together and look for patterns inside them. On the 
other hand, 1D CNN is used in our model, thus the 
model will only consider the relation between 
adjacent elements in traces. 

4.2 Comparison Between the 
Prime+Probe and the WB Attack 

The qualitative and quantitative results show that the 
neural network can reconstruct images with higher 
fidelity when launching a write-back channel attack. 
This result corresponds with our expectation, as there 
is additional information about read/write in the 
traces. However, according to our observation, the 
result is largely dependent on the encoding of read 
and write behavior. We haven’t spent much time 
comparing different encoding methods. 

4.3 Attack on libwebp 

Comparing the results of attacking libjpeg and 
libwebp with Prime+Probe attack, the fidelity of 
images is at about the same level. Though we do 
expect a better result considering the length of traces 
is about 3 times longer, the outcome is negative. Our 
interpretation is that the example program in 
libwebp is more complicated and supports 
transformation between more formats, thus, lots of 

parts in the traces may not be relevant to the input 
image, and they may cause. Regardlessly, we 
showcased the potential of our framework to attack 
more complex software. 

5 CONCLUSIONS 

This paper underscores the heightened significance of 
cache side-channel analysis, revealing its greater 
severity than previously acknowledged. We introduce 
a novel cache side-channel analysis framework that 
enables the precise reconstruction of images with 
remarkable fidelity through cache side-channel 
attacks, all without requiring any prior knowledge of 
the targeted victim program. Importantly, our 
illustration of image processing program exploitation 
serves as an exemplary case, echoing prior findings 
(Yuan et al., 2022) that the same attack framework 
can be adapted to target diverse software types, such 
as audio processing and text processing programs, by 
simply modifying the image decoder model. This 
compelling evidence underscores the imperative to 
recognize the non-negligible threat posed by cache 
side-channel analysis. 

As the upper limits of information leakage 
achievable through cache side-channel attacks are 
explored, the next objective is to empirically assess 
their practical viability by implementing real-world 
Prime+Probe and write-back channel attacks. This 
aspect of our research remains a subject for future 
exploration. Additionally, the broader challenge of 
reconstructing general images remains open for 
further investigation. While our framework does not 
assume any specific image type, it is worth noting, as 
indicated in other research on image-to-image VAE 
(Van Den Oord et al., 2017), that even with advanced 
model design, the latent vector's dimension required 
for the reconstruction of general images exceeds 128 
significantly. 
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APPENDIX 

More reconstruction results are presented here. 
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