
Knowledge Graphs Alignment Based on Learning to Rank Methods

Victor Yamamoto a and Julio Cesar dos Reis b

University of Campinas, Campinas, SP, Brazil

Keywords: Knowledge Graphs, Entity Alignment, Supervised Ranking Aggregation.

Abstract: Knowledge graphs (KGs) define facts expressed as triples in representing knowledge. Usually, several knowl-
edge graphs are published in a given domain. It is relevant to create alignments both for classes that model
concepts and between instances of those classes defined in different knowledge graphs. In this article, we study
techniques for aligning entities expressed in KGs. Our solution explores the supervised ranking aggregation
method in the alignment based on similarity values. Our experiments rely on the dataset from the Ontology
Alignment Evaluation Initiative to evaluate the proposed method in experimental analyzes. Obtained results
indicate the effectiveness in our alignment technique in the investigated datasets.

1 INTRODUCTION

The term knowledge graphs was coined by Google
when it introduced this technology as the basis for a
new web search strategy in 2012 (Ringler and Paul-
heim, 2017a). A traditional search method uses key-
words to search for the expected results, but the terms
can be ambiguous and limit the retrieved information.
The use of knowledge graphs allows the search to be
carried out for objects that represent real entities such
as places, people and movies. These entities and their
relationships allow performing information retrieval
by using a context in which the term is searched for.
This helps in reducing the ambiguity of terms, and
improving the quality of information returned when
using the entities’ relationships (Singhal, 2014).

Large-scale knowledge graphs (KGs) like DBpe-
dia 1, YAGO2 and Wikidata 3 play a central role as a
source of general knowledge. These KGs present a
good coverage regarding the entities represented and
expressed in several domains. However, they lack
covering specific topics or they usually are addressed
with little detail (Hertling and Paulheim, 2018). The
aforementioned KGs present similar information, as
they all use Wikipedia as the basis for creating enti-
ties and their relationships. Their use in a combined
way requires creating links between entities of differ-

a https://orcid.org/0000-0002-3825-6461
b https://orcid.org/0000-0002-9545-2098
1http://dbpedia.org
2https://yago-knowledge.org
3https://www.wikidata.org/wiki/Wikidata:Main Page

ent KGs (Ringler and Paulheim, 2017b). For exam-
ple, “Black Panther” 4 is an entity from Marvel Cine-
matic Universe Wiki, which is mapped to the Marvel
Database entity “Black Panther” 5.

Hofman et al. (Hertling and Paulheim, 2018) used
a two-step method to create mappings between KGs
generated from Wikis. First, mappings were gener-
ated between each Wiki and DBpedia. Using these
mappings, the KGs were grouped in blocks and the
mappings between Wikis were created only between
graphs of the same group. To obtain the related enti-
ties, a string distance algorithm was used based on the
labels of the entities.

Learning to Rank is a machine learning technique
for training ordering models. This technique can be
used in several areas such as information retrieval,
natural language processing and data mining. An ex-
ample of application of such technique is the retrieval
of documents. A system manages a set of documents
and when a query is executed, the system searches
for documents containing the queried terms, order the
documents based on different processed ranking lists
and returns the best results (LI, 2011).

In the creation of an alignment (process of gener-
ating mappings between KG entities), the simplest ap-
proach might look for all possible pairs in a set. How-
ever, this approach becomes prohibitive for larger
sets. Locality-sensitive Hashing (LSH) (Leskovec
et al., 2014) allows the comparison between similar

4https : / / marvelcinematicuniverse.fandom.com / wiki /
Black Panther

5https://marvel.fandom.com/wiki/Black Panther

Yamamoto, V. and Reis, J.
Knowledge Graphs Alignment Based on Learning to Rank Methods.
DOI: 10.5220/0012258100003598
In Proceedings of the 15th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2023) - Volume 2: KEOD, pages 315-322
ISBN: 978-989-758-671-2; ISSN: 2184-3228
Copyright © 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

315

pairs. The items are provided in a hash, in which
the probability of two items having the same hash is
based on the similarity value between them. In this
sense, the candidate pairs are those that are in the
same hash bucket .

In this article, we propose and evaluate a method
for the alignment of KGs based on Learning to Rank
techniques. In our approach, we investigate the can-
didate reduction methods based on Locality-sensitive
Hashing. We experimentally evaluate our proposal
based on the test dataset offered by the OAEI (On-
tology Alignment Evaluation Initiative) competition
6. The quality of the mappings created by our solution
are evaluated by comparing them with the alignment
provided by the competition (as a gold standard). In
our results, the proposed technique obtained high re-
call in the created mappings, but affected precision in
several cases. Compared to existing baseline systems,
our approach presents lower f-measure for class and
instance, but higher f-measure for property.

The remaining of this article is organized as fol-
lows: Section 2 presents a literature review. Sec-
tion 3 introduces the necessary formalization; Section
4 describes our proposal; Section 5 presents the ex-
perimental results conducted; Section 6 discusses the
achieved results; Section 7 summarizes the conclu-
sions.

2 BACKGROUND

Several systems have proposed creating mappings be-
tween entities of KGs. AgreementMakerLight Ontol-
ogy Matching System (AML) (Faria et al., 2013) is
a framework that maps ontologies using four types
of matchers and implements a ranked selector. The
matchers are lexicon, lexicon mediated by a third
ontology; words using the Jaccard index (Jaccard,
1912); and a set of parameters exploring string simi-
larity methods. To obtain the best mappings, the re-
sults of the matchers are ordered in a unified list from
the best to the worst. The mappings are created based
on such an ordered list.

FCAMap-KG system (Chang et al., 2019) uses the
analysis of formal concepts to create mappings. This
system organizes the process into three stages: lex-
ical match, structural match, and match filter. The
first step creates three formal contexts for classes,
properties, and instances based on keys. In OAEI
KG context, those types were created to fuse differ-
ent KGs into one coherent KG. Schema type (classes
and properties) derives from wikis’ constructs, and in-

6http://oaei.ontologymatching.org

stance type derives from pages about real-world en-
tities (Hertling and Paulheim, 2020). A mapping is
created when a formal concept contains objects from
the two KGs under alignment. In the second stage,
the previously obtained mappings are used to create a
structured formal context. This step focuses on creat-
ing mappings between the instances using RDF triples
whose properties and subsequent instances were al-
ready mapped. In the last step, the mappings are se-
lected so that each entity has only one mapping. This
operation can be carried out because the OAEI 2019
KG competition uses only 1:1 matches. If an entity
has more than one mapping, the mapping with more
structural attributes and lexical keys in common is se-
lected in this technique. DOME system (Deep On-
tology MatchEr) (Hertling and Paulheim, 2019) uses
doc2vec method to obtain the mappings. Doc2vec
is an algorithm that learns fixed-length feature rep-
resentations from variable-length pieces of text. Each
document is represented as a vector trained to predict
words in the documents

Learning to Rank (LTR) is a machine learning
technique for training the model to rank (LI, 2011).
The system manages a system of documents. When
queried, the system retrieves documents related to
the query, ranks the documents, and returns the top-
ranked documents. The differences between learning
to rank and other models are that LTR does not need to
predict the absolute value of the items (regression); it
does not need to predict the class of items (classifica-
tion); the important thing is to obtain the relative rank-
ing of items. Our method explored LambdaMart, a
pairwise learning-to-rank technique. Destro et al. (Ju-
liana M. Destro and da S. Torres, 2019) explored sev-
eral rank aggregation techniques for aligning cross-
lingual ontologies and found that LambdaMart have
the best results.

3 FORMAL PRELIMINARIES

Knowledge Graph. A knowledge graph K accumu-
lates and conveys knowledge in term of entity and re-
lations (Hogan et al., 2020). Formally, a knowledge
graph K = (EK ,RK) consists of a set of entities EK
represented as nodes; and entities are interrelated by
directed relationships RK . Each entity e ∈ EK has a
unique identifier and type. The entity identifier uses
Universal Resource Identifier (URI) that is a string
used to identify resources and provide a mean of lo-
cating the resource Entity type can be of schema level,
formed by properties and classes, and instance level.
Each relationship r(e1,e2,e3)∈RK is a triple consist-
ing of a subject, a predicate and an object.

KEOD 2023 - 15th International Conference on Knowledge Engineering and Ontology Development

316

Mapping. Given two entities es and et from two dif-
ferent KGs, a mapping mst is defined as:

mst = (es,et ,con f) (1)

The con f is the similarity value between es and et
indicating the confidence of their relation. We define
M j

ST as a set of mappings mst between two KGs KS
and KT .

Similarity. Given two entities ei and e j, the similar-
ity between them is defined as a function that cal-
culates the similarity score between them returning
a real value in the interval [0,1]. The function can
explore different techniques for similarity computa-
tion, like string-based processing and semantic-based
techniques which explore background knowledge for
similarity computation. Formally:

sim(ei,e j) = f (ei,e j) (2)

Rank Aggregation. Consider a set of rankings R1,
R2, R3, ..., Rn formed by set of similarity proposals S1,
S2, S3, ... Sm. Each similarity list Sk requires a differ-
ent function sim(ei,e j) with a source ei and target e j.
Each s ∈ S is defined as a triple s = (ei,e j,sim(ei,e j)
and the entity ei can be used to retrieve a set of sim-
ilarity. Rank Aggregation produces one single rank
that aggregates all given ranking. Equation 3 is used
to include new set of ranking to aggregate. Each col-
umn represents a ranking and in each rank, the yellow
box represents an element that is ranked in different
positions for each rank. An aggregated rank is cre-
ated and used to map entities in our solution.

rankAggregation.aggregate(R) = Ragg
⋃

R (3)

Given an aggregated rank rankAggregation and an
entity e, it is possible to query the aggregated rank
presenting e. Equation 4 represents a function that
returns a ranking formed by a set of similarities that
have input e as a query filter.

rankAggregation.query(e) = R,s ∈ Ragg,s.id = e
(4)

Locality-Sensitive Hashing. An entity e is converted
to a set of n-grams and added to a bucket of the hash.
The equation 5 describes a function that insert an en-
tity e to the hash H. Locality-sensitive Hash is an
algorithm that uses random projections to construct
hash codes in which pairwise distance is preserved
when the length of codes is sufficiently large (Tsai
and Yang, 2014). Given an entity, e and a locality-
sensitive hash LSH, entity e can be used to query a

similar entity inside such hash based on a similar-
ity method. The equation 6 describes a function that
queries for similar entities compared to entity ei and
returns a set of entity E where e j ∈ E have similarity
sim(ei,e j) greater than a given threshold τ (Leskovec
et al., 2014).

LSH.insert(ei) = H
⋃

Hash(ei) (5)

LSH.query(ei) = E,e j ∈ E,sim(ei,e j)> τ (6)

Problem Statement. Given two KGs KS and KT ,
the problem addressed in this work is to obtain all
mappings between entities from these KGs by using
rank aggregation techniques and reduce explored can-
didates with the use of Locality-sensitive Hashing.

4 OUR PROPOSAL TO LINK
KNOWLEDGE GRAPHS

Our goal is to create an appropriate mapping for each
entity of a source KG KS to a target KG KT . Figure
1 shows our defined workflow for this purpose. It is
organized in four main steps: input process, candidate
pairing, similarity calculation, and map creation.

In the first step, both KGs are processed and their
entities are divided by their type (class; property; in-
stance). Every triple formed by subject, predicate and
object is extracted if the predicate is an RDFS la-
bel. The Resource Description Framework (RDF) is
a framework for representing information in the Web,
and RDFS is the schema used to model RDF data.
RDFS:label is an instance that provides a human-
readable resource’s name. If the subject of the triple is
an URI, a new entity is created and the extracted URI
identifies it. The entity type is defined by analysing
if the type name is contained in the URI. Class, prop-
erty, and instance is identified by class, property, and
resource, respectively.

In the second step (candidate pairing), the method
creates the list of candidate entities for each entity
from the source KG KS . For schema types (class and
property), all target candidates are considered as can-
didates. For instance type, locality-sensitive hashing
is used to create the list of candidate entities All en-
tities from target KG KT are inserted to the hash H .
After this process, each entity e from source KG KS
query hash H to retrieve the set of candidate entities
E .

In the third step (similarity calculation), each pair
of source entity and candidate entity similarity is

Knowledge Graphs Alignment Based on Learning to Rank Methods

317

calculated. The similarity is calculated using entity
name from URI. URI is formed by three main com-
ponents: scheme, authority and path. Only the path
after the type identifier is used to calculate the simi-
larity. Our solution explored four different methods:
Levenshtein, Jaro, Babelnet and Wordnet (cf. Subsec-
tion 4.2 for the explored similarity methods).

In the fourth step (mapping creation), similar-
ity values are aggregated by using the LambdaMart
method. Our solution generates the final classifica-
tion (pair of entities expressing the mapping). Each
source KG entity receives an alignment with the can-
didate entity with the best classification. Alignments
are filtered to remove multiple alignments to the same
entity from the target KG and below than a threshold.

4.1 Learning to Rank for the Alignment
of KGs

Figure 2 presents how learning to rank is applied to
our study context. First, the rank aggregation model
is created using a training set (cf. A in Figure 2). Sec-
ond, the pair of source KG entity es and the target KG
entity et have their similarity calculated for each sim-
ilarity method sim (cf. Subsection 4.2) and the triple
(es,et ,sim) is recorded as an entry for the system (cf.
B in Figure 2). Third, each entity of the source KG
is used as a query to retrieve all similarity entries that
form different ranks for each similarity method (cf. C
in Figure 2). In the last step, retrieved ranks are ag-
gregated using the trained model and return one rank
as result (cf. D in Figure 2).

Learning to Rank techniques like lambdaMart
(Burges, 2010) are supervised learning tasks. It needs
training and testing phases. In the training phase, a
model is created to be used later to aggregate ranks
(cf. A in figure 2). The training data consists of
queries set Q as a set of documents to be retrieved
D and a set of possible labels Y . The training set S is
formed by triples (qi,d j,yi j), where q ∈ Q, d ∈ D and
y ∈Y . The set Y = 1,2, ...,n;n ∈ N is the relevance of
the document di for the query q j. The process to put
relevance to the pair query and document is analogous
to the labeling in other techniques.

In our approach, a set of queries Q is formed by
URI from source KG’s entities; the set of retrieved
documents D is formed by candidate entities from tar-
get KG’s entities; and the set of labels Y receives a
value according to the presence of the pair in the gold
standard. If the pair (ei,e j) is in the gold standard,
the triple (qi,d j,yi j) receives values (ei,e j,1); and the
triple receives value (ei,e j,0) if not present.

The training model creates a ranking model
f (q,d) = f (x) that assigns a score to a given pair

query and document. For a set, the training model
creates a ranking model F(q,D) = F(X) that returns
a list of scores that can be converted to a ranking of
documents using the score from f (q,d) to sort the
documents D (LI, 2011). In our approach, the model
creates a ranking model F(ei,C) = F(X), where ei is
an entity from source KG and C is the set of candidate
entities from target KG. This model is used to sort all
candidate entities for a certain entity from source KG.

4.2 Similarity Techniques

Our proposed technique explores four method for
similarity computation to generate rankings to be ag-
gregated.

• Levenshtein similarity, also known as edit dis-
tance, between two strings is the minimal number
of insertions, deletions, and replacements to make
two strings equal (Navarro, 2001).

• Jaro similarity between two string is shown in
equation 7, where m is the number of matching
characters, t is the number of transposition, |s1|
and |s2| are string length.

Jaro(s1,s2) =
1
3
(

m
|s1|

+
m
|s2|

+
m− t

m
) (7)

• Path-similarity is based on WordNet synset, as
groups of synonymous words. The similarity be-
tween the two terms is the shortest path that con-
nects the senses in the “is-a” taxonomy.

• Weighted Overlap is based on NASARI vector
constructed using WordNet synsets and Wikipedia
pages (Camacho-Collados et al., 2015). Given a
pair of words wi and w j the algorithm checks if
they are synonyms, returning a maximum simi-
larity score if true. If they are not synonyms,
it gets their respective NASARI vector and cal-
culates weighted overlap synonyms. Weighted
Overlap sorts the elements of each vector and har-
monically weights the overlap between two vec-
tors. Equation 8 defines weighted overlap for two
vectors vi and v j, where O is the set of overlap-
ping dimensions between the vectors and r j

q is the
rank of dimension q in the vector v j.

WO(vi,v j) =
∑q∈O(ri

q + r j
q)−1

∑
|O|
k=1(2k)−1

(8)

KEOD 2023 - 15th International Conference on Knowledge Engineering and Ontology Development

318

Figure 1: Our mapping technique workflow.

Figure 2: Learning to Rank technique applied to our approach (based on (Cummins and Briscoe, 2015)).

5 EXPERIMENTAL EVALUATION

Our goal is to analyze the quality of mappings gen-
erated in our approach for KG alignment. In the
developed experiments, we used datasets from the
OAEI (Ontology Alignment Evaluation Initiative) –
Knowledge Graph Track released on 20197. Datasets
were created running DBpedia extraction framework
on Wikis from the Fandom Wiki hosting platform
(Hertling and Paulheim,). Each instance entity is
created from a wiki page, and one triple is created
for each entry in an infobox (Hertling and Paulheim,

7http : / / oaei.ontologymatching.org / 2020 /
knowledgegraph/index.html

2018). Table 1 describes statistics from the datasets
used in our experimental evaluation. The source col-
umn has the name of the KG and the acronym used in
this work.

The mappings created by our proposed approach
were compared with the gold standard offered by
OAEI – Knowledge Graph Track (2019 edition). Ex-
perts created the schema-level maps. Instance level
maps were extracted using links present in sections
with headers containing “link” to the corresponding
page of another wiki (e.g. “External links”), remov-
ing all links where the source page linked to more
than one page in another wiki and multiple links to the
same concepts to ensure injectivity. The gold standard

Knowledge Graphs Alignment Based on Learning to Rank Methods

319

Table 1: Statistics of Knowledge Graphs (Hertling and Paulheim,).

Source Hub Topic # Instances # Properties # Classes
Star Wars Wiki (SWW) Movies Entertainment 145,033 700 269

The Old Republic Wiki (TOR) Games Gaming 4,180 368 101
Star Wars Galaxies Wiki (SWG) Games Gaming 9,634 148 67

Marvel Database (MDB) Comics Comics 210,996 139 186
Marvel Cinematic Universe Wiki (MCU) Movies Entertainment 45,828 325 181

Memory Alpha (MAL) TV Entertainment 45,828 325 181
Star Trek Expanded Universe (STX) TV Entertainment 13,426 202 283

Memory Beta (MBT) Books Entertainment 51,323 423 240

is a partial gold standard, because it does not contain
all correct matches. A trivial match is an exact string
match of the label, and a non-trivial match is when
a string match is not exact (Hertling and Paulheim,
2020). Table 2 describes statistics of the gold stan-
dard used in our experiments.

The learning process used 100% of the mappings
to train and validate between the datasets Star Wars
Wiki and Star Wars Galaxies Wiki; Star Wars Wiki
and The Old Republic Wiki; Memory Alpha and
Memory Beta; and Memory Alpha and Star Trek Ex-
panded Universe. Mappings between Marvel Cine-
matic Universe and Marvel Database were isolated to
be used as an evaluation set. To this end, we applied
our solution to them and analyzed the results based on
objective metrics. MinHash Locality-sensitive hash-
ing used 256 permutation, threshold of 0.75 and each
entity were converted to a set of trigrams of entity
name to hash. Trigram is a sequence of three consec-
utive character. We used three metrics to evaluate the
results: Precision, Recall and F-Measure (F1-score).

Table 3 presents the precision, recall, and f1-
score results for schema type. In the class type, we
achieved precision higher than 0.5 in the datasets
“Star Wars Wiki” and “Star Wars The Old Republic
Wiki” (SWW-TOR). In the datasets, “Memory Alpha
- Memory Beta” (MAL-MBT) and “Memory Alpha
and Star Trek Expanded Universe” (MAL-STX), our
solution presented recall lower than 0.9. The class
matching for “Memory Alpha” had more Non-trivial
mapping than other data sets, leading to lower recall.
In analyzing the mappings regarding the properties,
all datasets presented precision near 0.5 and recall
higher than 0.9.

Table 4 presents the results for the mappings con-
necting the instances of the KGs. All datasets pre-
sented low precision, but achieved a recall higher
than 0.7 except “Marvel Cinematic Universe - Mar-
vel Database” (MCU-MDB) and “Star Wars Wiki and
Star Wars Galaxies” (SWW-SWG).

Figures 3 and 4 compare our approach to the base-
line matchers offered by OAEI Knowledge Graph

Track organization. The baseline matcher used the la-
bel for each entity to create a mapping. The baseline
matcher matches all resources which share the same
rdfs:label. The baseline Alt Label additionally uses
skos:altLabel as a predicate. Both baseline matchers
used cross-product for all resources that have a com-
mon label.

Our approach and both baselines found all class
mappings. Our approach found some false positive
classes, so it lowered precision and f-measure. Our
approach found all properties mapped and baseline
found 36%, but all mapping found by baseline is
correct. Overall, our approach exceeded the base-
line for properties. Figure 3 shows the results ob-
tained by our approach and the baseline matchers for
schema-type entities mapping in “Marvel Cinematic
Universe” (MCU) and “Marvel Database” (MDB).

Figure 3: Comparison between our results and competi-
tion base line for schema-type entities in “Marvel Cine-
matic Universe” (MCU) and “Marvel Database” (MDB)
mappings.

For instances, type of entities baseline presents
better results than our approach for precision and re-
call. Figure 4 shows results for instance-type entities
in “Marvel Cinematic Universe” (MCU) and “Mar-
vel Database” (MDB). Baseline matcher presents bet-
ter precision for all cases, but for recall the result is
mixed. Our approach had better recall for property,
same recall for class and worst for instance.

KEOD 2023 - 15th International Conference on Knowledge Engineering and Ontology Development

320

Table 2: Gold Standard statistics (Hertling and Paulheim, 2020).

Mapping Class Matches Property Matches Instance Matches
Total Non-trivial Total Non-trivial Total Non-trivial

SWW-SWG 5 2 20 0 1,096 528
SWW-TOR 15 3 56 6 1,358 220
MCU-MDB 2 0 11 0 1,654 726
MAL-MBT 14 10 53 4 9,296 2,140
MAL-STX 13 6 41 3 1,725 274

Table 3: Mapping results for schema-type entities applying
our solution.

Mapping Type Precision Recall F1
SWW-
SWG

class 0.385 1.000 0.556
property 0.435 1.000 0.606

SWW-
TOR

class 0.515 0.944 0.667
property 0.514 0.966 0.671

MCU-
MDB

class 0.222 1.000 0.364
propety 0.611 1.000 0.759

MAL-
MBT

class 0.217 0.333 0.263
property 0.559 0.963 0.707

MAL-
STX

class 0.307 0.571 0.400
property 0.549 0.975 0.703

Table 4: Mapping results for instance-type entities applying
our solution.

Mapping Precision Recall F1
SWW-SWG 0.337 0.494 0.400
SWW-TOR 0.273 0.746 0.400
MCU-MDB 0.357 0.460 0.403
MAL-MBT 0.298 0.739 0.425
MAL-STX 0.228 0.794 0.354

Figure 4: Comparison between our results and competi-
tion base line for instance-type entities in “Marvel Cin-
ematic Universe” (MCU) and “Marvel Database” (MDB)
mappings.

6 DISCUSSION

This investigation aimed to create mappings between
KGs based on rank aggregation methods. Our results
by experimenting our approach showed high recall

for schema-type, but penalized the precision. For in-
stance level type of entities, our approach presented
low precision and acceptable recall.

The main difference between schema-type and
instance-type mapping generations is in how candi-
date entities were created. Our approach used all en-
tities as candidate entities for schema-type, but candi-
date entities are filtered using locality-sensitive hash-
ing for instance type. For instance-type, it is not pos-
sible to use a cross-product approach to compare en-
tities, because the number of instance-type entities is
very large, so it needs to reduce the number of com-
parisons. For this reason, we were unable to calcu-
late the similarity for all possible pairs. This differ-
ence is more clear for SWW-SWG and MCU-MDB,
because both datasets have proportionally more non-
trivial mappings than others.

Our approach found false positive mappings
which affected the precision for almost all datasets
studied. The explored gold standard is based on links
created by the Wiki community on the page where
entities were extracted. It means that the presence of
mapping between entities depends on the interest of
the community to enrich those pages.

Another case of false positive was caused by dif-
ferent specificities of the entities. In this case, the
matcher creates new mappings between an entity and
the more general entity, but the correct mapping was
for the more specific entity. For example, our tech-
nique created a mapping between “Michael Duffy”
from “Marvel Cinematic Universe” and “Michael
Duffy” from “Marvel Database”. However, the
correct answer was between “Michael Duffy” from
“Marvel Cinematic Universe” and “Michael Duffy
(Earth-616)” from “Marvel Database”.

Our approach found mapping with good recall
for most cases in schema-type entities. With prop-
erty, it exceeded baseline recall. Our approach uses a
learning-to-rank technique that can be improved with
more similarity techniques to aggregate ranking and
more datasets without changing code structure.

Knowledge Graphs Alignment Based on Learning to Rank Methods

321

7 CONCLUSION

The alignment of KGs remains an open research chal-
lenge. In this work, we proposed an approach based
on rank aggregation and locality-sensitive hashing to
create mappings between distinct KGs. Our approach
used the entity URI to extract the set used to explore
locality-sensitive hashing and similarities. We ex-
plored the hashing and four similarity techniques to
create independent rankings that were aggregated us-
ing learning-to-rank techniques (in particular, we ex-
plored lambdaMart). We implemented the proposal
and carried out experiments using OAEI competition
datasets. Our solution was able to find most of the
mappings between schema-level entities (good recall)
although improvements are needed in terms of preci-
sion. Future work involves exploring more informa-
tion from entities to get better results for hashing. We
plan to explore other similarity techniques that do not
use string as the main component. We also plan to
experiment with our solution with additional datasets.

ACKNOWLEDGEMENTS

This work was supported by the São Paulo Research
Foundation (FAPESP) (Grant #2022/15816-5)8.

REFERENCES

Burges, C. J. (2010). From ranknet to lambdarank to lamb-
damart: An overview. Technical Report MSR-TR-
2010-82, Microsoft Research.

Camacho-Collados, J., Pilehvar, M. T., and Navigli, R.
(2015). NASARI: a novel approach to a semantically-
aware representation of items. In Proceedings of the
2015 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 567–577, Denver,
Colorado. Association for Computational Linguistics.

Chang, F., Chen, G., and Zhang, S. (2019). Fcamap-kg
results for oaei 2019. In Ontology Matching at Inter-
national Semantic Web Conference, OM@ISWC.

Cummins, R. and Briscoe, T. (2015). Learning to rank. Ad-
vanced Topics in Natural Language Processing.

Faria, D., Pesquita, C., Santos, E., Palmonari, M., Cruz, I.,
and Couto, F. (2013). The agreementmakerlight ontol-
ogy matching system. In On the Move to Meaningful
Internet Systems, pp 527-541, volume 8185.

Hertling, S. and Paulheim, H. Knowledge graph track. http:
/ /oaei.ontologymatching.org/2020/knowledgegraph/
index.html.

8The opinions expressed in this work do not necessarily
reflect those of the funding agencies.

Hertling, S. and Paulheim, H. (2018). Dbkwik: A consol-
idated knowledge graph from thousands of wikis. In
2018 IEEE International Conference on Big Knowl-
edge (ICBK), pages 17–24.

Hertling, S. and Paulheim, H. (2019). Dome results for oaei
2019. In OM 2019 : Proceedings of the 14th Inter-
national Workshop on Ontology Matching co-located
with the 18th International Semantic Web Conference
(ISWC 2019) Auckland, New Zealand, October 26,
2019, volume 2536, pages 123–130, Aachen. RWTH.

Hertling, S. and Paulheim, H. (2020). The Knowledge
Graph Track at OAEI: Gold Standards, Baselines, and
the Golden Hammer Bias, pages 343–359. Springer;
1st ed. 2020 edition.

Hogan, A., Blomqvist, E., Cochez, M., d’Amato, C.,
de Melo, G., Gutierrez, C., Gayo, J. E. L., Kirrane,
S., Neumaier, S., Polleres, A., Navigli, R., Ngomo,
A.-C. N., Rashid, S. M., Rula, A., Schmelzeisen, L.,
Sequeda, J., Staab, S., and Zimmermann, A. (2020).
Knowledge graphs.

Jaccard (1912). The distribution of the flora of the alpine
zone. In New Phytologist, volume 11, pages 37–50.

Juliana M. Destro, Javier A. Vargas, J. C. d. R. and
da S. Torres, R. (2019). Exploring rank aggregation
for cross-lingual ontology alignments. 14th Inter-
national Workshop on Ontology Matching co-located
with the 18th ISWC.

Leskovec, J., Rajaraman, A., and Ullman, J. D. (2014). Min-
ing of Massive Datasets. Cambridge University Press,
USA, 2nd edition.

LI, H. (2011). A short introduction to learning to rank.
IEICE Transactions on Information and Systems,
E94.D(10):1854–1862.

Navarro, G. (2001). A guided tour to approximate string
matching. ACM Comput. Surv., 33(1):31–88.

Ringler, D. and Paulheim, H. (2017a). One knowledge
graph to rule them all? analyzing the differences be-
tween dbpedia, yago, wikidata & co. In Kern-Isberner,
G., Fürnkranz, J., and Thimm, M., editors, KI 2017:
Advances in AI, pages 366–372, Cham. Springer.

Ringler, D. and Paulheim, H. (2017b). One knowledge
graph to rule them all? analyzing the differences be-
tween dbpedia, yago, wikidata & co. In 978-3-319-
67189-5, pages 366–372.

Singhal, A. (2014). Introducing the knowledge graph:
things, not strings. https://googleblog.blogspot.com/
2012 / 05 / introducing - knowledge - graph - things -
not.html.

Tsai, Y. and Yang, M. (2014). Locality preserving hashing.
In 2014 IEEE International Conference on Image Pro-
cessing, ICIP 2014, IEEE International Conference
on Image Processing (ICIP 2014), pages 2988–2992,
United States. IEEE.

KEOD 2023 - 15th International Conference on Knowledge Engineering and Ontology Development

322

