
JThermodynamicsCloud: Case Study in an Ontology-Driven NoSQL
Database Cloud Based Application in Chemical Domain

Edward Blurock a
Blurock Consulting AB, Lund, Sweden

Keywords: Model Driven Development, MDD, MDA, Ontology-Driven, NoSQL, Cloud-Based Application, Chemistry,
Thermodynamics, Database Management.

Abstract: JThermodynamicsCloud is software service for the combustion research domain to perform thermdynamic
calculations and manage the data needed to make those calculations. The JThermodynamicsCloud service can
be said to be a model driven application, where the ontology is a platform independent model of the data and
operational structures. All the ontology concepts outlined here, from the ontology definition to the utilization
of this definition in the application, have been implemented. The ontology, as used by the service, has three
distinct purposes: documentation, data structure definition and operational definitions. One goal of the
ontology is to place as much of the design and domain specific structures in the ontology rather than in the
application code. The calculation itself is highly dependent on the varied types of molecular data found in the
database The complete service is a system with three interacting components, a user interface using Angular,
a (RESTful) backend written in JAVA (with the JENA API interpreting the ontology) and the Google
Firestore noSQL document database and Firebase storage.

1 INTRODUCTION

JThermodynamicsCloud is software service for the
chemical, or more specifically, the combustion
research domain. The primary purpose is to perform
the calculation and manage the data needed to make
the calculation. The complete service is a system with
three interacting components, a GUI interface, a
RESTful backend and a noSQL document-based
database. The service uses these three components to
make calculations for thermodynamic quantities
based on molecular species structure. The calculation
itself is highly dependent on the varied types of
molecular data found in the database.

JThermodynamicsCloud service can be said to be
a model driven application where the model is
defined in the ontology. JThermodynamicsCloud is
comprised of three different platforms with three
different data formats. The user interface uses
Angular (Angular, n.d.), the (RESTful) backend is
written in JAVA and the Google Firestore (Cloud
Firestore | Store and Sync App Data at Global Scale,
n.d.) noSQL document database has a map-based data
format. These different data formats are united

a https://orcid.org/0000-0001-9487-3141

through the platform independent ontology
definitions. All definitions and methodologies within
all three systems of the service have a corresponding
ontology classes. This means that communication
between systems has an ontology reference. In
particular the data structures. This is particularly
important because the data structures in each of the
systems are in a free format, namely, property name
and untyped value pairs. The ontology provides the
underlying structure by defining the property name
and the information that field contains. The ontology
definitions are translated to the exact data structures
within each of the respective systems. In all systems,
the data structure is a JSON like data structure.

1.1 Background and Context

The use of ontologies in software engineering is, of
course, not new (Bhatia & Beniwal, 2016; Espinoza-
Arias et al., 2021). This application can be seen as an
application of ontologies in a Model Driven
Development (Bučko et al., 2019; Silva Parreiras et
al., 2010) or Model Driven Engineering (Gaševic et
al., 2009) context, where the ontology guides the

288
Blurock, E.
JThermodynamicsCloud: Case Study in an Ontology-Driven NoSQL Database Cloud Based Application in Chemical Domain.
DOI: 10.5220/0012254700003598
In Proceedings of the 15th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2023) - Volume 2: KEOD, pages 288-295
ISBN: 978-989-758-671-2; ISSN: 2184-3228
Copyright © 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

development of the software, particularly the data
structures and the operational definitions using the
data structures. In a sense, all the modeling languages
such as the Unified
Modelling Language (UML), Meta Object Facility
(MOF), XML Metadata Interchange
(XMI), and the Common Warehouse Metamodel
(CWM), are taken over by the use of ontology of the
application. The modelling descriptions needed for
the JThermodynamicsCloud application are handled
solely by the ontology.

The ontology data model is currently not used to
actually generate software code, though this has been
experimented with in the CHEMCONNECT(E.
Blurock, 2021; E. S. Blurock, 2019) application
(which is at the base of JThermodynamicsCloud). But
the ontology definitions do specify, within a Model
Driven Architecture (Bučko et al., 2019), the top two
levels of abstraction, namely the Computer
Independent Model (CIM) and Platform Independent
Model (PIM). A common ontology class defines data
and operational classes that are common to the three
platforms within the system, namely the interface, the
background and the database. The ontology is
interpreted under runtime by the background service,
written in JAVA, and uses the JENA API(Apache,
n.d.). SPARQL queries are made, and the answers are
converted to appropriate data structures.

Another advantage that was exploited with using
ontologies in the data modelling approach is working
toward developing a ‘normalized system’(De Bruyn
et al., 2018; Suchánek et al., 2021). The five
necessary conditions can be seen directly in the
ontology definition. ‘Separation of Concerns’ can be
seen in the data structure class and operational
definition classes. ‘Separation of Actions’ can be seen
not only in the operational classes’ definition, but also
the concept of transactions (see section Ontology
Transaction Definition), which break down a task into
individual and traceable subtasks. ‘Action Version’
and ‘Data Version’ transparency can be seen in
modularity and how data is passed between
operational units in the software.

2 MOTIVATIONS AND USE OF
ONTOLOGIES

The following outlines how the ontology was used
and implemented. All the concepts, definitions and
code have been implemented in the current version of
JThermodynamicsCloud. The Results:
EXPERIENCE section outlines the experiences and

advantages of the use of ontologies as outlined in this
paper.

Within this section, ontology class names and
identifiers have the form:

namespace:nameofclass
The namespace denotes which ontology the class is
defined. For example, all with the namespace
dataset are from the JThermodynamicCloud
ontology. The JThermodynamicCloud ontology with
all the definitions shown in this section can be found
in github:

https://github.com/blurock/Angular/releases

2.1 General Goals of Ontology

The ontology as used by JThermodynamicsCloud has
three distinct purposes, documentation, data structure
definition and operational definitions. These are
briefly outlined in the following sections.

2.1.1 Documentation

Through annotations and the hierarchy of ontology
classes a level of documentation is provided that is
not inherently present within the software
implementation definitions. Through the class
hierarchy a context is given to each object and
through the annotations there is human and machine
readable documentation.

2.1.2 Data Structure Definition

Every data object in JThermodynamicsCloud has a
respective ontology definition. This gives a common
reference for how each data structure is translated in
the different software components of the system.
Since the definition is machine readable, this allows
a certain amount of automation, for example in the
user interface, to take place. For the software
engineer, this common reference provides the
template for accessing data from the data structures
which is not otherwise present because the data
structures themselves are inherently non-typed and
free format.

2.1.3 Operational Definitions

In addition to data structures within the system, there
are also sets of algorithms using these data structures.
Certain classes of algorithms have corresponding
ontology definitions. For example, all RESTful
services have a corresponding ontology definition. In
addition, within the background system, certain
classes of working algorithms (programmed using the
enumeration class in JAVA) have ontology

JThermodynamicsCloud: Case Study in an Ontology-Driven NoSQL Database Cloud Based Application in Chemical Domain

289

definitions. These are often associated with pull-
down list choices within the interface or specific
related manipulations dependent on classes of data
types. This is an example of the backend interpreting
the ontology and delivering the appropriate data
structure to the interface.

2.2 Uses of the Ontology

The following subsections provide a summary of how
ontologies are implemented and utilized in multiple
capacities in JThermodynamicCloud. In later
sections, some of these applications are elaborated
with more details.

2.2.1 JSON Data Object Definitions

The JSON (like) representation, meaning property-
value pairs is used throughout
JThermodynamicsCloud. However, JSON is a an
untyped and free-format language, meaning that the
only information about the fields in the JSON object
are the property labels. Use of ontologies provides
context and documentation of the fields within the
JSON objects. There is a one-to-one correspondence
between the data object definition and the ontology
class. The ontology is what defines the type of the
data object for each property label within the free-
format context. This is further outlined in JSON data
object definitions.

2.2.2 RESTful Service Definition

The functionality of JThermodynamicsCloud are
accessed through the RESTful services. The RESTful
service ontology is used to provide context, through a
hierarchy of definitions, and, within each class
definition, the input and output objects expected from
the restful service. In addition, annotations to each
class give further documentation. These are defined
in a subclass of dataset:DatabaseServicesBase
which is a subclass of the prov:SoftwareAgent (of
the PROV ontology). This is further outlined in
RESTful Service Definition.

2.2.3 Transaction Description

Transactions represent class of RESTful services
which modify the database (as opposed to services
which perform only queries on the ontology and the
database). The corresponding ontology class specifies
the input, output and prerquisites of the transaction.
See the Section Ontology Transaction Definition.

2.2.4 Database Structure Hierarchy

The noSQL document database of
JThermodynamicsCloud is a hierarchy of collections
and documents. All catalog objects are 'documents'
(in the sense of the noSQL database) located at the
end root nodes of the hierarchy. The hierarchy
position of the collection of catalog objects
types gives a context to the objects. The database
definition ontology is used to define this
hierarchial structure. Within this definition is
which catalog object type is being defined and
how the nodes leading to the catalog object are to
be named. These are defined in a subclass of
dataset:CollectionDocumentHierarchy which is a
subclass of the skos:Concept (of the SKOS
ontology). This is further outlined in Database
Hierarchy Specification in the Ontology.

2.2.5 Classification Components

Some single string valued components (in the sense
of the DCAT ontology) represent classifications
(enumerations) with specific values. The ontology
definition of the component points to the top of a
hierarchy (for a tree classification) or the top of a set
of subclasses (for a list). In the annotations of these
subclasses are labels and comments that can be used
for the user interface (and documentation). The
subclasses can be components, if the selection should
be, for example, types or records or catalog object (in
the sense of the DCAT ontology), if the selection
should have more information.

2.2.6 Implementation Operations by Type

Often within the implementation there are set of
similar operations, with the same input, but
different functionalities based on type. In JAVA this
is an enumeration with abstract methods. In the
ontology, these are defined in a subclass of
dataset:DataObjectManipulation which is a
subclass of the prov:SoftwareAgent (of the PROV
ontology (Timothy Lebo, Satya Sahoo, Deborah
McGuinness, 2013)).

2.2.7 Units

An important aspect of scientific numerical data is
units. JThermodynamicsCloud uses the QUDT
ontology (QUDT, 2018) to enable the transformation
of one unit to another. In general, the original units,
i.e. that of the source data, are stored in the database.
In the calculation and presentation, the user can
choose the preferred units. The QUDT ontology

KEOD 2023 - 15th International Conference on Knowledge Engineering and Ontology Development

290

includes all the transformation parameters needed.
This is further outlined in Parameters and Units:
QUDT ontology.

2.3 JSON Data Object Definitions

The representation of data objects in
JThermodynamicCloud has a JSON like structure,
i.e. property label with a corresponding value. This
design decision allows the same data representation
to be used even though the syntactical form within
each of the different system components can differ.
The JAVA objects in the background services are
based on com.google.gson.Gson, the data objects in
the Angular Material are based on typescript JSON
objects, the RESTful service representation of data in
the body are JSON objects and in the database the
JSON objects translate directly to the mapping
structure used in the Google Firebase Firestore
representation. This common format design makes
the transitions, between user interface, backend
computation/manipulation and database access
seamless. The ontology definition also gives the
software engineer managing and programming the
system a common reference.

The JSON format is non-typed and free-format
and thus the only documentation of the objects
themselves are the keywords of the fields. In
JThermodynamicsCloud, the ontology definitions
provide machine and human interpretable
documentation and context to the JSON data objects.
There is a one-to-one correspondence between each
JSON object type and the ontology class. The JSON
objects are modelled in the ontology after the DCAT
ontology. The keywords of the JSON objects are
defined in the dcterm:identifier field in the
annotations. The annotations also give human
interpretable labels (rdfs:label) and comments
(rdfs:comment) about the objects. The position of the
ontology hierarchy of the object gives added context
to the objects. From a programming perspective, the
ontology object definition is an invaluable tool for
keeping track of the objects structure. Since the JSON
object is inherently free format it can be difficult to
keep track of which fields are available or which
fields must be filled in. This task, which is often
accomplished with the programming environment,
cannot be applied to JSON objects. Using the
ontology as a reference facilitates this task. The
additional documentation within the ontology is also
helps the programming process.

Due to the machine readability of the ontology, a
certain degree of automation can be utilized. This is
particularly useful when a generalized algorithm can

read the ontology and base its manipulation on the
ontology definition. This means that updates to
include more data can be made only updating the
ontology and not modifying the program. One
common example of this are pull-down lists in the
user interface. More choices can be added within the
ontology without touching the program.

2.4 RESTful Service Definition

The input and output of RESTful services are also, to
a certain extend, free-format, similar to the free
format of JSON objects. The purpose of the ontology,
with regard to RESTful services, is to provide
machine readable and standard documentation of
each of the services provided by
JThermodynamicsCloud. A POST to a RESTful
service, as used by JThermodynamicsCloud, sends
JSON data to the server and with this information
performs a task and sends a response, also a JSON
object, back to the client. JSON objects are, in
general, free-format, so they can be of any property-
value pair, where the value can be a simple data object
like a string or a nested object like another JSON
object. There is nothing in the RESTful service
definition that specifies the form of the JSON object.
So the user must 'know' the form of the valid data that
the server expects and also the form of the response.
In the JThermodynamicsCloud ontology definition,
the exact form of the JSON data needed to perform
the task and the expected JSON response is specified.
Thus the ontology provides documentation for the
user of the service. However, since the ontology is
machine-readable, its role of just documentation can
be expanded. For example, the ontology could
provide a level of input checking to see that the JSON
object in the POST has all the necessary information.
Also the machine readable ontology could be used to
set up the user interface.

2.5 Ontology Transaction Definition

Transactions are one of the more important features
promoting the traceability of data as it is created and
transformed within the database. A single transaction
event performs a single task. Transactions also
promote modularization of tasks (one important aspect
of ‘normalized system’). A transaction task could be
dependent on other prerequisite transaction tasks. In
other words, the prerequisite transactions set up the
necessary data for the current task. Thus, inherent in
the definition of a transaction is the list of prerequisite
transactions that are needed. The transaction event can
be thought of as a node in the tree of manipulations that

JThermodynamicsCloud: Case Study in an Ontology-Driven NoSQL Database Cloud Based Application in Chemical Domain

291

data undergoes. The transaction also is a tool to isolate
single tasks making the organization of data
manipulation more transparent.

The ontology's role in this design is to give the
specification to the input to the transaction, this
includes the list of transactions that are needed to
perform the current transaction. Due the structure of
the database and the organization of transactions,
often just knowing the type of transaction needed is
enough to isolate the particular prerequisite
transaction needed (an aid to automation). If the exact
prerequisite transaction cannot be isolated, the
choices for the user are fewer.

2.5.1 Transactions and Traceability

The purpose of transactions is to keep track of every
change in the database. Whenever the database is to
be modified, a RESTful transaction is performed. The
purpose of a transaction is to have a trace of the
evolution of a database catalog object. To perform a
transaction, the prerequisites to the transaction have
had to be performed. These prerequisites are
themselves transactions. In this way the user can trace
the evolution of the database catalog object by tracing
through the transactions that were used to create the
current database object. To perform a transaction,
first the prerequisites of the transaction must be
collected. The transaction ontology (see Transaction
Specification in Ontology) definition contains the list
of prerequisite transaction classes. The prerequisite
for the process is a database transaction object of this
class. When a transaction process is initiated, the set
of database transaction catalog objects are
retrieved. Each of these transaction objects (created
previously by another transaction) has the
FirebaseID's (the address within the database) of the
needed prerequisites. The FirestoreID's are used to
retrieve from the database the actual prerequisite
catalog objects. These catalog objects are then passed
to the transaction process.

In order to perform the transaction, in addition to
the list of prerequisite transaction catalog objects,
some additional information may be needed to guide
the process. These are specified through a
dataset:ActivityInformationRecord (a subclass
of dcat:CatalogRecord of the DCAT ontology)
record object. The properties of this record object
supplements the prerequisite data. In the ontology
definition of the transaction, the specific class of
dataset:ActivityInformationRecord gives a
specification of the specific data needed. In the data
sent to the RESTful service this information is under
the dataset:activityinfo property.

The final output of a transaction process is an
array of catalog objects of the same class. These are
passed back through the RESTful process response.
Each catalog object has the FirestoreID of the
transaction that created it. The FirestoreID of each of
the output catalog objects are listed in the database
transaction object of the process.

2.5.2 Transaction Specification in Ontology

The ontology provides the complete specification of
each transaction, i.e. the form of the expected input
and output information. Each transaction is described
with an ontology class which is in the subclass
hierarchy under dataset:TransactionEvent, a
subclass of Dublin Core class dcmitype:Event. The
specification in the form of an ontology class has
several properties:

dcat:catalog: This is the class of the catalog
object that the transaction creates.
dcterms:source: This is the class of the
dataset:ActivityInformationRecord JSON
input information object that is needed to derive
the output catalog objects. The ontology class
specifies the supplementary data needed to
perform transaction.
dcterms:type: This is the class of transaction
that is produced. This class is a subclass of
dataset:ChemConnectTransactionEvent
(which ultimately is a subclass of
dataset:SimpleCatalogObject which is a
subclass of dcat:Catalog). The database
transaction catalog object is not the same class as
the transaction class specification. Different
transaction class specifications can produce a
database transaction object of the same class.
dcterms:requires: These are the classes of the
transaction specifications, i.e. subclass of
dataset:TransactionEvent, that are required
before this transaction can be performed. Through
these transaction specifications the database
transaction object class that was produced by the
transaction is specified. This class information is
used to retrieve the specific database transaction.

2.6 Database Hierarchy Specification
in the Ontology

The Google Firestore (Cloud Firestore | Store and
Sync App Data at Global Scale, n.d.) noSQL database
has a document oriented data-model (Cloud Firestore
Data Model, n.d.). The structure is an alternating
hierarchy of collections and documents. Within a
collection, which is specified by a string label, is a set

KEOD 2023 - 15th International Conference on Knowledge Engineering and Ontology Development

292

of documents. A document is a map of property-value
pairs. The value specified by the document can either
be an object, such a string or numerical value, or it
can be a label to a further subcollection. Thus the final
document (one with no further subcollections under
it) is a set of property-object value pairs at the end of
a hierarchy. Access to this document is through a
alternating set of collection labels and subcollection
labels within a document.

Within the JThermodynamicsCloud implementa-
tion, the catalog objects, a mapping similar to a JSON
object, are found at the end nodes of hierarchy of
collection and documents nodes. The nodes of the
branch leading to the catalog object are designated by
string labels. The string labels are either a collection
label or a document property label pointing to a
subcollection. Thus each of the documents in the
hierarchy leading to this final catalog object only
have a set of unique single labels, each pointing to a
different subcollection. In the document form of
noSQL databases, the design model is to group all
'documents' into a single collection. In
JThermodynamicCloud, all collections of documents,
the catalog objects, are at the end of a branch
designated with string labels for each node. The
address, meaning the set of labels of the nodes in the
branch leading to the catalog object, are specified in
the FirestoreID class.

In JThermodynamicsCloud the position of
each catalog with a collection-document
hierarchy object is specified under the
dataset:CollectionDocumentHierarchy. The
ontology classes and subclasses under this class
specify the classes of collection-document nodes
leading to the final catalog objects at the end of the
branch. Each class in this hierarchy specifies how the
node should be labeled. A given catalog object class
has a unique position in the hierarchy defined by the
ontology. The label specification of the nodes leading
to the catalog object can be a constant or can be
derived from the current catalog being stored. The
end class in this specification ontology hierarchy
specifies which class of catalog object is to be stored
in the database. In each of the ontology class
specifications, the rdfs:isDefinedBy annotation
specifies how the label is to be created. The set of
methods to create these labels are defined in the
ontology under the dataset:GenerateStringLabel
class (this is an example of an implementation of
operations by type). Each of the methods in the
ontology has a corresponding code within a JAVA
Enumeration class (using the ontology class name as
reference). If the (final) node is to store a catalog
object, then the class of the catalog object is specified

by skos:member. Thus when a class object is to be
stored, the skos:member fields are searched for the
class name. The catalog object address (to be
specified in the FirestoreID catalog address) is
generated by the branch of classes leading to this
node.

For example, suppose we are to store a specific
instance of a collection set of the class
dataset:ChemConnectDatasetCollectionIDsSet.
Following the ontology class hierarchy under
dataset:CollectionDocumentHierarchy, we find
there are four classes in the hierarchy leading to the
class specifying the instance class as the
skos:member. This means that this class is the
document specified by four labels. All four classes
together specify the labels of the branches leading to
the specific instance (and specified in the FirestoreID
address).

2.7 Parameters and Units: QUDT
Ontology

One of the most important aspects of managing
scientific data is the handling of units. Although there
is a standardized system of units, the SI, International
System of Units, units(SI Brochure, n.d.), it is not
absolutely said that researchers are using them. For
example, in the combustion thermodynamics domain
(the domain of this tool), though the trend is toward
SI units, it is not said that the available data needed
by the application is in SI units. In addition, even if
SI units are used, there is still some conversion that is
necessary. For example, depending on the range of
values of the parameter, the simple unit could be used
or if it has a larger range, with the prefix, for example,
kilo-, or if with a smaller range, for example, milli-.

There are two philosophies of handling units in a
database. The first is to convert them to a 'standard',
relative to the database. Each parameter would have
it's expected unit. With this philosophy, the units are
implicit and do not need to be stored with the value.
The disadvantage is that it is left to the user on input
to convert the units. This can lead to errors and this
'hidden' step makes it more difficult to trace the value
to and check the value with the original source value.
The other philosophy, is to store not only the value,
but the unit used for the value. In
JThermodynamicsCloud the second philosophy is
used for basically two reasons. The most important
reason is that keeping the unit with the parameter
means that the value stored can be exactly that of the
original source. This promotes traceability and error-
checking.

JThermodynamicsCloud: Case Study in an Ontology-Driven NoSQL Database Cloud Based Application in Chemical Domain

293

To convert between different units requires a
knowledge base of units. For a application within a
small domain, this knowledge base could be 'hard-
coded' into the application. However, a more general
approach is provided by the QUDT ontology(QUDT,
2018). In the QUDT ontology each 'kind' of unit is an
instance of qudt:QuantityKind, for example
qudt:MolarEnergy. In the annotations of
the instance of qudt:QuantityKind, the available
units of this kind are given by qudt:applicableUnit.
For example, on applicable unit of
qudt:MolarEnergy is qudt:CAL-PER-MOL, i.e.
calories/mol of substance. In the applicable unit, the
conversions to the SI units are given. To convert
calories/mol to the SI unit joule, one multiplies the
calories by 4.184.

The ontology definition for a parameter data
object in JThermodynamicCloud stores both the
value and the specification, meaning the units for the
value. In addition, uncertainty values are taken into
account. A parameter is represented by the
dataset:ParameterValue class with three fields:

dataset: ValueAsString: This is a string
representation of the value. If the value is
numeric, there is no requirement for its
representation, it would just be able to be
converted by a string to numeric algorithm.
dataset:ValueUncertainty: This, if used, is
the uncertainty of the value, of course in the same
units as the value. If there is no uncertainty, then
this value is zero.
dataset:ParameterSpecification: This is
a record, meaning several components, giving the
specification of the value.
The specification of the value is defined by

dataset:ParameterSpecification. This
specification is used not only within the parameter
definition, but also to specify what type of data is
expected in other data structures. The specification is
made of the following:

dataset:ParameterLabel: This is a string
keyword or label given to this parameter value. In
a matrix, this would be the column name.
dataset:ParameterTypeSpecification:
This is the qudt:QuantityKind, of the QUDT
ontology, specifying the type of unit, for example,
qudt:MolarEnergy in the above example.
dataset:ValueUnits: This is the QUDT label
for the specific unir of the qudt:QuantityKind.
For example, for qudt:MolarEnergy, a specific
instance could be qudt:CAL-PER-MOL.
dataset:DataPointUncertainty: This is a

classification parameter and specifies the type of
uncertainty is given.

3 RESULTS: EXPERIENCE

All the above concepts using have been implemented
in JThermodynamicsCloud. During the simultaneous
development of the ontology and the application,
distinct advantages of the approach were realized.

First and foremost, one of the greatest advantages
of using the ontology is having the documentation of
the data classes centralized and, furthermore,
categorized (meaning the class structure of the
ontology definitions). This is not only convenient, but
almost essential considering that the data structures
are JSON-like and free format. Furthermore,
JThermodynamicsCloud is made of three distinct
subsystems, the GUI interface in Angular, the
backend in JAVA and the database in Google
Firestore and without the centralized data structure
definition offered by the ontology, developmental
programming and the (programmed) communication
between these subsystems would have been more
difficult and error-prone.

The use of the ontology in the definition of the
RESTful services, both for the services and for the
transactions, provides a clear documentation of what
inputs and what outputs are to be expected for the
RESTful services in a machine and human readable
format. Without this, the only specification is within
the backend code itself.

In terms of automation, the specification of the
database hierarchy is extremely efficient and
convenient. Where catalog objects are stored in the
hierarchy of the noSQL document based database is
handled completely by the ontology specification. If
a new catalog data object is to be created, this only
need be specified in the ontology. This is done by
placing the class name of the new catalog object in
the ontology hierarchy and, if necessary, define the
labeling of the branches leading to the class in the
hierarchy. This also means that the structure of the
database can be changed purely by changing the
ontology specification. No (JAVA) programming is
involved in the backend.

The use of the QUDT ontology for units increases
flexibility and efficiency in unit manipulation. Once
again all the domain knowledge of units in the
ontology and any changes in units is done through the
ontology without modification of the code. In terms
of database management and the results in the
calculations of the system, the added flexibility of
unit conversion when needed eliminates the
restriction that the units of the parameters stored in
the database have to be ‘standardized’. Elimination of
this restriction reduces, or at least facilitates the
detection of, errors in the database. This is

KEOD 2023 - 15th International Conference on Knowledge Engineering and Ontology Development

294

particularly important for the combustion community
where there two standards for units of energy. Which
is preferred is more a personal preference of the
researcher involved.

4 CONCLUSIONS

This paper has described the use of ontologies
in the model driven development of
JThermodynamicsCloud. The ontology serves is
platform independent description of the data
structures and the operational structures that are used
in the three distinct platforms of the system, namely
the interface (written in Angular), the backend
(written in JAVA and accessed through RESTful
services) and the database (the noSQL database of
Google Firestore). Though the ontology was not used
to generate code for the application, the ontology is
queried extensively (using the SPARQL queries of
the JENA API of the JAVA backend) to perform its
tasks.

On github further information about
JThermodynamicsCloud can be found:

https://github.com/blurock/Angular/releases
This link includes more detailed documentation (both
from the ontology point of view, but also from a
combustion application point of view), a link to the
current ontology and a link to the working version of
JThermodynamicsCloud on the Google Cloud
platform.

REFERENCES

Angular. (n.d.). Retrieved September 5, 2023, from
https://angular.io/

Apache. (n.d.). Apache Jena—SPARQL Tutorial. Retrieved
April 30, 2019, from https://jena.apache.org/tutorials/
sparql.html

Bhatia, M. P. S., & Beniwal, A. K. and R. (2016). Ontologies
for Software Engineering: Past, Present and Future.
Indian Journal of Science and Technology, 9(9), 1–16.
https://doi.org/10.17485/ijst/2016/v9i9/71384

Blurock, E. (2021). Use of Ontologies in Chemical Kinetic
Database CHEMCONNECT. 240–247. https://www.
scitepress.org/PublicationsDetail.aspx?ID=ai7xFiBEN8
E=&t=1

Blurock, E. S. (2019, June 29). CHEMCONNECT: An
Onotology-Based Repository of Experimental Devices
and Observations. 8th International Conference on
Advanced Information Technologies and Applications
(ICAITA 2019), Copenhagen, Denmark. https://icaita
2019.org/index.html#home

Bučko, B., Zábovská, K., & Zábovský, M. (2019). Ontology
as a Modeling Tool within Model Driven Architecture
Abstraction. 2019 42nd International Convention on
Information and Communication Technology,
Electronics and Microelectronics (MIPRO), 1525–1530.
https://doi.org/10.23919/MIPRO.2019.8756968

Cloud Firestore | Store and sync app data at global scale.
(n.d.). Firebase. Retrieved September 5, 2023, from
https://firebase.google.com/products/firestore

Cloud Firestore Data model. (n.d.). Firebase. Retrieved
September 5, 2023, from https://firebase.google.com/
docs/firestore/data-model

De Bruyn, P., Mannaert, H., Verelst, J., & Huysmans, P.
(2018). Enabling Normalized Systems in Practice –
Exploring a Modeling Approach. Business &
Information Systems Engineering, 60(1), 55–67.
https://doi.org/10.1007/s12599-017-0510-4

Dublin Core. (2012, June 12). Dublin Core Metadata
Initiative. Dublin Core Metadata Initiative.
http://dublincore.org/

Espinoza-Arias, P., Garijo, D., & Corcho, O. (2021).
Crossing the chasm between ontology engineering and
application development: A survey. Journal of Web
Semantics, 70, 100655. https://doi.org/10.1016/
j.websem.2021.100655

Gaševic, D., Djuric, D., & Devedžic, V. (2009). Model
Driven Engineering. In V. Deved¿ic, D. Djuric, & D.
Ga¿evic (Eds.), Model Driven Engineering and Ontology
Development (pp. 125–155). Springer. https://doi.org/
10.1007/978-3-642-00282-3_4

Maali, F., & Erickson, J. (2014, January 16). Data Catalog
Vocabulary (DCAT). https://www.w3.org/TR/vocab-
dcat/

QUDT. (2018, December 16). Quantities, Units, Dimensions
and Data Types Ontologies. Quantities,Units,
Dimensions and Data Types Ontologies. http://qudt.org/

SI Brochure. (n.d.). BIPM. Retrieved September 5, 2023,
from https://www.bipm.org/en/publications/si-brochure

Silva Parreiras, F., Walter, T., Wende, C., & Thomas, E.
(2010). Bridging software languages and ontology
technologies: Tutorial summary. Proceedings of the
ACM International Conference Companion on Object
Oriented Programming Systems Languages and
Applications Companion, 311–315. https://doi.org/10.11
45/1869542.1869626

Suchánek, M., Mannaert, H., Uhnák, P., & Pergl, R. (2021).
Towards Evolvable Ontology-Driven Development with
Normalized Systems. In R. Ali, H. Kaindl, & L. A.
Maciaszek (Eds.), Evaluation of Novel Approaches to
Software Engineering (pp. 208–231). Springer
International Publishing. https://doi.org/10.1007/978-3-
030-70006-5_9

Timothy Lebo, Satya Sahoo, Deborah McGuinness. (2013).
PROV-O: The PROV Ontology. https://www.w3.org/TR/
prov-o/

JThermodynamicsCloud: Case Study in an Ontology-Driven NoSQL Database Cloud Based Application in Chemical Domain

295

